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ABSTRACT

We present a new mesh warping algorithm for tetrahedral meshes based upon weighted laplacian smoothing. We
start with a 3D domain which is bounded by a triangulated surface mesh and has a tetrahedral volume mesh as its
interior. We then suppose that a movement of the surface mesh is prescribed and use our mesh warping algorithm
to update the nodes of the volume mesh. Our method determines a set of local weights for each interior node which
describe the relative distances of the node to its neighbors. After a boundary transformation is applied, the method
solves a system of linear equations based upon the weights to determine the final position of the interior nodes. We
study mesh invertibility and prove a theorem which gives sufficient conditions for a mesh to resist inversion by a
transformation. We prove that our algorithm yields exact results for affine mappings and state a conjecture for more
general mappings. In addition, we prove that our algorithm converges to the same point as both the local weighted
laplacian smoothing algorithm and the Gauss-Seidel algorithm for linear systems. We test our algorithm’s robustness
and present some numerical results. Finally, we use our algorithm to study the movement of the canine heart.

Keywords: moving meshes, optimization-based mesh smoothing, unstructured mesh generation, tetra-
hedral meshes, cardiology

1. INTRODUCTION

Moving meshes arise in cardiology, computer graph-
ics, animation, and crash simulation, among other ap-
plications in science and engineering. With moving
meshes, the mesh is updated at each step in time due
to a moving domain boundary, thus resulting in po-
tentially drastically varying mesh quality from step to
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step. One problem that can occur at each timestep
is element inversion. We focus on maintaining good-
quality tetrahedral meshes throughout the mesh warp-
ing process in this paper.

It is well-known that poor quality elements affect the
stability, convergence, and accuracy of finite element
and other solvers because they result in poorly condi-
tioned stiffness matrices [1]. If well-shaped elements
are not the result of updating the mesh boundary, the
mesh quality must be improved by topological or geo-
metrical means after each time step.

Research has shown that mesh smoothing (or r-



refinement) methods can be applied to improve the
quality of a mesh. These methods adjust the posi-
tions of the vertices in the mesh while preserving its
topology.

Laplacian smoothing is the most popular method for
node-based mesh smoothing. In an iterative manner,
it repositions the vertices of the mesh by moving each
interior node to the geometric center of its neighbors.
It is often used because it is computationally inex-
pensive and is very easy to implement. However, the
method has several undesirable properties. One of
them is that the method is not guaranteed to work,
i.e., sometimes it inverts mesh elements. A second
drawback is that the resulting mesh depends upon the
order the nodes are smoothed.

A related type of smoothing, namely Winslow smooth-
ing, is more resistant to mesh folding due to the re-
quirement that the logical variables be harmonic func-
tions. See [2] for more details on Winslow smoothing.

Other, more accurate methods for r-refinement are
possible. Most of these methods are based upon opti-
mization. Optimization-based methods are used with
the goal of guaranteeing an improvement in the mesh
quality by minimizing a particular mesh quality met-
ric. Their main drawback, however, is their computa-
tional expense. Examples of optimization-based meth-
ods for r-refinement can be found in the following pa-
pers: [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
and [14]. For a theory of algebraic mesh quality met-
rics see [15].

To address the above issues, Baker [16] developed a
three-step method for the metamorphosis of tetrahe-
dral meshes. Each cycle of the method involves a com-
bination of r-refinement, mesh coarsening, and mesh
enrichment to adapt the mesh. The first step in the
cycle is to move the interior nodes as far as possible us-
ing r-refinement while avoiding element inversion. The
second step is to remove the poorly shaped elements in
the mesh using mesh coarsening. The final step is the
addition of elements to improve the mesh quality by
mesh refinement. This dynamic procedure was shown
to be more cost-effective than just r-refinement. One
disadvantage of this technique is that it comes with
no theoretical guarantees as it is difficult to analyze
because each cycle is a combination of three very dif-
ferent techniques.

We study a different mesh warping problem where the
connectivity of the mesh is not allowed to change,
which is important for some applications. Seeking
simplicity, preservation of the mesh’s combinatorial
structure, theoretical guarantees, and low computa-
tional expense, we developed a linear weighted lapla-
cian smoothing (LWLS) method for mesh warping in
two and three dimensions. A full description of the

algorithm is given in Section 2. In Section 3, we prove
a theorem that gives sufficient conditions for when a
mesh is able to resist inversion by a transformation.
We also study mesh inversion within the context of
our algorithm. In particular, we prove that our al-
gorithm yields exact results for affine boundary trans-
formations, and we state a conjecture for more general
mappings. In Section 4, we show that our algorithm
converges to the same point as both the local version
of weighted laplacian smoothing and Gauss-Seidel. In
Section 5, we test our algorithm on several types of
mesh deformations. In Section 6, we apply our algo-
rithm to study the motion of the beating canine heart
under normal conditions. In Section 7, we summarize
our work and identify directions for future research.

2. LINEAR WEIGHTED LAPLACIAN
SMOOTHING

The problem that we address is as follows: Given a
3D domain, bounded by a triangulated surface mesh,
and given an interior volume mesh composed of un-
structured tetrahedra, suppose the triangulated sur-
face mesh is displaced. Is there an algorithm to move
the nodes of the volume mesh so that it continues to
conform to the surface mesh and to be a good quality
mesh?

Our mesh warping algorithm to address this question
is based upon weighted laplacian smoothing. The first
step in the algorithm is to generate a set of local
weights for each interior node that represent the rel-
ative distances of the node to each of its neighbors.
We use an interior point method from nonlinear pro-
gramming in order to generate these weights. Next we
apply a transformation to the boundary nodes. Us-
ing these new positions for the boundary nodes and
the sets of weights from the original mesh, we solve a
system of linear equations to determine new positions
for the interior nodes. We now give a more detailed
description of this algorithm.

Here we describe a nonlinear programming method for
computing the weights for 2D meshes. Note that our
method can be extended to 3D in the straightforward
manner; however, we have not done extensive testing
of our 3D implementation. In addition, this paper
analyzes primarily the 2D version.

Let (xi, yi) denote the x- and y-coordinates respec-
tively of the ith interior node in the initial mesh. In
addition, let the x- and y-coordinates of its adjacent
vertices be given by {(xj , yj) : j ∈ Ni}, where Ni de-
notes the set of neighbors of node i.

In order to find the set of weights wij , where wij is
the weight of node j on interior node i, we use the log
barrier function from linear programming to formulate
the following optimization problem for each i:



max
wij ,j∈Ni

∑
j∈Ni

log(wij) (1)

subject to wij > 0, (2)∑
j∈Ni

wij = 1, (3)

xi =
∑

j∈Ni

wijxj , (4)

and yi =
∑

j∈Ni

wijyj . (5)

We note that the objective function together with the
constraints form a strictly convex optimization prob-
lem for which there is a unique optimum. The opti-
mum can thus be found by an interior point method.
The use of convex optimization in mesh smoothing is
not a new idea. Amenta et al. developed a framework
for formulating mesh smoothing problems as quasi-
convex programs so that they can be optimized as
generalized linear programming problems [9]. In addi-
tion, Freitag et al. developed methods for local mesh
smoothing and untangling using mesh quality metrics
with convex function levels sets in [7] and [8].

By starting with an initial feasible point in the interior
of the space of all possible weights, we are able to solve
(1)-(5) using the Projected Newton Method. This
method can be applied to solve optimization problems
of the following form:

min
x

f(x)

subject to Ax = b.

The optimality conditions for the above problem are:

∇f(x) − AT λ = 0 (6)

b − Ax = 0. (7)

Here λ denotes the vector of Lagrange multipliers.
Note that this is a system of nonlinear equations in
x and λ; thus Newton’s method can be used to solve
for x and λ. However, if the initial point is feasible
(i.e., b − Ax0 = 0) then pk must satisfy Apk = 0
where xk+1 = xk + pk, i.e., pk is the Newton direc-
tion at iteration k. This implies that pk = Zvk for an
(n − m)-dimensional vector vk, where Z is a basis for
the null space of A. It is easy to see that the resulting
equation for pk is given by

pk = −
(
H−1 − H−1AT [AH−1AT ]−1AH−1

)
∇f(xk),

(8)

where H = ∇2f(xk) [17].

In order to compute an initial feasible point in the
interior of the solution space, we choose three of the
interior node’s adjacent vertices and write (x, y) as a
convex combination of the positions of the three nodes.
This yields three positive weights; call them w1, w2,
and w3. In order to find a set of n positive weights,
the rest of the wi are initialized to ε, a small positive
constant. Then once ε has been specified, linear equa-
tions (3) through (5) can be solved for new values of
w1, w2, and w3. For small values of ε, all of the con-
straint equations above will be satisfied (using the new
values for the weights). An inexact linesearch is used
to make ε as large as possible so that w1, w2, and w3

are still reasonably sized, i.e., each of them should be
greater than some small tolerance.

Once the weights have been generated, the input sur-
face deformation is applied to move the boundary
nodes to new locations. The final step is to use the po-
sitions of the boundary nodes and the sets of weights
to simultaneously determine the final positions for the
interior nodes by solving a linear system of equations.
The linear equations that must be solved are of the
following form:

∑
j∈Ni

wijxj = xi (9)

∑
j∈Ni

wijyj = yi. (10)

The resulting linear systems from (9) and (10) are both
m × m, where m is the number of interior nodes.

We first prove that the resulting linear system has a
unique solution.

Theorem 1 The linear system (11), which expresses
the position of each interior node as a convex combi-
nation of its neighbors, has a unique solution.

Proof.

We first establish some necessary notation and termi-
nology. Let b and m represent the numbers of bound-
ary and interior nodes, respectively. Next, define xB

and yB to be vectors of length b that contain the ini-
tial x- and y-coordinates of the boundary nodes. Simi-
larly, let xI and yI be vectors of length m that contain
the initial x and y-coordinates of the interior nodes.
Then [xB , yB ] and [xI , yI ] contain the original posi-
tions of the boundary and interior nodes respectively.
Next, define the weighted Laplacian matrix, L, for a
weighted graph G(V ; E; w) as follows:

L(i, j) =

{−wij if i �= j,∑
k∈V wik if i = j,

where wij = 0 iff (i, j) /∈ E. The boundary nodes are
assumed to be numbered last.



Denote by A = [AI , AB ] the matrix that is derived
from the weighted Laplacian matrix in LWLS by delet-
ing its last b rows. Note that AI contains all of the
weights corresponding to the interior neighbors and is
m×m. In addition, AB contains all of the weights cor-
responding to the boundary neighbors and is m × b.
Linear systems (9)–(10) then can be expressed

AI [xI , yI ] = −AB [xB , yB ]. (11)

To argue that we have uniqueness when LWLS is used
to generate the weights, we classify AI as an M -matrix
which is defined as follows:

Definition: An n × n real matrix A is said to be an
M -matrix if aij ≤ 0 for all i �= j and A−1 ≥ 0.

To see that AI is an M -matrix, we make use of the
following characterization theorem:

Theorem 2 [18] If A ∈ R
n×n satisfies aii > 0, aij ≤

0 for all i �= j, is weakly row diagonally dominant (i.e.,
Ae ≥ 0, �= 0, where e is the vector of all 1’s), and is
irreducible, then A is an M-matrix.

Because the mesh is connected and a positive weight
is associated with each edge, we see that AI is irre-
ducible. Because the diagonal entries of AI are 1, and
the off-diagonal are negative and sum to a number in
[−1, 0], we see that AI is diagonally dominant. There-
fore, AI satisfies the definition of an M−matrix by the
above argument [19]. Thus, AI is invertible, and (11)
has a unique solution.

Because the above system has a unique solution, it
is next solved via Gaussian elimination. Because the
matrix is weakly diagonally dominant, partial pivot-
ing is not necessary. This is a major advantage, since
sparse matrix algorithms are much more efficient with-
out pivoting. The sparsity structure is apparent, since,
on average, an interior node has 6 neighbors in 2D,
whereas a typical 2D mesh may have hundreds, thou-
sands, or even millions of nodes. In addition, because
the nonzero pattern is symmetric, we can first apply
the symmetric minimum degree ordering to the ap-
propriate matrix in an attempt to improve the speed
of the computations. GMRES could also be used to
solve the linear system instead of Gaussian elimina-
tion in an attempt to further improve the algorithm’s
speed although we have not tried this.

Another big advantage of our method is that if a con-
tinuous deformation of the boundary is given, then
LWLS is a valid algorithm for computing the result-
ing trajectory that specifies the movement of the in-
terior nodes. In addition, these trajectories will be
continuous. This is vital for some applications where
continuity of motion is required.

Consider the following application of the LWLS
Method. Figure 1 shows the three steps of the mesh
warping process. Note that the original mesh is shown
in the top graph. A rather large deformation is then

applied to the boundary, and the result is shown in the
middle graph. Finally, the interior nodes are moved to
new positions as is shown in the bottom graph. The
final mesh is a valid mesh, that is, it has no inverted
elements.
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Figure 1: The three stages of the LWLS algorithm [20].

These figures show that the method demonstrates
promise for use as both a mesh untangler and a
smoother in the context of the mesh warping problem.

However, the method will not always be successful. If
the boundary itself becomes tangled (self-intersecting)
under the deformation, then there is no possibility that
LWLS could recover an untangled mesh. But even if
the boundary is not tangled, LWLS may still fail as
indicated by our computational experiments below.

Because LWLS is not guaranteed to work for all types
of boundary transformations, we seek to determine ex-
actly what conditions will guarantee that LWLS will



be successful. In order to meet this goal, we first prove
a theorem about mesh invertibility and then give a
conjecture (with supporting theory) on sufficient con-
ditions for LWLS to be successful on the mesh warping
problem.

3. THEORY OF MESH INVERTIBILITY

In this section we consider sufficient conditions to
guarantee that elements are not inverted in the
mapped mesh. The material in this section focuses
on the 2D case, but we also indicate results that ex-
tend to 3D. First, we prove a theorem about mesh
invertibility in the case when a known transformation
f : R

2 → R
2 is applied to all the nodes. Then we con-

jecture that a similar theorem holds in the case when
f is applied only to the boundary and the LWLS al-
gorithm is used to position interior nodes (i.e., the sit-
uation under consideration). We provide some partial
analysis in support of the conjecture.

In order prove Theorem 3 below, we first prove the
following useful lemma, which has appeared in other
forms in the previous literature (e.g., [21]). This
lemma extends to 3D as well if “angle” in 3D means
solid angle.

Lemma 1 Let T be a triangle with vertices
v1, v2, v3 ∈ R

2. Let A(T ) = [v2 − v1; v3 − v1],
and define the aspect ratio of T , a(T ), by 1

a
, where

a is the minimum angle given in radians. Then,
a(T ) ≤ κ(A(T )) ≤ 16a(T ).

Sketch of Proof: First, we argue that without loss of
generality, we can assume that the smallest angle of
T is at v1 and that −−→v2v1 is longer than −−→v3v1. The
second step in the proof is to compute ‖A(T )‖ and
‖A(T )−1‖ and show that the quantities are related to
the area and edge lengths of T . Throughout the proof
we use ‖ · ‖∞ for our choice of norm. The result is

that ‖A(T )−1‖ ≤
√

2
area

lmax, where lmax is the length

of the longer of the edges −−→v1v2 and −−→v2v3. Similarly,
it can be shown that ‖A(T )‖ ≤ 2

√
2lmax. Putting

this together, we obtain that κ(A(T )) is bounded

above by 2
l2max

area(T )
. Similarly, it can be shown that

κ(A(T )) can be bounded below by 1
2area(T )

lminlmax.

Recall the product of an edge with its altitude is al-
ways twice the area of T . Using the relationships
between side-lengths, we can rewrite our bounds as
lmin
hmin

≤ κ(A(T )) ≤ 8lmin
hmin

. Now define θ to be the

angle at v1. Because we assumed that the small-
est angle is at v1, the longest edge is −−→v2v3. There-
fore, lmin

hmin
= (sin θ)−1 and a(T ) = 1

θ
. So, we obtain

1
sin θ

≤ κ(A(T )) ≤ 8
sin θ

. Note that 0 < θ ≤ π
3

be-
cause θ is the smallest angle. Using basic calculus,
we see that for θ ∈ [0, pi

3
], 1

θ
≤ 1

sin θ
≤ 2

θ
. Therefore,

a(T ) = 1
θ
≤ 1

sin θ
≤ κ(A(T )) ≤ 8

sin θ
≤ 16

θ
= 16a(T )

which proves the lemma.

We are now ready to prove a theorem about mesh resis-
tance to invertibility in the case that a transformation

is applied to all nodes. This theorem is stated for 2D
but extends to 3D.

Theorem 3 Suppose that f : R
2 	−→ R

2 is bijective
and differentiable on the entire mesh, with f ′ nonsin-
gular. Suppose f is applied to all nodes of the mesh.
Then the triangles in the mesh are not flipped by f if
inequalities (14) - (16) below hold.

Proof.

For simplicity, assume for the rest of this section
that det(f ′) > 0 on the whole mesh since the case
det(f ′) < 0 is handled symmetrically. We give suf-
ficient conditions for the noninvertibility of the mesh
elements. Let t be a triangle in the triangulation T
with vertices v1, v2, and v3.

Note that t is flipped by f ⇐⇒

∣∣∣∣ (v2 − v1)x (v2 − v1)y

(v3 − v1)x (v3 − v1)y

∣∣∣∣∣∣∣∣ (f(v2) − f(v1))x (f(v2) − f(v1))y

(f(v3) − f(v1))x (f(v3) − f(v1))y

∣∣∣∣
< 0. (12)

Using Taylor’s Theorem, we obtain:

f(v2) = f(v1) + Jv1(v2 − v1)

+
1

2
vT

(
∂2f
∂x2 (ε, µ) ∂2f

∂x∂y
(ε, µ)

∂2f
∂x∂y

(ε, µ) ∂2f
∂y2 (ε, µ)

)
v,

where v =

[
(v2 − v1)x

(v2 − v1)y

]
for some (ε,µ) lying on the

line connecting v1 and v2.

Substituting the above into (12) we obtain an inequal-
ity of the following form giving necessary and sufficient
conditions for invertibility:

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
|Jv1 |

∣∣∣∣ a11 + γ1 a12 + γ2

a21 + γ3 a22 + γ4

∣∣∣∣
< 0 (13)

So, Lemma 2.7.1 in [22] applies to (13) once we have
sufficient conditions for the hypotheses to hold. Note
that the portion of the lemma we used states that if
A is invertible, if M = A + δA satisfies ‖δA‖ ≤ ε‖A‖,
and if εκ(A) < 1, then M is nonsingular. Here κ(A)
denotes the condition number of A.

Using algebra and Lemma 1 above, we find that
the following conditions ensure the hypotheses of the
above lemma are satisfied:



1

Jv1

∣∣∣∣∂2f1

∂x2
(ε)

∣∣∣∣ ≤ 2

51

hmin

a(T )h2
max

(14)

1

Jv1

∣∣∣∣ ∂2f1

∂x∂y
(ε)

∣∣∣∣ ≤ 1

51

hmin

a(T )h2
max

(15)

1

Jv1

∣∣∣∣∂2f1

∂y2
(ε)

∣∣∣∣ ≤ 2

51

hmin

a(T )h2
max

, (16)

where hmin and hmax are the smaller and larger alti-
tudes (respectively) from v2 and v3. Similar conditions
are obtained for f2.

Note that this proof generalizes to higher dimensions
and is thus applicable to unstructured mesh generation
in 3D.

Next, we state our conjecture for the LWLS method,
which is formally reminiscent of Theorem 3. After
stating the conjecture, we provide some supporting
theory.

Conjecture 1 Suppose that f : R
2 	−→ R

2 is bijective
and differentiable on the entire mesh, with f ′ non-
singular. Consider transforming the mesh by apply-
ing f only to the boundary nodes of the triangulation,
and then using LWLS to position the interior nodes.
Then no triangles are flipped provided that an upper
bound on the second derivative of f in terms of the
first derivative and mesh aspect ratio is satisfied.

The condition in the conjecture is analogous to the hy-
potheses in Theorem 3, namely, a condition for invert-
ibility that relates the first and second derivatives of
f . There is a qualitative difference, however, between
the theorem and the conjecture: The theorem states
that as long as f is bijective, then for a sufficiently re-
fined mesh (with bounded aspect ratio), there will be
no inversions. On the other hand, the conjecture and
supporting theory here apparently indicate that the
condition for occurrence of inversions in the LWLS al-
gorithm depends on f and the mesh aspect ratio but
not so much on the level of refinement.

In considering how to prove the conjecture, let us fix
a particular triangle T in the original mesh’s interior,
centered at (xc, yc) with vertices v1, v2, v3. As noted
above, the positions of the nodes in the updated mesh
are obtained from solving AI [x̂I , ŷI ] = −AB [x̂B , ŷB ],
for [x̂I , ŷI ] given that [x̂B , ŷB ] are obtained from
the original [xB , yB ]. In fact, each two-element row
of [x̂B , ŷB ] is f applied to the corresponding row of
[xB , yB ]. Let WT be the 2×m matrix with 1’s in the
(1, v2) and (2, v3) positions and −1’s in the (1, v1) and
(2, v1) positions. Then WT [x̂I , ŷI ] is the 2×2 matrix,
call it A(T ), whose determinant must be positive to
avoid inversion. Observe that

A(T ) = −WT A−1
I AB [x̂B , ŷB ]. (17)

Next, expand f as a Taylor series about (xc, yc), and
for simplicity assume f is a quadratic function. The
Taylor expansion therefore has the form

f(x, y) = f(xc, yc) + Dx(f)(xc, yc)(x − xc)

+ Dy(f)(xc, yc)(y − yc)

+
1

2
Dx,x(f)(xc, yc)(x − xc)

2

+ Dx,y(f)(xc, yc)(x − xc)(y − yc)

+
1

2
Dy,y(f)(xc, yc)(y − yc)

2

We can write the first three terms of this expansion as
vT + [x, y]L, where L is a 2 × 2 matrix and vT is 2-
vector, i.e., in the general form for an affine mapping,
where L and vT depend on the choice of triangle T .
(The dependence on T is not explicitly denoted; the
superscript T on v indicates “transpose.”) Let us write
the remaining terms as Q((x, y)− (xc, yc)), where Q is
a pure quadratic function also depending on T . Thus,

f(x, y) = vT + (x, y)L + Q((x, y) − (xc, yc))

We substitute this into (17) to obtain

A(T ) = −WT A−1
I AB

(
evT + [xB , yB ]L

+




Q((xB1, yB1) − (xc, yc))
...

Q((xBb, yBb) − (xc, yc))



)

(18)

where (xB1, yB1), . . . , (xBb, yBb) is an explicit enumer-
ation of the nodes of [xB , yB ]. We can analyze the sum
of the first two terms on the right-hand side explicitly
using the following lemma.

Lemma 2 Suppose the boundary transformation ap-
plied to the initial mesh is an affine mapping. Then if
LWLS is used to reposition the interior nodes, the re-
sulting mesh is the same as if the affine mapping were
applied to all nodes in the initial mesh.

This lemma extends to 3D as well.

Proof.

Continuing to use the above notation, we note that the
position of the interior nodes in the deformed mesh is
given by

[x̂I , ŷI ] = −A−1
I AB([xB , yB ]LT + evT ). (19)

In order to show that affine mappings yield exact re-
sults with LWLS, we want to show that (19) is the
same as:

[x̂I , ŷI ] = [xI , yI ]L
T + evT . (20)

Observe that if (20) is the same as (19), then it will
follow that:

AI([xI , yI ]L
T + evT ) = −AB([xB , yB ]LT + evT ).

(21)



Thus, it remains to check that (21) holds.

Because the weights for each interior node sum to 1,
Ae = 0; i.e., AIe+ABe = 0. Hence (AIe+ABe)vT =
0. Also, because [xI , yI ] and [xB , yB ] denote the orig-
inal positions of the nodes, we know that AI [xI , yI ]+
AB [xB , yB ] = 0. So, (AI [xI , yI ] + AB [xB , yB ])LT =
0.

Putting these together, we see that

(AI [xI , yI ] + AB [xB , yB ])LT + (AIe + ABe)vT = 0.
(22)

Therefore, (21) holds, and the lemma is proven.

For an example of using LWLS in conjunction with an
affine boundary transformation, see Figure 2.
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Figure 2: Exact results from LWLS for affine map-
ping [20].

Substituting the result of this lemma into (18) and
using the fact that WT e = 0 (by definition of WT )
yields

A(T ) = WT [xI , yI ]L

− WT A−1
I AB




Q((xB1, yB1) − (xc, yc))
...

Q((xBb, yBb) − (xc, yc))


 .

(23)

Observe that this equation is in a form analogous to
the proof of Theorem 3: the matrix whose determi-
nant we must take is written as the product of a de-
terminant in the original mesh (namely WT [xI , yI ])
by the first derivative of f locally (namely, L) plus
a quadratic term. We now wish to argue that the
linear term dominates the quadratic term under suit-
able assumptions. Let us write the quadratic term
as q1 + · · · + qb, where ql denotes the contribution
from the lth boundary node. In other words, ql =
−WT A−1

I AB(Q((xBl, yBl) − (xc, yc))el) where el de-
notes the lth column of the identity matrix. Fix l and
let r = −A−1

I ABel, so that AIr + ABel = 0 and

|ql| ≤ ‖WT r‖ · |Q((xBl, yBl) − (xc, yc))|. (24)

If all the weights were equal and the mesh were uni-
form, the equation AIr + ABel = 0 would be a dis-
cretization of Laplace’s equation on the mesh domain,

in which the boundary condition is a Dirichlet condi-
tion of 1 at a single boundary node (node l) and 0 at
all other boundary nodes. The quantity under con-
sideration is WT r, which (by definition of WT ) is a
2-vector each of whose entries is a finite difference of
two entries of r at neighboring mesh nodes of trian-
gle T centered at xc, yc. Therefore, we analyze this
quantity by considering the model problem of solving
Laplace’s equation on the unit disk in which a Dirich-
let boundary condition of 1 is imposed on boundary
segment S of length h and a Dirichlet condition of zero
is imposed on the rest of the boundary. Here h is the
typical mesh cell size for the mesh under considera-
tion. Let u be the Laplace solution for this bound-
ary condition. The Poisson integral formula may be
used to show that for any point t inside the unit disk,
‖∇u(t)‖ ≤ const ·h/ dist(t, S)2. Therefore, if t1, t2 are
two points in the unit disk satisfying ‖t1 − t2‖ ≤ h,
then

|u(t1)−u(t2)| ≤ const·h2/ min(dist(t1, S), dist(t2, S))2.

If we hypothesize that a bound of the same form holds
for the LWLS algorithm, we conclude that

‖WT r‖ ≤ const · h2/ dist((xc, yc), (xBl, yBl))
2.

This takes care of the first factor in (24). Because
the second factor is quadratic, it is bounded above
by const2 ·dist((xc, yc), (xBl, yBl))

2. Combining shows
that |ql| ≤ const3 ·h2 since the dist2 terms cancel each
other. Since there are b = O(1/h) terms in the sum
q1 + · · ·+ qb, we conclude that the overall contribution
from the quadratic term of (23) is O(h) and that the
constant factor in this O(h) bound depends on the sec-
ond derivative of f . On the other hand, the first term
in (23) is also O(h) (since WT takes a finite difference
of locations of mesh neighbors), but here the constant
depends on the first derivative. This concludes our
justification of the conjecture.

We have less insight into how the mesh aspect ratio
affects (23), but we can show that no weight is too
close to zero as long as the mesh has bounded aspect
ratio.

Theorem 4 There is a positive-valued function q(x)
such that wij ≥ q(a), where wij is any weight com-
puted by the LWLS algorithm and a is the worst
(largest) aspect ratio in the mesh.

Proof.

First, for this proof we need the following claim.

Claim. Let p = (1, 0) be an interior node in a bounded-
aspect ratio triangulation, and suppose that all of
its neighboring nodes have nonnegative x-coordinates.
Let xmax be the maximum x-coordinate among neigh-
bors of p. Then xmax ≤ q0(a), where q0 is a fixed
function and a is the mesh aspect ratio.

The proof of claim is omitted, but we give a sketch of
its main idea here. For more details, see [24]. Con-
sider the triangle t1 containing p and also the line seg-
ment starting at p and proceeding in the negative x



direction. Since no neighbor of p has a negative x-
coordinate, we conclude that this triangle t1 has an al-
titude at most 1. Therefore, its maximum side-length
is at most a, using the following definition of the aspect
ratio: AR = lmax

altmin
, where lmax and altmin denote the

maximum side-length and minimum altitude. The tri-
angle immediately adjacent to p, possessing one side of
length at most a, therefore has maximum side-length
at most a2, and so on. The number of triangles ad-
jacent to p is bounded by ca, where c is a universal
constant, since the minimum angle of each triangle is
at least 1/(c′a), using the alternative definition of the
aspect ratio, AR = 1/θmin, where θmin is the minimum
angle in the triangle. (Note that the two definitions of
aspect ratio are equivalent up to a constant.) There-
fore, the longest side-length among neighbors of p is
aca, which is the function q0. A similar argument ap-
pears in [25].

Once the claim is established, we can return to the
proof of the theorem, which is as follows. Fix an inte-
rior point p in the initial mesh with n neighbors, and
let the optimal weights computed by the LWLS algo-
rithm be w1, . . . , wn. (Omit the second subscript since
p is fixed throughout the proof.) Let the neighbors of
p be (x1, y1), . . . , (xn, yn), and let p itself be located
at (xp, yp). Since the LWLS problem is a strictly con-
vex optimization problem on a bounded convex set,
the Lagrange multiplier conditions are necessary and
sufficient for optimality [26]. These conditions are as
follows. There exist three multipliers λ, µ, ν such that

w1x1 + · · · + wnxn = xp,

w1y1 + · · · + wnyn = yp,

w1 + · · · + wn = 1,

λx1 + µy1 + ν = 1/w1,

...

λxn + µyn + ν = 1/wn.

First, let us consider a very simple case that λ = µ = 0.
In this case, each wi is equal to 1/ν. Since the sum of
the wi’s is 1, this means in fact that 1/ν = 1/n and
hence wi ≥ 1/n for all i. Furthermore, 1/n > (1/(ca))
using the argument about the number of neighbors
from the proof of the claim. This shows that wi > q(a)
in this special case.

The generic case is that at least one of λ, µ is nonzero.
Without loss of generality, we can assume λ = 1, µ =
ν = 0. The reason this assumption is WLOG is as
follows. We can apply an arbitrary transformation of
the form

(x, y) 	→ (x, y)

(
u v
−v u

)
+ (k1, k2)

(with at least one of u, v nonzero) uniformly to the
original data (x1, y1), . . . , (xn, yn), (xp, yp); applying
such a transformation has the effect of transforming
λ, µ, ν arbitrarily as long as not both λ, µ are zero but
does not change any of the aspect ratios in the orig-
inal triangulation (since the above transformation is
a combination of a rigid motion, a translation, and a
uniform scaling).

After this transformation is applied, we can further
apply a uniform translation to all the y-coordinates
in the original data to force yp = 0. Since λ = 1
and µ = ν = 0, we conclude from the KKT system
that xi = 1/wi so that wixi = 1. This means that
w1x1 + · · · + wnxn = n, hence xp = n so p = (n, 0).
Also, the relationship xi = 1/wi means that all the
xi’s are positive. Finally, the relationship xi = 1/wi

means that min wi = 1/ max xi. In particular, in order
to have a very small wi means that there must be a
very large xi. It follows from the claim that max xi ≤
nq0(a), hence min wi ≥ 1/(nq0(a)). Therefore, there
exists a positive-valued function q(x) such that all the
weights are at least q(a).

4. CONVERGENCE THEORY

Next, we study the convergence of LWLS and compare
it with the convergence of the local weighted Laplacian
smoothing and Gauss-Seidel algorithms.

Theorem 5 The LWLS Algorithm converges to the
same point as the local weighted Laplacian smoothing
method and the Gauss-Seidel method taken one pass at
a time.

Proof.

First, we note that as proved in Theorem 1, unique po-
sitions result when using LWLS to solve for positions
of the interior nodes. Throughout this discussion we
assume that the input transformation has already been
applied to the boundary.

Now, we discuss the convergence of the Gauss-Seidel
algorithm when applied to AI [x̂I , ŷI ] = −AB [x̂B , ŷB ].
It is well-known in the numerical analysis community
that this algorithm is guaranteed to converge for an
M -matrix. (See [27] for the details.) Thus, according
to Theorem 2, it will converge when applied to this
system.

Next, we observe that it is easy to show the iterates
produced by applying the local version of weighted
Laplacian smoothing to the above linear system are
the same. (The details are omitted due to space con-
straints.)

Thus, we can compute the iterates for the local version
of weighted Laplacian smoothing as follows:

[xI , yI ]
(k+1) = C[xI , yI ]

(k) + F [x̂B , ŷB ],

where C = (M−1
G NG), F = (−M−1

G AB), MG = D + L,
D = diag(AI) and L = tril(AI), NG = −triu(AI), and

[xI , yI ]
(0) = [xI , yI ].

Finally, we show that the local version of weighted
Laplacian smoothing converges to the same point as
LWLS. To this end, we consider the convergence of
the local version of the weighted Laplacian smoothing
method. In order to study its convergence, we need to
concern ourselves with



lim
k→∞

((
C F
0 I

)k
)

. (25)

Note that (25) is equal to

(
limk→∞ Ck

(∑∞
j=0 Cj

)
F

0 I

)
. (26)

Now, observe that
(∑∞

j=0 Cj
)

F = (I − C)−1F. In

addition, observe that AI and −AB can be obtained
from I −C and F via elementary row operations since
I − C = I − M−1

G NG and F = −M−1
G AB . Thus, the

desired matrices are obtained by left multiplying by
MG. This proves that (I − C)−1F = −A−1

I AB .

The final observation to make is that the eigenvalues of
C satisfy ρ(λ) < 1, which can be seen as follows. First,
we note that all of the entries of C are nonnegative by
definition of C. Second, we note that each row sum
is less than or equal to 1 since each row is a convex
combination of rows with nonnegative entries and row
sums that are less than or equal to 1. In addition,
there is at least one row with row sum strictly less
than 1 since there is at least one interior node with
a boundary neighbor. Thus, the eigenvalues of C are
less than 1 in absolute value, i.e., limk→∞ Ck = 0.

Putting everything together, we see that (26) is equal
to (

0 −A−1
I AB

0 I

)
. (27)

This proves the theorem, since the solution to the sec-
ond linear system, AI [x̂I , ŷI ] = −AB [x̂B , ŷB ], can be
written as follows:

(
x̂I ŷI

x̂B ŷB

)
=

(
0 −A−1

I AB

0 I

)(
xI yI

x̂B ŷB

)
.

5. NUMERICAL TESTS

In order to test the robustness of LWLS, we designed
three numerical tests each based upon a series of
mesh deformations. These tests have been designed
to mimic the basic elements of a beating heart’s mo-
tion, namely translation and rotation. We study the
heart’s motion in Section 6. All of the tests involve
the deformation of an annulus on each timestep. The
annulus is composed of four, equally-spaced concentric
rings of triangles. Its inner radius is 1, and its outer
radius is 10. The initial annulus mesh is shown in the
upper, left-hand corner of Figure 3.

In the first test, the inner circle was deformed via an
outward translation on each iteration. In particular,
its radius was increased by 0.5 each timestep. The test
showed that when the inner radius of the annulus be-
came 6.5, too much deformation had occurred, since

the mesh had inverted, and the minimum mean ratio of
a triangle in the mesh was less than 1. (See [3] for the
mean ratio definition.) However, as this test demon-
strates, LWLS tolerates a large amount of translation
is tolerated before inversion occurs.

Rotation of the inner circle occurs in the second de-
formation series. On each iteration, the inner circle
was rotated counterclockwise 10 degrees. While per-
forming this test, we observed that as the inner circle
rotates counterclockwise, the quality of the triangles
in the inner ring decreases. The mesh remained un-
tangled until it had been rotated 70 degrees.

The goal of the third test was to combine translation
and rotation of the inner circle. At each timestep, the
motions of the first two tests were combined, i.e., the
radius of the inner circle was increased by 0.5, and it
was rotated by 10 degrees. Figure 3 shows the results.
The new radius for the inner circle, its amount of ro-
tation, and the minimum mean ratio of the triangles
are given. Observe that the mesh remains untangled
until the radius of the inner circle is 3.5 and the circle
has been rotated by 50 degrees.

r = 1, θ = 0, MR min = 1.0809 r = 2, θ = 20, MR min = 1.1111

r = 3, θ = 40, MR min = 1.1801 r = 3.5, θ = 50, MR min = −9.1187

Figure 3: Translation and Rotation of Inner Circle of
Annulus.

From these three tests, we conclude that LWLS can
withstand relatively large amounts of deformation
of various kinds while resisting inversion. However,
whenever the deformations either tangle the bound-
ary or are too large, LWLS fails because inversion of
elements occurs.



6. APPLICATION TO CARDIOLOGY

We now use LWLS in order to study the movement of
the beating canine heart under normal conditions. To
do this, we obtained data from the Laboratory of Car-
diac Energetics at the National Institutes of Health
(NIH) [28]. We were given (x, y, z, t) data for 192
points on the inner surface of the left and right ventri-
cles of the beating canine heart from a physiological
pacing experiment. The data frames are 14.6 millisec-
onds apart with the first frame occurring 12 millisec-
onds before the pacing spike.

The first step in the simulation of the ventricular
movement was to generate a mesh for the initial po-
sition of the ventricles. In order to do this, we first
noted that the 192 points we were given were arranged
in 8 slices with 24 points each. Thus, in order to gen-
erate the initial mesh, we decided to create a mesh
for the top slice and then use LWLS to do the mesh
warping necessary to create meshes for the remaining
slices. Note that this uses LWLS in one and two di-
mensions as we describe in detail below. Once we have
the meshes for all of the levels, we connect the triangu-
lar meshes into a tetrahedral mesh for the ventricles.
The procedure to do this is also described below.

We now give a more detailed description of the method
we used to create the initial mesh of the canine ventri-
cles. We first used the two-dimensional quality mesh
generation package called Triangle [29] to generate an
initial mesh of the top slice (after projecting it into the
x-y plane). Note that this yielded a good-quality mesh
in the x-y plane with several additional nodes. Second,
we computed the z-coordinates for the new points on
the boundary of the top slice using 1D LWLS. Third,
we used the weight-finding portion of our LWLS algo-
rithm to compute the weights for the appropriate 2D
linear system obtained from the x- and y-coordinates.
Fourth, we determined the z-coordinates for the mesh
of the top slice by forcing the z-coordinates to satisfy
the appropriate 3D linear system using the 2D weights.
At this point, we had the mesh for the top slice.

Our second task was to generate meshes for each of the
remaining 7 slices. This was done using our LWLS al-
gorithm to warp the mesh for the top slice into meshes
for each of the remaining slices. In order to accomplish
this, the first step was to determine the coordinates of
the additional boundary nodes for the mesh of the ap-
propriate slice. This was done using 1D LWLS. Then,
the (x, y) coordinates of the interior nodes of that slice
were determined using 2D LWLS. The z-coordinates
for the interior nodes were found by forcing them to
satisfy the appropriate 3D linear system using these
weights.

The third step was to connect the triangular meshes
for each of the 8 slices into one tetrahedral mesh for
the canine ventricles. To do this, the corresponding
triangles between two slices were connected to form
a triangular prism. After a temporary mesh of trian-
gular prisms was created, the triangular prisms were
subdivided into tetrahedron using the method outlined
in [30].

After the initial tetrahedral mesh was created, we
checked its quality using the mean ratio mesh qual-
ity metric. Using this test, it was determined that the
initial mesh was of poor quality. This was because the
8 slices were equally-spaced even though the curvature
of the ventricles changes much more rapidly near the
bottom of the heart. Thus, we decided to use linear
interpolation in conjunction with LWLS in the obvi-
ous way in order to add two additional slices of nodes
near the bottom of the heart. Because the curvature
of the ventricles changes more rapidly near the bot-
tom of the heart, the first additional slice was placed
halfway between levels 7 and 8, and the second addi-
tional slice was placed halfway between the first new
level and level 8. The resulting initial mesh is shown
in Figure 4.

Figure 4: Initial canine ventricular mesh.

After the initial mesh was created, the heart data was
used to move the 192 data points on the boundary
of the mesh to their new positions The same process
as above (i.e., LWLS in 1D, LWLS in 2D, and using
1D LWLS to add the two new levels of data near the
bottom) was used in order to reposition the remain-
ing boundary points. Once the boundary nodes were
relocated to their positions for timestep t = 2, the 3D
version of LWLS was used to move the interior nodes
to their new positions for this timestep. This process
was performed iteratively in order to study the move-
ment of the heart at timesteps t = 3, . . . , 32.

The simulation of the canine ventricular movement
produced a series of meshes that show the ventricles
twisting, expanding, and then contracting over the
cardiac cycle. This is consistent with what occurs in
nature. These meshes were combined into an anima-
tion which can be seen at [31]. Because the dynamic
range of the motion is small, it cannot be detected in
single figures (separate from an animation).

During each timestep, the mean ratios of the tetra-
hedra in the mesh were computed. The mean ratio
computations showed that the heart remained untan-
gled throughout the entire simulation. This is not
very surprising since the heart mesh is composed of
elliptical rings that seem to undergo less movement on



each timestep than the circular rings in the test cases.
However, the motion of the heart is anisotropic which
makes it difficult to predict in advance how it will tol-
erate deformations. Interestingly enough, the values of
the minimum and average mean ratios were relatively
constant across all timesteps. Only the value of the
maximum mean ratio changed a significant amount.
The mean ratio computations are also a good indi-
cation that the heart meshes are of sufficiently good
quality for use with a numerical PDE solver that re-
quires moving meshes.

In order to further test our mesh warping algorithm,
the motion of the ventricles was exaggerated by a fac-
tor of 3. In this case, the motion was large enough
to detect in separate figures and is shown in Figure
5. We note that the LWLS algorithm also performed
successfully in this case, which is encouraging given
the much larger deformations.

7. CONCLUSIONS

In summary, we developed a new mesh warping al-
gorithm for tetrahedral meshes based upon weighted
laplacian smoothing.

Our method determines a set of local weights for each
interior node which describe the relative distances of
the node to its neighbors. A deformation is then ap-
plied to the boundary, and the method solves a system
of linear equations based upon the weights to deter-
mine the final positions of the interior nodes.

Furthermore, LWLS is simple, preserves the mesh’s
combinatorial structure, is computationally inexpen-
sive, and provides theoretical guarantees for use on
the mesh warping problem.

We proved a theorem regarding mesh invertibility
and a lemma showing that LWLS yields exact results
for affine boundary transformations. In addition, we
proved a convergence result comparing LWLS to the
local weighted laplacian smoothing and Gauss-Seidel
algorithms.

We also used LWLS to study the motion of the canine
ventricles under normal conditions.

We now describe some possibilities for future research.
First, we would like to extend the above theory to
prove Conjecture 1. Second, we would like to use
our canine ventricle meshes to study the bioelectric-
ity of the heart. To do this, we will couple the heart’s
electrical activity with its mechanical motion (from
the LWLS meshes). We will then use the finite ele-
ment method to simulate the electricity on the beat-
ing heart. This will yield new knowledge of the heart’s
activity since most of the current models have not cou-
pled the heart’s electricity with its mechanical motion.
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