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ABSTRACT

In this work we investigate the refinement propagation process in longest-edge based local refinement algorithms
for unstructured meshes of triangles. The conformity neighborhood of a triangle, the set of additional triangles
that is needed to be refined to ensure mesh conformity is introduced to define the propagation path. We prove
that asymptotically the propagation path extends on average to a few neighbor adjacent triangles. We also include
numerical evidence which is in complete agreement with the theoretical study reported.
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1. INTRODUCTION

Mesh Generation plays a central role in the Finite
Element Method [1, 2, 3], and is a basic tool in many
other fields such as Computational Geometry and
Computer Graphics. A related problem that is also
of considerable interest is refinement of a mesh. The
refinement problem can be described as any technique
involving the insertion of additional vertices in order
to produce meshes with desired features: well shaped
triangles, mesh conformity and smoothness. The
presence of thin triangles can lead to undesirable
behavior affecting numerical stability and accuracy.
Mesh conformity refers to the requirement that the
intersection of adjacent triangles is either a common
vertex or an entire side. Mesh smoothness implies
that the transition between small and large elements
should be gradual.

Certain longest-edge refinement algorithms [4, 5, 6]
guarantee the construction of non-degenerate and
smooth unstructured triangulations. In these schemes
the longest edges are progressively bisected and hence
all angles in subsequent refined triangulations are

greater than or equal to half the smallest angle in
the initial triangulation [7]. However, the extent
of secondary refinements induced in neighboring1 el-
ements by the initiating element edge bisection is
not known [6, 8]. One can construct pathological
cases where refinement of a single element propagates
through the entire mesh (Figure 1). However expe-
rience indicates that this is an exception and that in
practice the refinement propagates through only a few
neighbors on average. Our goal here is to address
this question. We provide both theoretical results and
empirical evidence showing that successive application
of refinement to an arbitrary unstructured triangular
mesh produces meshes in which the average propa-
gation path is reduced in each refinement stage, and
asymptotically approaches the constant 5.

2. PRELIMINARIES. THE REFINEMENT
AND THE PROPAGATION PROBLEM

The refinement of triangular meshes involves two
main tasks. The first is the partition of the target

1Throughout this work, neighbor triangles are triangles
sharing an edge
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Figure 1: Longest edge refinement propagation. The
dependencies in the propagation when refining t are in-
dicated by arrows.

triangles and the second is the propagation to
successive neighbor triangles to preserve conformity.
Several approaches for partitioning triangles have
been studied. The simplest is Bisection into two
subtriangles by connecting the midpoint of one of
the edges to the opposite vertex. If the Longest
Edge (LE) is chosen for the bisection, then this is
called Longest Edge Bisection, see Figure 2 (a). The
Four Triangles Longest Edge Partition, (4T-LE)
bisects a triangle into four subtriangles where the
original triangle is first subdivided by its longest edge
as before and then the two resulting triangles are
bisected by joining the new midpoint of the longest
edge to the midpoints of the remaining two edges of
the original triangle, as in Figure 2 (d), [5].

(a) (b)

(c) (d)

Figure 2: The four possible patterns in the 4T-LE re-
finement: (a) Bisection in two triangles, (b)-(c) Division
in three triangles and (d) Division in four triangles.

In order to ensure the conformity of the arising
mesh, the refinement must be extended to additional
triangles. This is made for the 4T-LE partition by
the use of partial division patterns given in Figure 2
(a)-(c).

Definition 1 (Longest Edge Neighbor triangle) The
longest edge neighbor of a triangle t is the neighbor
triangle t∗ which shares with t the longest edge of t.

In the case of an isosceles or equilateral triangle,
we may assume a ‘roundoff level’ perturbation to
yield a single longest edge. This can be random
and hence uniqueness is not implied. However, in
the cases in which one of the longest edges has been
already identified for bisection in a neighbor triangle,
this edge is chosen as the longest edge to get the
refinement as local as possible.

Definition 2 (LE Propagation Path [5, 9]) The
Longest Edge Propagation Path (LEPP) of a triangle
t0 is the ordered finite list of all adjacent triangles
LEPP (t0) = {t0, t1, . . . , tn} such that ti is the longest
edge neighbor triangle of ti−1.

Throughout this work τ denotes a 2D conforming tri-
angulation. If longest edge bisection is used to refine
a given triangle t ∈ τ , then the LEPP (t) provides the
list of triangles to be refined, (see Figure 3). Note that
if the 4T-LE partition is used to refine a given triangle
t, then the LEPP ’s of the neighbor triangles of t in
the mesh τ∗ = τ − t provide the lists of triangles to be
refined (see Figure 4 and Table 1). As a consequence,
the LEPP ’s provide the main adjacency lists used by
the algorithms.
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Figure 3: (a) LEPP (t) = {t, ta, tb, tc} (b) LE bisection
of t and refinement propagation.

Table 1: Triangles and associated LEPP’s of mesh in
Figure 4 (a).

Triangle LEPP LEPP on τ∗ = τ − t

t {t, tc, td} -
ta {ta, t, tc, td} {ta}
tb {tb, te} {tb, te}
tc {tc, td} {tc, td}

Definition 3 (Boundary and Interior triangle) Let τ

be a two dimensional triangulation for a bounded do-
main Ω. A triangle t ∈ τ is said to be a boundary
triangle if t has an edge coincident with the boundary
∂Ω of Ω. Otherwise, t is an interior triangle of τ .
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Figure 4: (a) Edge bisection for refining triangle t (b)
4T-LE refinement of t, (c) refinement of triangles.

Definition 4 (Pair of Terminal triangles) Two
neighbor triangles (t, t∗) will be called a ‘pair’ of
terminal triangles if they share a common longest
edge. If a triangle t does not belong to a pair of
terminal triangles, t is said to be a ‘single’ triangle.

For any triangle t0, if LEPP (t0) = {t0, . . . , tn−1, tn}
then for triangle tn either: (i) tn has its longest edge
coincident with the boundary or (ii) tn−1 and tn are
a pair of terminal triangles that share a common
longest edge, [9].

If all the triangles in a mesh are pairs of terminal tri-
angles, then all the LEPP lists are comprised only of
two triangles.

Definition 5 (LEPP-balanced mesh) Triangulation
τ is said to be LEPP-balanced if it is comprised of
pairs of terminal triangles. Otherwise, it is said to be
a non LEPP-balanced mesh.

Remark: In [10] the terminology ‘balanced’ is applied
to angles and areas. This is relevant to triangle shape
but not directly related to our LEPP study here.

Definition 6 (LEPP-balancing degree) Let τ con-
tain N triangles of which T triangles are in pairs of
terminal triangles. Then, the LEPP-balancing degree
of τ , noted as B(τ), is defined as follows:

B(τ) =
T

N
(1)

Note that 0 ≤ B(τ) ≤ 1 and in the case B(τ) = 1, the
mesh is LEPP-balanced.

Remark: If τ is such that the LEPP-balancing degree
is 0, then the conformity process when refining any
triangle t0 ∈ τ extends to the boundary of τ .

Figure 5 shows a LEPP-balanced mesh in (a) and a
non balanced mesh in (b). Here and in subsequent fig-
ures we represent the longest-edges with a dashed line.

A simple example of a LEPP-balanced mesh is any
mesh comprised entirely of pairs of right triangles shar-
ing the longest-edges. In such a mesh, if one applies
uniform 4T-LE refinement, then all triangles are pairs
of terminal triangles and they are similar to the origi-
nal right triangles.

3. PROPAGATION PROPERTIES OF
RECURSIVE 4T-LE REFINEMENT

We are particulary interested in the average and
maximum lengths of the propagation paths generated
by longest-edge refinement since they are important
in assessing algorithm efficiency.

First we introduce the Conformity Neighborhood
associated with the application of 4T-LE local
refinement. This concept will be useful in the study
of the propagation properties.

Definition 7 (Conformity Neighborhood Vc) When
refining a triangle t ∈ τ , the Conformity Neighborhood
Vc(t) of t, is the set of triangles in τ ∗ = τ − t that
need to be refined due to the conformity process for t.

Definition 8 (M1) When refining a triangle t ∈ τ ,
M1(t) is said to be the size of Vc(t): M1(t) = |Vc(t)|.

Note that M1(t) measures the extent of the propaga-
tion refinement zone for triangle t, in number of trian-
gles.

(a)					 (b)

Figure 5: (a) LEPP-Balanced mesh, (b) Non balanced
LEPP mesh.



Proposition 1 For each t ∈ τ , M1(t) is the sum of
the lengths of the LEPP ′s of the neighbors of t in the
mesh τ∗ = τ − t. 2

Figure 1 shows that it always is possible to construct
meshes in which M1(t) is O(N), where N is the num-
ber of elements. Here, the average of M1 is µ(M1) =
∑

t
M1(t)

N
=

∑N−1

k=0
k

N
=

N−1

2
· N

N
=

N − 1

2
. On

the other hand, if B(τ) = 1 as in Figure 5 (a), then
M1(t) ≤ 5 ∀t ∈ τ .

Definition 9 (M2) For each t ∈ τ , M2(t) is the max-
imum length of the LEPP ′s of the neighbor triangles
of t in the mesh τ∗ = τ − t: M2 = max{|Vc(t) ∩
LEPP (ta)|, ta neighbor to t}.

Since the conformity process extends at most by the
three edges of t the propagation defines at most three
lists of ordered triangles. M2(t) is the maximum
number of triangles of the three resulting lists.
For example, in Figure 4, M2(t) = 2 because the
maximum number of triangles among {tb, te}, {tc, td},
{ta} is 2, see Table 1.

Proposition 2 Let τ be LEPP-balanced. Then, for
each interior triangle t ∈ τ , M1(t) = 5 and M2(t) =
2.

Proof:
Let t be an interior triangle of τ . Since τ is a LEPP-
balanced mesh, t is adjacent to another triangle t1
by their common longest edge. Let t2 and t3 be the
two other adjacent triangles to t. Again, since τ is
a LEPP-balanced mesh, t2 and t3 are adjacent to
other triangles t′2 and t′3 by their respective common
longest edges, and t′2 6= t 6= t′3. Considering the
mesh τ∗ = τ − t we have that LEPP (t1) = {t1},
LEPP (t2) = {t2, t

′

2} and LEPP (t3) = {t3, t
′

3}.
Hence Vc(t) = {t1, t2, t3, t

′

2, t
′

3} so M1(t) = 5 and
M2(t) = 2. 2

Our next goal is to prove that the uniform applica-
tion of the 4T-LE partition will produce a sequence
of meshes with increasing LEPP-balancing degree ap-
proaching 1. We shall also prove that the mean of M1
and the mean of M2 tend to 5 and 2 respectively, when
the number of refinements applied tends to infinity.

Proposition 3 [4] (a) The first application of the
4T-LE partition to a given triangle t0 introduces two
new triangles that are similar to the original triangle

t0. Moreover, these two triangles have their longest
edges coincident with the longest edge of the original
triangle. The remaining two new triangles t1, are sim-
ilar to each other but not necessarily to the original
triangle t0. Triangles t1 may be a terminal pair or
not.
(b) The iterative application of the 4T-LE partition to
a given triangle t0 introduces at most one new distinct
(up to similarity) triangle in each iteration.

Proof:
The proof follows from the angle properties of similar
subtriangles obtained by 4T-LE quadrisection as seen
in Figures 6 and 7 for the acute and obtuse triangles
respectively. 2

Proposition 4 If the 4T-LE partition to an initial
triangle t0 introduces a pair of terminal triangles t1,
then the iterative application of the 4T-LE partition in-
troduces pairs of terminal triangles excepting the trian-
gles located at the longest edge of t0. Moreover, in this
case only two classes of similar triangles are generated,
corresponding to t0 and t1 respectively (see Figure 6).

Proof:
The hypothesis of Proposition 4 is depicted in Fig-
ure 6 (b). The proof follows trivially from the angle
properties of parallel lines in the nested triangles. 2

To demonstrate that recursive uniform 4T-LE refine-
ment introduces meshes with relatively more pairs of
terminal triangles for any arbitrary triangular mesh we
consider right, acute and obtuse triangles respectively.
We begin in the next Proposition with the right and
acute triangle cases:

Proposition 5 (Right and acute triangle cases) The
application of the 4T-LE partition to an initial right
or acute triangle t0 produces two new single triangles
similar to the original one (located at the longest edge
of t0) and a pair of terminal triangles t1. These tri-
angles t1 are also similar to the original one t0 in the
case of right triangle t0, and they are similar to each
other but non-similar to the initial one in the case of
acute triangle t0. (See Figure 6). 2

The obtuse triangle case offers a different situation:

Proposition 6 (Obtuse triangle case) The applica-
tion of the 4T-LE partition to an initial obtuse triangle
t0, produces two new single subtriangles similar to the
original one (located at the longest edge of t0) and a
pair of subtriangles t1. These subtriangles t1 either
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Figure 6: 4T-LE partition. Acute triangle.

1. are a pair of similar terminal triangles, as in Fig-
ure 6 (b) (t0 is said to be a Type 1 obtuse triangle), or
2. a pair of similar single triangles, as in Figure 7 (b)
(t0 is said to be a Type 2 obtuse triangle).
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Figure 7: (a) Type 2 obtuse triangle t0 (b) 4T-LE par-
tition of t0.

Proof:
Let α0 ≤ β0 ≤ γ0 be the angles of the initial obtuse
triangle t0 and let a, b, c be the sides of t0 respectively
opposite to α0, β0 and γ0. For the new non-similar
subtriangles generated, we denote by ε the opposite
angle to MN and σ the opposite angle to CN . Since
MN ≤ CN and ε ≤ σ the longest edge of t1 is either
the new edge CM or CN . In the first situation
(point 1 of the Proposition), triangles t1 are a pair
of terminal triangles sharing edge CM as the longest
edge.
In the second case, the largest angle of t1 is σ

(see triangles t1 in Figure 7). The new triangles t1
are not a pair of terminal triangles (point 2 of the
Proposition). 2

It should be noted that the 4T-LE partition always
produces two new single triangles similar to the
original one (located at the longest edge of t0) and
excepting for Type 2 obtuse triangles, a pair of
terminal triangles (similar or non similar to the
original one). Moreover, in this scenario, the single
triangles generated by the iterative 4T-LE partition
are those located at the longest edge of the initial
triangle, Proposition 4 (see Figure 6).

The following Proposition states the recursive im-
provement property of the 4T-LE partition for obtuse
triangles [4]:

Proposition 7 If the 4T-LE partition of an obtuse
triangle t0 introduces a pair of similar single triangles
t1 of largest angle γ1, then

1. γ1 = σ

2. γ1 = γ0 − ε ≤ γ0 − α0

hold for the new angles of the new triangle t1, see Fig-
ure 7. 2

It is worth noting, in relation to Proposition 7 above,
that after a finite number of applications of the 4T-LE
partition to triangle t0 and its successors a non-obtuse
triangle is obtained. This is a straightforward conse-
quence of statement 2 in Proposition 7. Furthermore,
after a first non-obtuse triangle is obtained then the
successive application of the 4T-LE partition does not
generate new non-similar triangles.

In view of the previous properties, we have:

Proposition 8 Let Γ = {τ0, τ1, . . . , τn} be a sequence
of nested meshes obtained by repeated application of
4T-LE partition to the previous mesh. Then, the
LEPP-balancing degree of the meshes tends to 1 as
n→ ∞.

Proof:
It suffices to prove the result for the case in which the
initial mesh τ0 only contains a single triangle t0. Then,
the number of generated triangles associated with the
4T-LE partition at stage n of refinement is:

Nn = 4n (2)

First, we prove the proposition for initial right, acute,
and the Type 1 obtuse triangles. In this situation,
the number of triangles in pairs of terminal triangles



Tn generated at stage n of uniform 4T-LE partition
satisfies (see Proposition 4 and Figure 6):

Tn = 4Tn−1 +2(Nn−1−Tn−1) = 2(Tn−1 +Nn−1) (3)

with N0 = 1 and T0 = 0.

Solving the recurrence relations 2, 3 we get:

Tn = 4n − 2n (4)

Therefore,

lim
n→∞

B(τn) = lim
n→∞

Tn

Nn

= 1

To complete the proof, we now consider the case of
an initial Type 2 obtuse triangle t0. Table 2 presents
the number of distinct types of triangles generated by
the 4T-LE iterative refinement of t0. We denote by
tn
j the number of triangles of similarity class tj , j =

0, 1, 2, · · · , k at stage n of refinement. For example,
after the second refinement 4 triangles are similar to
t0, 8 triangles similar to t1 and 4 new triangles similar
to t2.

From Proposition 6 (2) and Figure 7 we derive Table 2,
in which the following relation holds:

t
n
j = 2(tn−1

j + t
n−1

j−1 ), j = 1, 2, 3, · · · , k (5)

The solution to Equation (5) with initial condition
t00 = 1 can be easly expressed in terms of binomial
coefficients as follows:

t
n
j = 2n

(

n

j

)

(6)

On the other hand, from Proposition 7, the iterative
4T-LE partition of any obtuse triangle t0 produces a
finite number of distinct (up to similarity) triangles,
ti
j , 0 < j ≤ k. After k refinement stages there will

no longer be distinct new generated triangles different
from those already generated, (see proof of Proposi-
tion 6). Therefore, the number of triangles in pairs of
terminal triangles Tn after the k refinement stage with
n > k satisfy:

Tn ≥ 2n

n
∑

m=k

(

n

m

)

It follows that:

1 ≥ B(τn) ≥
2n

∑n

m=k

(

n

m

)

2n
∑n

m=0

(

n

m

) =

∑n

m=k

(

n

m

)

2n

Table 2: Triangle evolution in the 4T-LE partition.

Ref. 0 1 2 3 4 · · · k · · · n

t0 1 2 4 8 16 · · · tk
0 · · · tn

0

t1 2 8 24 64 · · · tk
1 · · · tn

1

t2 4 24 96 · · · tk
2 · · · tn

2

t3 8 64 · · · tk
3 · · · tn

3

t4 16 · · · tk
4 · · · tn

4

· · · · · · · · · · · · · · ·

tk · · · tk
k · · · tn

k

Taking limits:

1 ≥ lim
n→∞

B(τn) ≥ lim
n→∞

2n
∑n

m=k

(

n

m

)

2n
∑n

m=0

(

n

m

)

Since

n
∑

m=k

(

n

m

)

= 2n −

k−1
∑

m=0

(

n

m

)

≥ 2n −

(

n

k − 1

)

k

we have

1 ≥ lim
n→∞

B(τn) ≥ lim
n→∞

2n −
(

n

k−1

)

k

2n
= 1

So, lim
n→∞

B(τn) = 1. 2

Proposition 9 For iterative application of 4T-LE
uniform refinement to an initial triangular mesh τ0,
the means of M1 and of M2 tend to 5 and 2 respec-
tively, as the number of refinements tend to infinity.

Proof:
If the initial mesh is LEPP-balanced the result is triv-
ial. Let us suppose that the initial mesh contains non-
terminal triangle.

In any subsequent mesh we have pairs of terminal tri-
angles and non terminal triangles. First, we prove the
proposition for any right, acute, or Type 1 obtuse non
terminal triangles arranged in such a way that M1 and
M2 are the largest. That is, all the non-terminal tri-
angles constitute a unique LEPP. Figure 8 (a) repro-
duces a possible situation within a mesh. After a few
refinement steps it is observed that new non terminal
triangles are located at the longest edges of the initial
triangles. We represent in bold the longest edges of
non terminal triangles as shown in Figure 8 (d) and
call here polyline.

Non terminal triangles have their longest edges on the
polyline, see Figure 8 (d). Among them, those having
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Figure 8: (a) Non terminal triangles forming a LEPP.
(b)-(c) 4T-LE refinement of triangulation in (a). (d)
longest edges of triangles in (a).

a vertex at the polyline show M1 = 7 and M2 = 3.
For a terminal triangle we get either 5 ≤ M1 ≤ 6 or
2 ≤ M2 ≤ 3 if it has a vertex on the polyline, or M1=5
and M2=2 otherwise. After n refinement steps, the
number of non terminal triangles is Xn = 2nX0 and
the number of total triangles is Nn = 4nN0. Hence,
upper and lower bounds for the average of M1 are as
follows:

6Xn + 5(Nn − Xn)

Nn

≤ M1 ≤
7 · 2Xn + 5(Nn − 2Xn)

Nn

Similarly for M2:

2Xn + 2(Nn − Xn)

Nn

≤ M2 ≤
3 · 2Xn + 2(Nn − 2Xn)

Nn

Taking limits we find that the means of M1 and of
M2 tend to 5 and 2 respectively, as the number of
refinements n tends to infinity.

To complete the proof, we should also consider the
case of Type 2 obtuse triangles. As pointed out after
Proposition 7, in repeated 4T-LE refinement, largest
angles of Type 2 obtuse triangles clearly decrease, and
after a finite number k of 4T-LE partitions the new
generated triangles will be no longer obtuse. Hence,
the first part of the proof for right or acute triangle
cases then applies. 2

4. NUMERICAL EXPERIMENTS

In this section we present numerical results showing
that the practical behavior of the 4T-LE partition is
in concordance with the reported theory in this work,

mainly Propositions 8 and 9.

We next consider a Delaunay mesh in a rectangle
(Figure 9 (a)) and an irregular mesh in a pentagon
(Figure 12 (a)) with five stages of uniform refinement.
It should be noted that the triangles in the Delaunay
mesh are almost regular in terms of the angles
moreover, the mean of the minimum angles and of
the maximum angles are 48.91 and 72.91 degrees
respectively. The initial value of B(τ0) is 0.4833. On
the other hand, for the irregular mesh in the pentagon
the mean of the minimum angles and of the maximum
angles are 9.18 and 120.41 degrees respectively, and
B(τ0) = 0.

The refined meshes for the initial Delaunay mesh
are presented in Figures 9 (b)-(d). The light shad-
ing in Figures 9 and 12 illustrate the triangles in
terminal pairs. In Table 3 it can be noted that the
number of triangles in terminal pairs increase as the
refinement stage grows, and as result, so does the
LEPP-balancing degree. Table 4 reports the means
and standard deviations of M1 and M2 and respective
histograms are graphed in Figure 11. It is observed
that both means tend to 5 and 2 respectively, as the
refinement continues. The asymptotic behavior is
graphed in Figure 10.

Similarly, the refined meshes for the ‘pentagonal’
domain are shown in Figure 12 and the asymptotic
behavior for the means µ(M1), µ(M2) graphed in
Figure 13. The evolution of the LEPP-balancing
degree is summarized in Table 5 and a comparison
graphed in Figure 15. Note that in both meshes the
LEPP-balancing degree tends to 1 when the number
of refinements increases, even in the Pentagonal mesh,
which exhibits an initial LEPP-balancing degree
B(τ0) = 0 (see Figure 15). Table 6 reports the
means and standard deviations of M1 and M2 and
respective histograms are graphed in Figure 14.

These results are also applicable to local refinement.
In order to empirically demonstrate this we consider
application of 4T-LE local refinement on a domain cor-
responding to the Gran Canaria Island (Figure 16).
The initial mesh is a Delaunay mesh and one refine-
ment step is applied on respective disjoint subregions
S1, S2 and S3 with S = S1 ∪ S2 ∪ S3, for innermost
region S3, intermediate region S2 and outermost re-
gion S1. Table 7 and Figure 17 confirm similar be-
havior to that observed for uniform refinement with
µ(M1) and µ(M2) approaching 5 and 2 respectively
and the LEPP-balancing degree approaching 1. Fig-
ure 18 graphs M1 and M2 histograms for the initial
mesh and refinement steps 3 and 6.
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(a) Initial mesh, 120 triangles, 58 pairs of terminal
triangles (lighter shade triangles).The propagation
paths of some triangles have been drawn with arrows.

(b) Refinement step 1, 480 triangles, 356 pairs of
terminal triangles (lighter shade triangles).

(c) Refinement step 2, 1920 triangles, 1672 pairs of
 terminal triangles (lighter shade triangles).

(d) Refinement step 3, 7680 triangles, 7184 pairs of
terminal triangles (lighter shade triangles).

Figure 9: Delaunay mesh. Uniform 4T-LE refinement.

Table 3: Statistics for the refinement of the Delaunay
mesh (Figure 9). R=Refinement step, T=Triangles in
Terminal Pairs, N=Triangles, B=LEPP-Balancing De-
gree.

R T N B

0 58 120 0.48333
1 356 480 0.74166
2 1672 1920 0.87083
3 7184 7680 0.93541
4 29728 30720 0.96770
5 121447 122880 0.98821

Table 4: M1 and M2 statistics for the refinement of the
Delaunay mesh (Figure 9). Average (µ) and Standard
Deviation (σ).

R N µ(M1) µ(M2) σ(M1) σ(M2)

0 120 5.233 2.625 1.873 0.888
1 480 5.112 2.381 1.135 0.582
2 1920 5.057 2.195 0.772 0.421
3 7680 5.028 2.096 0.535 0.303
4 30720 5.014 2.048 0.374 0.216
5 122880 5.007 2.028 0.275 0.040
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(a) Initial mesh, 0 terminal triangles, 125 triangles. (b) Refinement step 1, 246 terminal triangles (lighter
shade triangles), 500 triangles.

(d) Refinement step 3, 4778 terminal triangles (lighter
shade triangles), 8000 triangles (interior zoom).

(c) Refinement step 2, 1088 terminal triangles (lighter
shade triangles), 2000 total triangles.

Figure 12: Pentagonal mesh. Uniform 4T-LE refinement.
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Figure 10: Evolution of µ(M1) and µ(M2) for the re-
finement of the Delaunay mesh (Figure 9).
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Figure 11: M1 and M2 histograms for the refinement of
the Delaunay mesh (Figure 9).



Table 5: Statistics for the refinement of the Pentago-
nal mesh (Figure 12). R=Refinement step, T=Triangles
in Terminal Pairs, N=Triangles, B=LEPP-Balancing De-
gree.

R T N B

0 0 125 0
1 246 500 0.49200
2 1088 2000 0.54400
3 4778 8000 0.59725
4 21240 32000 0.66375
5 103970 128000 0.81230

Table 6: M1 and M2 statistics for the refinement of the
Pentagonal mesh (Figure 12). Average (µ) and Standard
Deviation (σ).

R N µ(M1) µ(M2) σ(M1) σ(M2)

0 125 26.544 14.392 16.569 7.156
1 500 6.910 3.800 2.204 1.668
2 2000 6.200 3.048 1.699 1.103
3 8000 5.997 2.831 1.553 0.883
4 32000 5.482 2.412 1.122 0.800
5 128000 5.370 2.204 0.947 0.757
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Figure 13: Evolution of µ(M1) and µ(M2) for the re-
finement of the Pentagonal mesh (Figure 12).
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Figure 14: M1 and M2 histograms for the refinement of
the Pentagonal mesh (Figure 12).
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Figure 15: LEPP-balancing degree evolution for the re-
finement of Delaunay and Pentagonal meshes.

Table 7: M1 and M2 statistics for the refinement of
the Gran Canaria mesh (Figure 16). Average (µ) and
Standard Deviation (σ).

R N µ(M1) µ(M2) σ(M1) σ(M2)

0 592 6.619 3.451 2.764 1.660
1 736 6.690 3.539 2.577 1.663
2 1230 6.505 3.383 2.265 1.601
3 2624 6.019 2.918 1.679 1.051
4 9258 5.513 2.426 1.162 0.601
5 30730 5.247 2.367 0.681 0.509
6 41448 5.212 2.189 0.564 0.328
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(a) Refinement step 1, 326 terminal triangles
(lighter shade triangles), 736 total triangles.
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(b) Refinement step 3, 1588 terminal triangles
(lighter shade triangles), 2624 total triangles.
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(c) Refinement step 4, 7020 terminal triangles
(lighter shade triangles), 9258 total triangles.

Figure 16: Gran Canaria mesh. Local 4T-LE refinement.
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Figure 17: M1 and M2 evolution for the refinement of
the Gran Canaria mesh (Figure 16).
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Figure 18: M1 and M2 histograms for the refinement of
the Gran Canaria mesh (Figure 16).

Table 8: Statistics for the refinement of the Gran Canaria
mesh (Figure 16). R=Refinement step, T=Triangles in
Terminal Pairs, N=Triangles, B=LEPP-Balancing De-
gree.

R T N B

0 248 592 0.41891
1 326 736 0.44293
2 672 1230 0.54634
3 1588 2624 0.60518
4 7020 9258 0.75826
5 26282 30730 0.85525
6 35746 41448 0.86243



5. CONCLUSIONS

In this work we have studied the propagation prob-
lem associated with longest edge based refinement
algorithms in 2D. We have theoretically proved in
the paper that the propagation path asymptotically
extends on average to a few neighbor adjacent
triangles. This result has also been numerically
demonstrated for repeated local refinement. The
extent of refinement for triangle t defines a Confor-
mity Neighborhood characterized by two parameters
(M1(t) and M2(t)).

When repeated uniform refinement is applied to an
initial arbitrary triangular mesh, the average of the
parameters M1(t) tends to 5 and the average of
M2(t) tends to 2. This implies for local refinement
of practical applications that on average the propa-
gation of secondary refinements induced by specified
refinements will be limited to a proportionally small
number of elements with a confined limit. In view
of this, an asymptotic estimate of the cost is easily
determined: since the cost of refinement of a single
triangle is bounded by a small constant c and the
number of triangles in the conformity neighborhood
of any such triangle is 5 on average, the asymptotic
estimate of the cost to refine a triangle is obviously 6c.

We also have introduced the concept of LEPP-
balancing degree (ratio between triangles in terminal
pairs and total triangles in a mesh) for longest
edge refinement of meshes and have proved that
the LEPP-balancing degree asymptotically tends to
1. These results are also a global measure of the
improvement of the generated meshes on the size of
the conformity neighborhood.

The counterpart 3D propagation problem needs a
more complex study because the number of connec-
tivity patterns are considerably higher than in 2D.
It should be noted that the 4T-LE refinement uses
three partial division patterns while the extension to
three dimensions, the 8T-LE partition may involve
more than fifty partial divisions for the sake of confor-
mity [11]. We have made some exploratory numerical
studies of LEPP behavior for refinement of tetrahedral
meshes and this topic is the subject of our continuing
work
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