
NON-REPLICATING INDEXING FOR OUT-OF-CORE
PROCESSING OF SEMI-REGULAR TRIANGULAR

SURFACE MESHES

Igor Guskov

University of Michigan, Ann Arbor
guskov@eecs.umich.edu

ABSTRACT

We introduce an indexing scheme for the vertices of semi-regular meshes, based on interleaving quadtrees rooted on the edges of the
base mesh. Using this indexing scheme we develop an out-of-core data structure for semi-regular mesh processing. Our approach
targets applications that process vertex data in a coarse-to-fine manner performing several passes through each level of the hierarchy.
We consider several measures of layout quality that provide lower bounds on the size of in-core memory buffer required for valid
referencing of vertex data during an atomic step of mesh processing. The approach is tested on an in-place implementation of the
Loop subdivision scheme for large control meshes.

Keywords: external data structures, semi-regular surface meshes, subdivision

1. INTRODUCTION

Mesh-based representations of surfaces are commonplace in
the practice of geometric modeling and visualization. While
the originally acquired surface meshes often come in ir-
regular (unstructured) form, the efficiency requirements of
further modeling and archival may require more structured
representations such as semi-regular meshes. Semi-regular
meshes represent geometry as regular refinements of an ir-
regular base mesh (see Figure 1 for an example), and com-
bine the generality of irregular meshes with the efficiency of
regular ones. Recent progress in subdivision scheme anal-
ysis and remeshing approaches has made the semi-regular
meshes usage more frequent. This paper addresses the is-
sue of external data structures design for such meshes. In
particular, we present an indexing scheme for the vertices of
semi-regular meshes that does not create any vertex duplica-
tion for closed surface meshes. Using this indexing scheme
we develop out-of-core data structures that allow efficient
processing of very large semi-regular meshes.

Recently, there has been a lot of interest in OOC process-
ing for computer graphics and visualization purposes due
to the necessity of processing large datasets. The devel-

oped methods cover both regular (structured) [1] and irreg-
ular (unstructured) shape data [2] [3] [4]. However, we are
not aware of any work targeted specifically at semi-regular
meshes. Therefore, our goal is to develop a library that can
be used to process large semi-regular surface meshes. Rather
than striving for utmost generality, our approach is to specify
a basic coarse-to-fine data access pattern, and specialize the
design of our data structures towards that pattern.

One of the objectives of our work is to create a library that
can be used instead of the usual in-core semi-regular mesh
data structures in existing algorithms. In fact, we would like
to minimize the changes to the currently existing code, and
to substitute our OOC data structures in a way mostly trans-
parent to the existing algorithm.

We assume that the computation conforms to the following
template

for(k=0; k<=max_level; ++k) {
several passes using levels 0..k

}

Note that a typical recursive implementation of subdivision

Figure 1: An example of a simple semi-regular mesh
obtained by Loop subdivision. Note a number of base
vertices of valence not equal to six preserved in the re-
fined mesh. The mesh consists of a number of patches
refined in a regular one-to-four fashion.

algorithms [5][6] and several existing remeshing algorithms
[7][8] can be easily represented in this fashion.

Processing of semi-regular meshes requires attention both to
the irregular base mesh and to the regular patch structure. In
particular, the global index of a vertex in a semi-regular mesh
consists of the index of the primitive (in our case a base edge)
coming from the layout of the base mesh and the local index
within a regular data structure (in our case a uniformly subdi-
vided quadtree) associated with each of the base primitives.
The following sections will deal with both of these index-
ing problems: first, we introduce the vertex indexing within
regular patches used in our library in Section 2. Section 3
considers the issues related to the base mesh layout using no-
tations similar to the very recent Streaming Meshes work of
Isenburg and Lindstrom [4]. The data structures themselves
are described in Section 4, followed by their application to
in-place Loop subdivision in Section 5.

Our implementation operates under assumption that the base
mesh is stored in internal memory, while the semi-regular in-
formation is stored externally. It should be possible to gener-
alize our approach to bigger base meshes stored externally.

1.1 Related work

Isenburg et al. [3] classify OOC mesh processing approaches
into three categories: mesh cutting, batch and online pro-
cessing. Our approach to semi-regular mesh storage belongs
to the online processing class, which maintains an internal
memory buffer for a part of the mesh. Note that we are only
concerned with the storage of the regular patches and assume
that the base mesh connectivity is fixed and accessible via
the usual internal memory mesh data structures. Thus, the
maintenance of the proper mesh connectivity is not an issue.

Recently, the concept of streaming meshes was presented by
Isenburg and Lindstrom [4]. Streaming meshes advocate the
use of reordered mesh format that explicitly introduces and

finalizes vertices. When each processing operation is able to
proceed on a per-triangle basis, the measures of layout span
and width from [4] provide sufficient characterization of the
mesh ordering. Mesh rendering is one example of such per-
triangle processing. However, not every operation is possible
on a per-triangle basis. Section 3 describes several measures
that are specialized to our setting.

The idea of edge-based indexing using interleaved quadtrees
comes from the work on semi-regular mesh compression [9].
A different kind of interleaved quadtrees was also used in the
work on terrain simplification [10].

There exist much work on improving performance of sub-
division algorithms in the context of memory hierarchy, fast
evaluation of surfaces, and hardware rendering [11][12] [13].
Generally, these approaches advocate to compute all the data
within a single regular patch in a single pass, in order to min-
imize data transfer. Rather than following this path, we took
a generic implementation of subdivision scheme and tried to
design an external data structure that will not require rewrit-
ing of the application code. Thus, the simplicity of the origi-
nal code is retained. However, the good performance is only
achieved in the case when a proper (streaming) mesh layout
is chosen for the base mesh.

2. SEMI-REGULAR MESH INDEXING

The vertices of a semi-regular mesh typically store position
and normal information. If the finest level of the hierarchy
is specified beforehand, it is convenient and more efficient
to represent the vertices within each patch as a regular array.
For primal semi-regular meshes such as the ones produced
by Loop and Butterfly subdivision schemes [6], the patch
boundaries are shared by adjacent patches and explicit du-
plication of assignments and synchronization of values is re-
quired, which can be inconvenient. Moreover, when the de-
sired number of levels is small, the percentage of boundary
vertices within a regular triangular patch is relatively large
(see the table below).

Levels Total number Number of Boundary
of vertices boundary verts percentage

0 3 3 100%
1 6 6 100%
2 15 12 80%
3 45 24 53.3%
4 153 48 31.4%

The percentage of duplicated vertices can be approximately
estimated as half of the boundary vertex percentage. Thus,
on level four, about 15% of all the vertices are duplicates.
This can be inefficient, especially if only few levels of re-
finement are needed over a large base mesh. In what follows,
we propose an indexing scheme that does not create any du-
plication (for closed surface meshes without boundary). We
start by introducing some notation and proceed to describe
two indexing schemes: the usual face-based indexing and
the non-replicating edge-based indexing.

2.1 Notation

We consider a base manifold mesh M = (V, E ,F) where
V is the set of base vertices, E is the set of base edges, and
F is the set of triangular base faces. The connectivity of
a primal semi-regular mesh is built by applying one-to-four
splits recursively as in Loop subdivision scheme [5]. We
shall denote as VL the set of all the vertices of the mesh at
level L, so that V0 = V . A natural way of indexing the set
VL is to specify a base triangle f ∈ F and an index tuple
i = (i1, i2) within a regular triangular slab of level L. We
have i1 ≥ 0, i2 ≥ 0, and i1 + i2 ≤ n(L) = 2L. We assume
that for a base face f = (va, vb, vc) the base vertex va has
indices (0, 0), the base vertex vb has indices (2L, 0), and the
base vertex vc has indices (0, 2L). A vertex lying on a non-
boundary edge of the base mesh belongs to two triangular
patches, and has two face-indices corresponding to it.

This face-based indexing is very simple and makes it very
easy to find neighboring vertices by simple increments and
decrements of integer indices. Hence, many implementa-
tions of subdivision and remeshing algorithms naturally use
this face-based indexing.

0

11

1 1

222

2 2 2 2

2

2 222

2 2 2 2

Figure 2: Edge-based indexing: all the newly appeared
vertices within the center patch after three levels of
refinement are covered by three interleaving vertex
quadtrees associated to the edges of the base mesh.
Vertices of the pink quadtree are labeled with indices
corresponding to their quadtree level.

2.2 Non-replicating edge-based index-
ing

An alternative way of covering all the vertices in a semi-
regular hierarchy is suggested by the location of wavelet co-
efficients used for compression of semi-regular meshes [9].
Each “band” of wavelet coefficients makes up a quad-tree
rooted at the middle of a base edge. It is easy to see that each
non-base vertex in a semi-regular hierarchy belongs to one
of these quadtrees. For a closed mesh, there is one-to-one
correspondence, and no index space is wasted. For meshes
with boundaries, the quadtrees corresponding to boundary
edges stick out, and waste half of their index space. In this

paper, we do not consider the issue of boundary quadtrees.
Figure 2 shows an example of covering a patch by three in-
terleaved quadtrees. One of the quadtrees is also marked
with the level indices. Note that this indexing scheme does
not replicate any vertex, and that the base vertices have to be
treated separately.

One disadvantage of the edge-based indexing is the non-
intuitiveness of the neighbor indexing – each vertex is sur-
rounded by vertices from several other quadtrees. Our
purpose is to create an out-of-core representation for
semi-regular meshes that internally uses edge-based non-
replicating indexing but can be substituted instead of in-core
face-based data structures. Thus, we need a transformation
from a face-based index to an edge-based index. The next
subsection will introduce the specifics of such index map-
ping. The description of our out-of-core data structure man-
agement will follow in Section 4.

0

8 9

16 ...

...

...

1 2 3 4 5 6 7

C

BA

Figure 3: Vertex indexing of the third level associated
with the edge BC. The vertices are in one to one corre-
spondence with diagonally oriented edges of the previ-
ous level.

2.3 Transforming face-based index into
edge-based form

Given a vertex of the semi-regular mesh located on the level
L with the index pair (i1, i2) within a face f = (va, vb, vc),
we would like to find its indices in the edge-based quadtree
representation. This can be done in a sequence of steps:

• Find the level on which the vertex first appeared. This
can be done by performing a binary logarithm-like op-
eration on the index pair (i1, i2) to find the position
of the first non-zero bit in either of the indices i1 or
i2. This would give the difference between the current
level L and the level l where the vertex got introduced.
We define the corresponding index pair on level l as
(k1, k2) where kd = id2l−L for d = 1, 2.

• By construction, at least one of the indices kd has non-
zero least significant bit. Define bd to be the least
significant bit of kd for d = 1, 2. It is clear that
b1 ∨ b2 = 1.

• Based on the pair of bits (b1, b2) we can find the edge
of the face whose quadtree contains the vertex. The
edge (vb, vc) corresponds to the pair (1, 1) as shown
in Figure 3. The edge (va, vb) corresponds to (1, 0),
(vc, va) to (0, 1).

• For the edge (vb, vc) the vertex indices within the
square grid of the level l are given as ((k1−1)/2, (k2−
1)/2). For the other two quadtrees a proper rotation of
the face can be performed to find the indices.

The above sequence of operations produces the base edge,
the quadtree level, and the tuple of indices with the square
grid on that quadtree level. Thus, the edge-based vertex in-
dex is fully specified for any non-base vertex from VL. We
shall now turn to more precise characterization of base mesh
layout.

3. STREAMING MESH
CONSIDERATIONS

Streaming meshes work of Isenburg and Lindstrom [4] in-
troduced several measures characterizing mesh layouts that
are relevant for applications performing per-triangle process-
ing of irregular meshes such as rendering. In their original
form, these measures do not characterize base mesh layouts
in terms of edge indexing and wider stencils that are used
in our approach. In this section we introduce mesh layout
characterizations that will be immediately useful for our ap-
plication.

As an example, consider irregular mesh smoothing. It is usu-
ally implemented in a way that sequentially processes every
mesh vertex, and for each vertex, the one-ring of neighboring
vertices is collected and averaged. Hence, the differences of
the vertex indices within one-ring should be of more interest
than the differences within a single triangle. Generally, many
mesh processing algorithms are local, and proceed in a num-
ber of passes each of which sequentially modifies mesh ver-
tices based on their neighborhoods. We use the word stencil
for the set of neighbors used in a particular local operation.
Consider a collection Ω of such stencils. Each stencil ω ∈ Ω
is a subset of the vertex set (ω ⊂ V). For instance, Ω could
be the set of all the vertex triples corresponding to mesh faces
Ω = F , this stencil collection is considered in [4].

Let i be an indexing of vertex set i : V → N. We define the
span of a stencil collection Ω with respect to the indexing i
as follows:

span[i](Ω)
def
= max{|i(u)− i(v)| : u ∈ ω, v ∈ ω, ω ∈ Ω}.

Given an algorithm we can consider the corresponding col-
lection of stencils and find its span σ with respect to some
particular mesh indexing. We can expect that the internal
buffer size of at least σ vertices is required for the algorithm
to proceed in a streaming fashion.

The above considerations will hold if the application stores
its data with vertices. In our setting, the semi-regular patch

data will be saved with base edges, hence the corresponding
spans and indexing needs to be redefined for edge stencils.
Let j be an indexing of the edge set of a mesh j : E → N,
and let A be a collection of edge stencils (each edge sten-
cil α is a subset of E). Then, the span of A with respect
to j can be defined in the same way as above. For applica-
tions that perform per-triangle processing, the edge span of
the face collection is important, that is, σf = span[j](Af),
where each stencil a ∈ Af consists of three edges forming a
triangle.

Mesh indexing that has low span values can be processed
efficiently in a streaming fashion as described in [4]. As
mentioned in [4], finding optimal mesh layout is an NP-
hard problem, and several approximate algorithms are used
in practice. Possibly, the simplest mesh indexing is given by
arranging the mesh faces to be sorted along the longest spa-
tial axis. Once the faces are sorted, we index the edges in
a compatible way, by introducing them in the order they are
used in the faces, similar to the compaction operation from
[4]. We use this spatial sorting strategy for all the results
reported in this paper.

We shall now proceed to describe our implementation of
OOC data structures.

4. SEMI-REGULAR OOC MESH LIBRARY

4.1 Memory mapping

Our goal is to enable out-of-core processing of large semi-
regular meshes with minimal changes to the existing algo-
rithms. Taking into account the streaming considerations of
the previous section, we assume that the algorithms using
our library will adhere to the following outline:

for(k=0; k<=max_level; ++k) {
activate level k
several passes using levels 0..k

}

Each pass in the above processing needs to proceed in the
order optimized for good streaming performance. A basic
operation in each pass consists of a sequential processing of
stencils. For instance, in a subdivision algorithm, for each
face of the base mesh, we loop through all the vertices of the
current level that belong to the corresponding patch of the
surface, and for each such vertex we perform the following
operation:

patch->at(level,i,j) =
Compute(patch->at(level-1, i1, j1),

patch->at(level-1, i2, j2),
...)

Our library overloads the at(l,i,j) function that returns
a reference to the vertex data. Thus, a call to at() func-
tion may have a side effect of performing management of

the OOC data structures. In particular, a portion of internally
stored data can be written to the disk and another portion of
externally stored data can be loaded. We would still like to
retain the original description of the algorithm without mod-
ifications. In particular, all the pointers to vertex data passed
to the Compute() function above should be valid. This is
achieved as follows: the internal data are maintained in a cir-
cular memory buffer that is big enough to cover twice the
span of stencils of the Compute() function with respect to
particular base edge indexing.

Our at() function has the following form:

function at(level, i, j) {
if(not mapped(this->edge_index))

map(this->edge_index)
...
return vertex data;

}

The map function reconfigures the active buffer mapping in
such a way that the currently accessed patch is in the middle
of the memory-mapped segment. In order to overcome in-
dex range restrictions of 32-bit operating systems, we do not
use their memory mapping functionality, rather performing
explicit file reading and writing. Each mapping operation
operates on two possibly overlapping index space segments,
and the use of circular buffer allows to keep all the data
in the overlapping region untouched. Since all the pointers
within the same stencil are guaranteed to be inside the newly
mapped region, all the previously found pointers to data re-
main valid as illustrated in the figure below:

mapped before call to e3

mapped after call to e3

e3e2e1 e4 e5

The patches corresponding to two edges e1 and e2 were
memory mapped in the old (green) buffer segment that did
not include e3. Upon the call to e3 data, the new (red) seg-
ment is mapped to the memory that contains all the edges
e1, . . . , e5 that participate in the currently processed stencil.

The following illustration shows the state of the circular
buffer before and after re-buffering caused by the access to
e3 – we see that after the access all the five elements of the
stencil are mapped to the memory buffer, and that the previ-
ously mapped e1 and e2 retain their memory location:

e2 e1 e2 e1e3 e4 e5

Note that the data access operation will remain correct even
if the stencils are re-indexed (as long as the edge indexing
stays the same). However, a bad ordering of the stencils may

affect the performance by excessive loading and unloading
of file segments.

4.2 Per-level storage of patch informa-
tion

The basic pattern of usage presented at the beginning of the
preceding section implies that the data are processed in a
coarse-to-fine manner. In particular, this means that dur-
ing algorithm passes on coarser levels the finer level data
are not required. Hence, we separate the quadtree levels of
each edge into different files; that is, each particular level
gets mapped to an individual file, and within each file all
the regular quadrilateral grids for all the edges are stored se-
quentially. Thus, if each vertex need S bytes of storage, the
overall size of the file at level L is given by S |E| 4L−1. Note
that the level L of the semi-regular mesh corresponds to the
level L − 1 of the quadtree (in particular, the base mesh at
level 0 does not have any out-of-core storage).

The total size of all the memory buffers is specified as a
parameter during the initialization: the size of the memory
buffer for each level is computed so that the range of edge
indices covered by each buffer is approximately the same:
hence each consecutive level has the buffer four times bigger
than the buffer of the previous coarser level.

5. AN APPLICATION: LOOP
SUBDIVISION

5.1 In-place Loop subdivision imple-
mentation

1/8

Even vertexOdd vertex

β

β

β
1−kβ

ββ
1/8

3/83/8

Figure 4: The in-place Loop subdivision scheme sten-
cils. The coefficient β in the even vertex computation is
given by β = 8

5
β′, where β′ is the corresponding coef-

ficient from the usual (not in-place) implementation of
Loop subdivision scheme [6].

As an example application of our OOC semi-regular mesh li-
brary we used the in-place implementation of the Loop sub-
division scheme [5] [6]. The scheme proceeds in two passes:
the first pass computes odd vertices, and the second pass up-
dates the even vertices using the odd vertices computed in
the previous pass. Figure 4 shows the stencils used in the
computation. The in-place implementation has the advan-
tage of not requiring additional memory for the storage of

the coarser level, and is similar to the dual-primal imple-
mentations of quadrilateral subdivision schemes [14]. The
normals are computed in the same way as for the usual Loop
scheme. There exist faster ways of computing subdivided
values including precomputed tables and per-patch compu-
tation specifically useful for faster rendering. We chose an
existing in-place implementation of the Loop scheme as a
typical example of recursive multiresolution algorithm pro-
ceeding in a coarse to fine fashion. The only modification to
the existing in-core algorithm was to explicitly activate the
levels of the hierarchy before the operation of each level.

5.2 Stencil span

In order to obtain the lower bound on the size of the memory
buffer necessary for the correct operation of Loop subdivi-
sion, we need to consider all the stencils used in the compu-
tations. For instance, consider an even vertex update shown
below:

The set of yellow and green vertices belong to the regular
quadtrees associated with five base edges shown in bold red.
Thus, if the even vertex update is computed in a single ex-
pression and all the data from the corresponding patches is
required to be in-core at the same time, we need to compute
the corresponding edge indexing span for the collection of
stencils of this form. That is, for every base edge e, define
the stencil α(e) to be the set of five base edges consisting of
e and the other four edges that form two triangular base faces
adjacent to e. Consider the collection A of all such stencils:

A
def
= {α(e) : e ∈ E}. Then, as discussed in the previ-

ous section, the memory buffer should be of such a size as
to be able to contain more than 2σA edge quadtrees, where
σA = span[ie](A), and ie : E → N is the edge indexing
used for a particular mesh model.

Given the edge span σf of the face collection Af introduced
above we can find an upper bound on σA; in fact it is easy to
see that

σA ≤ 2σf .

However, our experiments show that this estimate is too con-
servative in the case of layouts built by spatial sorting; and
by computing σA directly for a given mesh layout, we get
values lower than 2σf (see the following section for exam-
ples). For improved performance, the layout optimization
methods described in [15] may be applied directly to stencil
collection A.

The update of the coordinates of an extraordinary vertex can
result in even wider stencil collection that would include the
subsets of edges adjacent to each base vertex. In our imple-
mentation, this update is not computed in a single step, hence
we do not consider the edge span of this stencil collection.

5.3 Examples

We evaluated the performance of our approach by running
our in-place Loop subdivision implementation on three large
models: a molecular surface (Deo), a scanned David statue
(David), and the happy Buddha model (Buddha). The fol-
lowing table lists the characteristics of these base meshes.
The stencil and face edge spans are given for the spatially
sorted models.

Model # Vertices # Edges σf σA

Deo 26,016 78,084 4,864 4,983
David 274,831 824,517 17,764 24,857

Buddha 545,714 1,637,334 38,765 56,176

Figure 5: Subdivided molecular and Buddha models.

Figure 6 shows the diagram visualizing the stencil span for
the Buddha model before and after spatial sort. Each stencil
takes one horizontal line and the edges used in that stencil are
depicted along each line at a location given by their index.
The horizontal width of the black region corresponds to the
edge span of the stencil collection. It easy to see that spatial
order improves the streaming characteristics of the indexing.

Figure 7 shows the comparison of the diagrams for the col-
lection of faces Af and the collection of Loop stencils A.
While the latter seem to be wider, the numbers from the
above table show that the maximal spans of these two col-
lections are similar.

The table below shows the timing results for the subdivision
performance of our algorithm for the three models: Deo and

Figure 6: Buddha model span diagram of stencil col-
lection {α(e) : e ∈ E} before (left) and after (right) spa-
tial sort. Horizontal axis corresponds to edge index,
vertical axis corresponds to the stencil index.

Figure 7: Molecule model span diagram. Left: the face
collection, right: Loop even-stencil collection.

David models subdivided to level 5, and Buddha model sub-
divided to level 4. We have not modified the original re-
cursive implementation of the Loop subdivision; although
various optimizations are available in the computer graphics
literature [11][12] [13] . In particular, our generic recursive
implementation performs several passes over the mesh for
the subdivision of a single level and the normal computation.
The results are reported for a 3GHz Pentium 4 PC with 1GB
of RAM. The memory used in each run of the algorithm is
also reported – this quantity was adjusted by specifying the
size of the memory buffer available for internal storage of
patches. The size of the circular buffer allocated for each
level was varied as described in Section 4.2. The sizes of the
external data structures on disk are also included in the table.

Model Memory Time CPU Size
(# levels / verts used elapsed time on
on finest level) (m:s) (m:s) disk

Deo 180MB 8:27 2:00 1GB
(5 / 26M) 640MB 5:26 2:00 1GB

David 913MB 115:24 21:20 10GB
(5 / 281M)

Buddha 530MB 71:41 11:39 5GB
(4 / 139M)

6. CONCLUSIONS AND FUTURE WORK

We have introduced an out-of-core semi-regular mesh data
structures and evaluated its performance for an approximat-
ing subdivision scheme. Minimal modification of the ex-
isting subdivision code was required to be able to use our
external memory data structures.

We would like to apply our library in a remeshing proce-
dure that would produce an approximation of a fine original
mesh. We expect that while the semi-regular representation
used here can be applied without modification, the process-
ing of the original mesh would require the approach possibly
similar to processing sequences work of Isenburg et al. [3].

Our implementation works for uniform meshes. Complex
real-world models often require adaptive refinement in ar-
eas of high curvature. We note that the proposed edge-based
indexing of the regular patches should work well for a block-
based refinement of semi-regular meshes similar to the work
on efficient representation of adaptively sampled distance
fields [16].

Acknowledgments This work was supported in part by
NSF (CCR-0133554). Models are courtesy of the Scripps
Research Institute and the Digital Michelangelo project at
Stanford University [17].

References
[1] Pascucci V., Frank R.J. “Global Static Indexing for

Real-time Exploration of Very Large Regular Grids.”
Super Computing 2001. 2001

[2] Cignoni P., C.Montani, C.Rocchini, R.Scopigno. “Ex-
ternal memory management and simplification of huge
meshes.” IEEE TVCG, 2003

[3] Isenburg M., Lindstrom P., Gumhold S., Snoeyink
J. “Large Mesh Simplification using Processing Se-
quences.” IEEE Visualization 2003. 2003

[4] Isenburg M., Lindstrom P. “Streaming meshes.” sub-
mitted. 2004

[5] Loop C.T. Smooth subdivision surfaces based on tri-
angles. Master’s thesis, Department of Mathematics,
University of Utah, 1987

[6] Zorin D., Schröder P., editors. Subdivision for Model-
ing and Animation. Course Notes. ACM SIGGRAPH,
1999

[7] Guskov I., Vidimče K., Sweldens W., Schröder P.
“Normal Meshes.” Proceedings of SIGGRAPH, pp.
95–102, 2000

[8] Lee A.W.F., Sweldens W., Schröder P., Cowsar L.,
Dobkin D. “MAPS: Multiresolution Adaptive Param-
eterization of Surfaces.” Proceedings of SIGGRAPH,
pp. 95–104, 1998

[9] Khodakovsky A., Schröder P., Sweldens W. “Progres-
sive Geometry Compression.” Proceedings of SIG-
GRAPH, pp. 271–278, 2000

[10] Lindstrom P., Pascucci V. “Terrain Simplification Sim-
plified: A General Framework for View-Dependent
Out-of-Core Visualization.” IEEE TVCG, vol. 8, no. 3,
239–254, 2002

[11] Pulli K., Segal M. “Fast rendering of subdivision sur-
faces.” Proceedings of the eurographics workshop on
Rendering techniques ’96, pp. 61–70. 1996

[12] Bischoff S., Kobbelt L.P., Seidel H.P. “Towards hard-
ware implementation of loop subdivision.” Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, pp. 41–50. 2000

[13] Bolz J., Schröder P. “Rapid Evaluation of Catmull-
Clark Subdivision Surfaces.” Submitted

[14] Zorin D., Schröder P. “A Unified Framework for Pri-
mal/Dual Quadrilateral Subdivision Schemes.” CAGD,
vol. 18, no. 5, 429–454, 2001

[15] Diaz J., Petit J., Serna M. “A survey of graph layout
problems.” ACM Comput. Surv., vol. 34, no. 3, 313–
356, 2002

[16] Perry R.N., Frisken S.F. “Kizamu: a system for sculpt-
ing digital characters.” Proceedings of the 28th annual
conference on Computer graphics and interactive tech-
niques, pp. 47–56. ACM Press, 2001

[17] Levoy M. “The Digital Michelangelo Project.” Pro-
ceedings of the 2nd International Conference on 3D
Digital Imaging and Modeling. Ottawa, October 1999

