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ABSTRACT 

Topology modification of hexahedral meshes has been considered difficult due to the propagation of topological 
modifications non-locally.  We address this problem by working in the dual of a hexahedral mesh.  We prove several 
relatively simple combinatorial aspects of hex mesh duals, namely that they are both complexes of simple polytopes as 
well as simple arrangements of pseudo-hyperplanes.  We describe a set of four atomic dual-based hex topology 
modifications, from which the flipping operations of Bern et. al can be constructed.  We also observe several intriguing 
arrangements and modification operations, which we intend to explore further in the future. 
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1. INTRODUCTION 

Many finite element analysis practitioners prefer using all-
hexahedral meshes.  These meshes are believed to yield more 
accurate solutions for a given computational expense, 
especially in the non-linear analysis regime (theoretical 
studies investigating this issue are appearing now [1], joining 
the more empirical studies on the subject [2][3]). 
Generating all-hexahedral meshes suitable for finite element 
analysis remains an active area of research[4].  Working with 
hexahedral meshes has been considered difficult in part 
because of the non-local nature of connectivity modifications 
inside hex meshes.  That is, until recently there were 
relatively few known options for modifying the topology 
interior to a hexahedral mesh which did not propagate 
through the mesh.  This is in contrast to tetrahedral meshes, 
where local connectivity modifications are a crucial part of 
most robust tetrahedral mesh generation algorithms [5].  
Furthermore, local connectivity modifications have also 
played an important role in all-quadrilateral meshing [6][7].  
It is reasonable to expect that post-meshing topology 
modifications will play an important role in any successful 
automatic hexahedral meshing algorithm.  In addition to 
mesh generation, local connectivity modification in 
hexahedral meshes could also be useful for adaptive 
refinement and for local mesh quality improvement, 
analogous to its counterpart in tetrahedral meshes.  For all 

these reasons, we believe local connectivity modification in 
hexahedral meshes to be an important technology. 

1.1. Hexahedral Dual 
We study hex topology modification in the dual, for reasons 
which will become apparent later in this paper.  The dual of a 
hex mesh is analogous locally to Voronoi diagrams for 
tetrahedral meshes, where (in three dimensions) each primal 
entity of dimension k (e.g. node, edge, face) has a 
corresponding (3-k)-cell (e.g. 3-cell, 2-cell, 1-cell).  Non-
locally, the dual of a hex mesh has special properties: 1-cells 
and 2-cells can be grouped into larger structures which have 
non-local extent in the mesh.  Indeed, the dual of a 
hexahedral mesh can be viewed as an arrangement of 
surfaces, with (3-k)-faces in the arrangement corresponding 
to k-dimensional entities in the primal mesh.  Although this 
characteristic was recognized quite some time ago[8], its 
application to hexahedral meshes was not recognized until 
much later[9].  The physical interpretation of these surfaces is 
of topologically 2d layers of hexahedral elements; pairwise 
intersections of these surfaces represent columns of hex 
elements in the mesh.  Both these structures are typically 
non-local in the mesh, and are sometimes self-intersecting.  
These structures are referred to as sheets and chords, 
respectively, and have been used in the development of the 
Whisker Weaving dual-based hex meshing 
algorithms[11][12]. 
One useful way of representing dual sheets (from here on 
referred to as sheets) is by viewing their 2d projection, where 



intersections with other sheets are depicted by lines (pairwise 
intersection) and vertices (three-way intersection).  These 
“sheet diagrams” simplify the study of the dual arrangement 
by representing it as a series of 2d projections[11].  
An example of a simple hex mesh, its dual, and its 
representation as a series of sheet diagrams is shown in (fig).  
The outer loop of each sheet represents the sheet’s 
intersection with the outer boundary of the mesh.  The lines 
of intersection with other sheets we refer to as chords; on the 
sheet diagrams intersections with other chords represent hex 
elements, and intersections with the outer loop represent the 
emergence of a chord at a face on the boundary of the mesh.  
Loop-intersecting and interior vertices on sheet diagrams are 
sometimes labeled with the face/hex to which they 
correspond, respectively. 
 

 
Figure 1: Hex mesh with three elements (top); dual 
surfaces (sheets) and dual vertices shown.  Two-
dimensional projection into "sheet diagrams" 
shown below. 

 
One can see that: 

• Each chord appears on the two sheets whose 
intersection form the chord 

• A hex element appears as a vertex on three sheet 
diagrams as the pairwise intersection of three 
chords 

• Each 1-cell (or segment of a chord) and 2-cell in 
the sheet diagrams represents a face and edge in 
the primal mesh, respectively 

Sheet diagrams, and the 1-cells and 2-cells on them, are used 
later in this paper to depict hex topology modifications. 

1.2. Prior Work 
Relatively little work has been done in the area of hex mesh 
topology modification.   
This subject was treated peripherally in the development of 
Whisker Weaving [13], and in the study of  “knife” element 
resolution [14].  While some of the structures being used in 
the current work were evident, no effort was made to utilize 
them in local mesh improvement aside from the constructive 
process. 
Knupp & Mitchell studied hex mesh topology optimization in 
connection with hex meshes arising from tetrahedral mesh 
subdivision [15].  The topology modification operations 
described there were similar to some described in this paper, 

but the completeness of these operations and their unification 
under a common theoretical framework was not addressed. 
Bern et. al research topology modifications of hex meshes in 
connection with “flips” of hex meshes, where it is shown that 
there exists a complete set of hex mesh transitions, each of 
whose outer boundary corresponds to the six faces of a cube 
[17].  More recently, this research is being extended to 
consider face collapsing inside the mesh [18].  This work has 
played an important role in our research, both as inspiration 
for starting the work as well as serving as a benchmark in 
various ways.  We describe these links later in this paper. 
As mentioned before, the general approach of using local 
mesh improvement in a post-meshing context has been used 
in both the tetrahedral [5]and quadrilateral [6][7] meshing 
areas.  While we believe the various cleanup methods 
demonstrated for quads could be unified under a common 
framework similar to the current work, no attempt has been 
made to do that since this seems to be treated adequately by 
prior methods. 

1.3. Current Work 
In this paper we outline the basic operations of and 
motivations for locally modifying the topology of an existing 
hexahedral mesh.  Our initial goal has been to define a 
complete set of local, atomic operations on the topology of a 
hexahedral mesh. By “complete” we mean that we can 
transform a given hexahedral mesh to any other with the 
same quadrilateral boundary using only these operations. By 
“local” we mean that the connectivity altered by the sequence 
of operations is local to the actual hexes targeted by the 
operations.  This boundary is denoted in the following 
sections by a dotted line which replaces the outer boundary of 
a sheet diagram, i.e. it is the group of quadrilateral faces 
bounding the region of interest, just as the outer boundary of 
a normal sheet diagram is a group of quadrilaterals on the 
outer boundary of the solid. Finally, the use of “atomic” 
above is intended to indicate that the operations we seek to 
define are in some sense irreducible, that is, cannot be done 
as a sequence of other atomic operations.  In particular, we 
show that the flipping operations presented in [18] can be 
reproduced as a series of these elementary operations. 
The contribution of this work is the reduction of other known 
hex mesh topology modification operations into a much 
smaller set of atomic operations.  This work also unifies these 
operations under a common theme of modifications to a 
simple arrangement of surfaces, while showing how these 
operations can be directed toward specific mesh improvement 
or mesh modification for other purposes. 
The remainder of this paper is arranged as follows.  Section 2 
reviews elements of the dual of a hexahedral mesh, and 
proves several new results for those types of duals.  Section 3 
describes the general approach we take to hex mesh topology 
modification.  Section 4 describes the atomic operations we 
use to describe others’ topology modification operations.  
Section 5 relates these operations to the flipping operations 
described by Bern et. al.  Section 6 gives conclusions and 
future directions for this work. 



2. THE HEXAHEDRAL MESH DUAL  2.2.  The hex dual is a simple 
arrangement of hyperplanes 

Before describing our work in hex topology modification, we 
describe here some characteristics of the dual in terms of 
complexes of polytopes and arrangements.  Describing the 
hex dual in these terms allows us to take advantage of the 
wealth of prior work on combinatorial relations for polytope 
complexes and arrangements (e.g. [8]). 

Theorem 2: The dual of a hexahedral mesh forms a simple 
arrangement of hyperplanes. 
Proof: We start by deriving some incidence relations for 
vertices in a simple arrangement, by constructing a simple 
arrangement containing a single vertex.  Consider a single 
surface, ha, passing through a point p.  Now, add a second 
surface, hb,different from the first, also passing through p.  
The intersection of the two planes is a line contained in each 
plane, which partitions each plane into two facets.  Similarly, 
add a third plane, hc, which also passes through p, and is 
affinely independent of the other two planes (so its 
intersection with each plane generates a new line on that 
plane).  Note that the third plane has to be independent of the 
first two, since for simple arrangements each 1-face can only 
be formed by the intersection of d-1=2 surfaces.  When hc is 
added, a new line of intersection is formed with each of the 
other planes, such that each plane is partitioned by two lines, 
formed by its intersection with the other two planes.  Since 
all the lines pass through p, each plane is partitioned into 4 2-
faces.  The vertex at p, formed by the intersection of these 
three hyperplanes, is therefore connected to 12 2-faces of the 
arrangement.  The number of 1-faces incident on the vertex is 
computed by recognizing that three lines pass through, and 
are each partitioned in half by, p.  Therefore, 6 1-faces are 
incident on the vertex.  Finally, because each plane is affinely 
independent of the others, and passes through p, they each 
partition all existing cells in half (where R3 is taken as a 
single cell), so the vertex is connected to 23 = 8 3-faces.  No 
more planes can be added which pass through p, by definition 
of a simple arrangement.  Therefore, for a simple 
arrangement: 

To define the dual, we start by identifying the hexahedral 
mesh as a cell complex P whose cells Pi are hexahedral.  
Then, the dual is defined as a one-to-one mapping Ψ(P): P  
P* which preserves but reverses incidence relations: 

Pi ⊂ Pj   ↔ Ψ(Pj) ⊂  Ψ(Pi) 
The dual P* we identify as a polytope complex, with each k-
face dual to a (d-k)-face in the hexahedral mesh. 
A great deal of results have been published on various 
combinatorial characteristics of polytope complexes and 
arrangements.  In particular, if it can be shown that the 
polytope or complex being considered is simple2, a richer set 
of combinatorial relations is available.  Therefore, we first 
address these issues for hexahedral mesh duals. 

2.1. The hex dual is a complex of 
simple polytopes 

Theorem 1: The dual of a hexahedral mesh is a complex of 
simple polytopes. 
Proof:   Consider a hex element P, one of its bounding 
vertices V(P), and the sets of 1-faces  and 2-faces 

of P incident on V.  Because a hexahedron is a 

simple polytope, card .  Also, since every 

k-face of a simple polytope is formed by the intersection of 
(d-k) supporting faces of the polytope, 

.  Since the dual preserves 

incidence relations (and does not change dimension), 
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Next, we consider a single hexahedral element P in the mesh.  
A hex is a cuboid polytope, which by definition is bounded 
by 2d (d-1)-faces (e.g. one pair for each parametric 
direction): )()),(()),(()( 12 VVPFVPFP Ψ⊂Ψ⊂Ψ⊂Ψ ,  

fd-1(P) = 2d or Again, because P is a simple polytope, it obeys the Dehn-
Sommerville relations, and specifically for d=3, we have[19]: *))*,*(*))*,*(*1)*(* 2 PPVFPVFPV ⊂⊂⊂ , 

f0(P) = 2 f2 - 4 with 
f1(P) = 3 f2 – 6 

dVPFcardPVFcard == ),(())*,*(*( 12  and Combining these, we get 
f0(P) = 4(d – 1) = 8   (2) 

dVPFcardPVFcard == ),(())*,*(*1( 2 .          (1) f1(P) = 6(d – 1) = 12 
fd-1(P) = 2d = 6 However, because the dual relation between entities is one-

to-one and we chose an arbitrary vertex and any of the hex 
elements bounding it, (1) must apply to all the dual cells as 
well as all the dual vertices bounding those cells.  Therefore, 
the dual cells must be simple polytopes. 

Now, we apply the dual transformation to these relations.  As 
in the previous section, d is unchanged, and each k-face 
corresponds to a (d-k)-face in the dual.  Since Eqs. (2) apply 
to P in the primal, they apply to Ψ(P) = V* in the dual; 
furthermore, the cardinalities don’t change, since Ψ preserves 
incidence relations.  Therefore, Eqs. (2) become: 

□ 

f*3(V) = 8 
f*2(V) = 12   (3) 

                                                                 f*1(V) = 6 2 A simple polytope is one whose k-faces are formed by the 
intersection of (d-k) facets of the polytope.  For example, for 
a 3-dimensional polytope, each 1-face (edge) is formed by 
the intersection of 3-1=2 facets (faces). 

However, these are the same numbers of incidences as occur 
in simple arrangements.  No other 1-, 2- or 3-faces can be 
connected to V*, because by dual correspondence that would 



mean adding extra 2-, 1- or 0-faces to the original polytope, 
respectively, in which case the polytope would no longer be a 
hexahedron.  Since all vertices in the dual arrangement of a 
hex mesh must have incidences as in (3), and since all simple 
d-dimensional arrangements must have vertices with valences 
as in (2), then the dual of a hex mesh must form a simple 
arrangement. 

□ 
Note: Most combinatorial relations for arrangements assume 
that hyper-surfaces intersect each other at most a constant 
number of times s.  However, Theorems 1-2 above use only 
information local to the polytope/vertex combinations.  
Therefore, as long as the 2-faces local to the polytope and 
vertex are distinct and not formed from the same hyper-
surface locally, we argue that then the Dehn-Sommerville 
relations hold locally and multiply-intersected hyper-surfaces 
do not change the results. 

2.3. General comments 
By themselves, Theorems 1-2 do not seem to have much 
relevance to the subject of hexahedral meshing.  However, 
showing that a hexahedral mesh dual is a simple arrangement 
allows us to take advantage of the Dehn-Sommerville 
relations, which govern the counting relations between 
entities in any valid hex mesh.  We plan to use these relations 
to define permissible states, and transitions between those 
states, in the dual arrangement, thereby proving the 
completeness of our set of atomic operations.  This paper is a 
work in progress toward that goal. 

3. GENERAL APPROACH 

One way to look at the hex mesh dual is that hex elements are 
induced by the intersection of 3 dual sheets pairwise.  It 
follows that mesh connectivity can be modified by locally 
“deforming” sheets to produce more intersections with other 
sheets in the neighborhood of the deformation3.  If only sheet 
interiors are deformed, mesh connectivity outside the 
deformed region is unchanged.  Thus, the topology 
modification is local.   
We characterize local hex mesh topology modification in 
terms of atomic, local combinatorial modifications to the dual 
arrangement, and show that these operations can describe 
other known topology modifications in hexahedral meshes.  
Atomic modifications to the arrangement are defined as the 
smallest units of combinatorial change to the arrangement 
which keeps the arrangement simple.  Using these atomic 
operations, non-local topology modifications can be 
accomplished by applying the operations sequentially.  Since 
each operation is reversible, this sequence includes some 
operations applied in the forward sense and others in the 
reverse sense.  Although some operations introduce what 
would normally be considered poor quality elements in the 
primal mesh, this is an intermediate state which gets removed 
eventually by other operations.  This is analogous to the 
                                                                 
3 Since we use the dual primarily to study mesh topology 
(i.e. we ignore the issue of geometric embedding of the dual 
sheets), sheet “deformations” are discrete in nature; that is, a 
sheet deformation is only meaningful if it modifies the 
combinatorial properties of the dual arrangement.   

construction of quadrilateral meshes by various algorithms, 
where poor-quality quads are formed initially but then 
removed a-posteriori to meshing. 
There are two primary applications of these modification 
operations: quality improvement, and adaptive 
refinement/coarsening, analogous to the application of 
analogous operations in tetrahedral meshes.  (In practice, 
these applications are not completely independent of each 
other.)  We speculate that applying our dual-based operations 
will require “steering” sheet deformations toward areas of 
interest, either to eliminate structures in the arrangement 
which induce poor quality, or to enrich/coarsen the 
arrangement in areas where adaptive refinement or 
coarsening is desired.  We leave this subject for future work. 

4. ATOMIC OPERATIONS 

We present candidates for atomic, local, dual-based hex 
topology modification operations in turn in subsequent 
sections.  Formally, we identify four reversible operations: 
chord push, hex push, minimal pillowing, and face/ring 
collapse.  The first two operations modify interior regions on 
three and four sheets, respectively.  Minimal pillowing 
creates a new sheet interior to the mesh along with modifying 
two existing sheets.  Face collapse merges two sheets by 
forming and joining a new interior boundary on each sheet. 
We also describe two higher-level operations, the triple-chord 
push and triple-hex push, which are combinations of 
elementary operations which occur frequently when 
describing topology modifications studied in previous works.   

4.1. Chord Push 
The minimum combinatorial change one can make in an 
arrangement is the addition or removal of d-facets in the 
arrangement.  Since we restrict ourselves to locally-simple 
arrangements, new facets must be introduced in a way which 
preserves that characteristic.  That means, for example, that 
the arrangement cannot be modified by deforming two dual 
surfaces such that they meet only at a single vertex or 0-facet.  
By this reasoning, then, the smallest (constructive) 
combinatorial change in a simple arrangement is to deform 
two sheets along a common third sheet which intersects both, 
such that they intersect locally.  This “chord push” operation 
is depicted in Figure 2; starting with the arrangement shown 
on top,  the 2-cells  ab and cd are deformed such that they 
intersect, modifying the arrangement to look like Figure 2, 
bottom. A chord push operation introduces two new 3-cells, 4 
new 2-cells, six new 1-cells, and two new 0-cells in the dual.  
In the primal, two new hex elements and nodes are 
introduced. 
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Again, there are no combinatorial changes to all involved 
sheets outside the bounding circle on each sheet, therefore 
this operation is also local. 
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Figure 2: The chord push operation in the dual.  
Intersecting two 1-cells (ab and cd) to form 2 new 0-
cells (x and y), 6 new 1-cells (ax, cx, xy (2), yb, yd), 6 
new 2-cells (axc, bdy, xyx (4)), and 2 new 3-cells.  
New xy 1-cells make up blind chord on sheets 2 and 
3; xy 1-cells on 12 and 34 chords correspond to 1-
cells ab and cd, resp., in original arrangement (top, 
sheets 2 and 3). 

Figure 4: The hex push operation in the dual.  
Deforming two sheets (sheets 3 and 4) such that 
they intersect along a common chord (formed by 
the intersection of sheets 1 and 2).  Vertices a and b 
are reversed in sequence along chord 0, and are 
surrounded by the new chord of intersection 
(sheets 3 and 4).  This operation produces four new 
0-cells (c-f), 12 new 1-cells (cb, ca, bd, ad, eb, ea, bf, 
af, ec, cf, fd, de), 12 new 2-cells, and four new 3-
cells. 

      
Since there are no combinatorial changes outside the 
bounding circle on each sheet, the chord push operation is 
local.  
In the primal, the interpretation of a chord push is an opening 
of two interior faces, creating two deformed hexes that share 
four faces (Figure 3).  Clearly, six new faces are introduced 
(four interior and two copies of the original two faces) along 
with six edges (5 interior & 1 copy) and two new nodes, 
corresponding to the new d-cells in the arrangement 
enumerated in Figure 2.  Although a chord push induces poor 
connectivity initially, a sequence of this and other operations 
will result in improved quality. 

We are not certain a hex push is an atomic operation.  
Repeated applications of chord push operations allows one to 
come close to surrounding two vertices; we have not yet 
worked out the final stage of this operation, where the two 
hexes are pushed through each other.  We speculate that this 
is really the result of somehow collapsing the original hexes 
and opening new hexes in the appropriate places in the 
arrangement.  This is the subject of further study. 

 

 

In the primal representation (Figure 5), a hex push swaps the 
relative locations of the hexes involved in the push. Yet, 
since the chords of the crossing of dual nodes are anchored 
on the bounding circle, we create four other crossings as well. 
These new crossings become four new hexes in the primal 
mesh. These hexes somewhat “pillow” the newly swapped 
hexes (Figure 5) all within the bounding faces of this 
operation.  In contrast to the chord push operation, which 
provably forms elements with negative jacobian quality 
metrics, the hex push operation forms hexes which do not 
have intrinsically degenerate quality (though their quality will 
usually be poor). 

Figure 3: Primal view of chord push operation. 

4.2. Hex Push 
The hex push operation (see Figure 4) is similar to a chord 
push, except that, instead of deforming the sheets along a 
common sheet, they are deformed along a common 
intersecting sheet pair, or chord.  The two vertices, each the 
intersection between that chord and one of the sheets being 
deformed, are reversed in their sequence of intersection along 
the common chord.  This appears on both sheets forming the 
common chord, and on each deformed sheet, as a new line of 
intersection with the other deformed sheet surrounding the 
intersection with the common chord. 

 



 

 

   
 

 
Figure 7: Primal view of (minimal) pillow operation.  
Single face (left) is pulled apart into two faces 
(right), producing two hex elements which share 
five faces. 

Figure 5: Primal view of hex push operation. 
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4.3. (Minimal) Pillowing 
In a “pillowing” operation, a new dual sheet is inserted in the 
dual arrangement such that it induces new vertices.  In 
previous work, the (traditional) pillowing operation has been 
formulated such that it surrounds an existing vertex in the 
arrangement [15][17].  However, our view of this operation is 
a smaller, atomic operation, which is formed along a 1-cell in 
the arrangement instead of around a vertex.  We will 
sometimes refer to this as a (minimal) pillow operation, to 
distinguish it from the (traditional) pillowing operation.  The 
dual representation of this operation is shown in Figure 6. 
The primal corresponding to the (minimal) pillowing 
operation is shown in Figure 7.  Clearly, the quality of the 
hex elements formed by this operation will be intrinsically 
degenerate.  However, as before, a sequence of operations 
can be used to improve the quality. 
It is straightforward to show that the (traditional) pillowing 
operation is not atomic; this is shown in Figure 8.  Starting 
with a single dual vertex, a (minimal) pillow is formed along 
one of the 1-cells to form two new vertices, then a hex push 
operation is performed between one of the new vertices and 
the original vertex.  The result is the dual arrangement 
corresponding to a (traditional) pillowing operation 
performed on the original arrangement.  Thus, a (traditional) 
pillowing operation is a sequence of two atomic operations: a 
(minimal) pillow, followed by a hex push.  

Figure 8: Starting with a single dual vertex (start); 
add a (minimal) pillow (i); then perform a hex push 
between vertices a and c (ii).  Result is a 
(traditional) pillow operation as described in 
[15][17]. 
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4.4. Face Collapse 
We have observed cases where two distinct hex meshes with 
identical quadrilateral boundaries whose dual arrangements 
have different numbers of non-pillow hyperplanes, with 
chords which have different starting and ending quadrilateral 
faces.  For example, the (2,1)-(1,2) flip from [18] starts with 
five dual sheets in (2,1), but merges two of them to arrive at 
four dual sheets in (1,2).  By definition, transitioning between 
such meshes using the atomic operations defined thus far is 
impossible, since none of our operations allows chords to be 
broken and reconnected, or dual sheets to be broken and 
reconnected.   On the other hand, this type of operation 
should not be disallowed, as long as it can be done without 
modifying the quadrilateral boundary, or some bounded 
region inside the dual arrangement. 
We have derived an operation which performs such a 
modification of the arrangement.  This operation has an 
intermediate state which includes “knife” elements, which are 
produced when an interior face in the mesh is collapsed by Figure 6: Dual view of a (minimal) pillow operation. 
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joining two opposite nodes.  If the chord corresponding to the 
face being collapsed is a self-terminating chord (one which 
does not emerge on the region boundary), the collapse 
operation produces a single line of self-intersection which 
terminates on both ends at knife elements.   Collapsing the 
column of elements corresponding to that chord removes the 
knife elements, changing connectivity only inside the local 
region.  The total operation, consisting of collapsing an entire 
“ring” of elements, can be considered atomic (because there 
are no intermediate states with a “valid” arrangement).  
However, this operation is different from the others, in the 
sense that it can only be applied to a self-terminating chord 
(in order to avoid modifying the surface mesh).  A ring 
collapse also results in a merge of two surfaces in the 
arrangement. 
The ring collapse, combined with the two hex push 
operations, combine to form the results in the transition to the 
(2,1)-(1,2) flip from [18].  In this case, it happens that one of 
the “blind” chords produced from the hex pushes is the one 
collapsed. 

Figure 9: A triple-chord push operation in the dual. 

4.5. Elemental Operations 
 
 

 

We define elemental operations as operations which are not 
atomic, but which occur often enough that they are useful as 
distinct sets of atomic operations.  We identify three 
elemental operations: the triple-chord push and the triple-hex 
push, along with the “traditional” pillowing already described 
in Section 4.3. 

4.5.1. Triple-Chord Push 
A triple-chord push modifies the topology of three sheets.  In 
essence, this operation “pulls apart” three faces sharing a 
common node, such that the result is two hexes sharing three 
faces.  There are many interesting things about this particular 
arrangement, whose dual and primal representations are 
shown in Figure 9 and Figure 10, respectively.  First, the 
outer boundary of the polytope shown in Figure 10 has the 
same number of faces, edges and vertices as a hexahedron, 
but its dual is not isomorphic to the simple arrangement 
resulting from the hexahedral elements we have considered 
up to this point.  If it were not for that fact, this arrangement 
would result in a “parity-flip” operation described in [17].  
The composition of a triple-chord push of atomic operations 
has not yet been derived.  We speculate, though, that this 
operation is composed of three hex pushes (to separate the 
three faces, and the edges shared by them pairwise, into two 
sets of three faces each, all sharing the interior node), 
followed by a “node separate”.  This last operation might be 
one more fundamental than a hex push, and could replace the 
hex push as an atomic operation (meaning that the hex push 
would  be the combination of several chord pushes then a 
node separate).  We plan to investigate this set of operations 
further in the future. 

Figure 10: Depiction of the triple-chord push 
operation in the primal, final state (beginning state 
is three quadrilaterals sharing a node and sharing 
edges pairwise). 

4.5.2. Triple-Hex Push 
Executing on four sheets, a triple-hex push is accomplished 
by pushing a dual surface through a dual vertex (see Figure 
11). 
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In addition to future theoretical work, we also plan to develop 
applications of these operations, specifically for the purposes 
of hex mesh improvement.  Using the non-local information 
provided by dual sheets, we plan to develop methods for 
“steering” modifications towards areas of poor quality, 
enriching or coarsening the topology in order to improve 
mesh quality locally. 
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