THE MESQUITE MESH QUALITY IMPROVEMENT
TOOLKIT

Michael Brewer!

Lori Freitag Diachin®

Patrick Knupp' Thomas Leurent?

Darryl Melander!

LSandia National Laboratories, Albuquerque, NM U.S.A
{mbrewer,ladiach,pknupp,djmelan} @sandia.gov
2 Argonne National Laboratories, Chicago, IL U.S.A. tleurent@mcs.anl.gov

ABSTRACT

We describe the design goals and architecture of the Mesquite toolkit, a stand-alone library consisting of state-of-the-
art algorithms for mesh quality improvement. The primary considerations in Mesquite design are to ensure that it is
comprehensive, effective, efficient, and extensible. We give an overview of the Mesquite architecture and highlight the
core classes, their inter-relations, and functionality. We describe the interfaces developed to obtain information from
the mesh and geometry and to provide user-control of the quality metrics, algorithms, and termination criterion.
Smoothing results for several meshes with a broad range of characteristics are given which showcase Mesquite’s

versatility.

Keywords: mesh quality, mesh improvement, mesh smoothing, mesh generation

1. INTRODUCTION

Mesh quality is critical for accuracy and efficiency in
the solution of PDE-based applications. Quality can
be affected in many stages of the solution process from
de-featuring CAD models, to mesh generation proce-
dures and h— and r—adaptive schemes. At any stage
after a mesh is created, its quality can be improved
by node point movement methods, commonly called
mesh smoothing, and topology modification schemes
such as edge and face flipping. There are a number
of techniques that have been developed for mesh im-
provement ranging from simple Laplacian smoothing
[1] to more sophisticated algorithms such as Winslow
smoothers for structured meshes [2] and the numer-
ical optimization methods and topology modification
schemes recently developed for unstructured meshes
(for example, [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]).

The software associated with many of these references
is largely contained in larger mesh generation or appli-
cation frameworks. While many meshing codes such

as ICEM-CFD can perform mesh improvement, there
currently exist few stand-alone, portable libraries for
mesh quality improvement that can be easily linked
via functional interfaces to many different mesh gen-
eration and application codes. One such libary is Opt-
MS [13], a stand-alone package that uses state-of-the-
art optimization algorithms to improve homogeneous
simplicial meshes. However, Opt-MS only provides
patch-based smoothing algorithms for isotropic ele-
ments in volumes or on planar surfaces. No topologi-
cal changes are supported. Under the auspices of the
Tera-scale Simulation Tools and Technologies (TSTT)
Center [14], we have recently begun development of a
new toolkit, called Mesquite (Mesh Quality Improve-
ment Toolkit), that is much more comprehensive than
Opt-MS and, in this paper, we present our progress to
date.

Successful development of Mesquite will provide a
robust and effective mesh improvement tool to the
broader scientific community. This will allow both
mesh generation researchers and application scientists

to benefit from the latest developments in mesh qual-
ity control and improvement. For example, Mesquite
has already been used to smooth Geodesic meshes for
the climate group at Colorado State University [15]
and is presently being used to improve the quality of
meshes used in the design of particle accelerators [16].
Preparations are also underway to link Mesquite to
various TSTT meshing codes including CUBIT [17],
Overture [18], and NWGrid [19].

The Mesquite design goals were first introduced in [20],
and in this paper we compare the current status of
Mesquite with that vision (Section 2), give an overview
of the Mesquite design and architecture including the
application programming interfaces (Sections 3 and 4),
and show several examples of meshes with a broad
range of characteristics that have been improved by
Mesquite (Section 5).

2. MESQUITE DESIGN GOALS

Mesquite design goals are derived from a mathemati-
cal framework and are focused on providing a versatile,
comprehensive, effective, inter-operable, and efficient
library of mesh quality improvement algorithms that
can be used by the non-expert and extended and cus-
tomized by experts. In this section we highlight the
current status of Mesquite in several of our design goal
areas.

Mathematical Framework. Mesquite design is
based on a currently evolving, but rigorous mathemat-
ical framework that poses the mesh quality improve-
ment problem as an optimization problem. That is,
suppose a mesh M contains n vertices, v;, and k ele-
ments, e;. Then the quality of each element or vertex
is given as a general function g;(x) of the coordinates
of the vertex locations. The index i ranges from 1
to n or 1 to k depending on whether a vertex-based
or element-based metric is chosen. A mesh quality
objective function F = f(gi(x)) for ¢ = 1,---,ns or
i =1,--- ks is formed to give an overall measure of
mesh quality where n; and ks are the number of ver-
tices or elements in a mesh sub-domain needing im-
provement, respectively. Mesquite is designed to solve
the minimization problem min F for a broad collection
of quality metrics ¢; and objective functions F.

Versatile and Comprehensive. Mesquite works on
structured, unstructured, and hybrid meshes in both
two and three dimensions. The design permits im-
provements to meshes composed of triangular, tetra-
hedral, quadrilateral, and hexahedral elements. Pris-
matic, pyramidal, and polyhedral elements can be eas-
ily added. It currently incorporates only methods for
node movement; plans for topology modification and
hybrid improvement strategies lie in the future. Node
movement strategies include both local patch-based

iteration schemes for one or a few free vertices and
global methods which improve all vertices simultane-
ously. Mesquite will be applicable to both adaptive
and nonadaptive meshing and to both low- and high-
order discretization schemes, but currently works with
non-adaptive meshes containing linear elements.

Effective. Mesquite uses state-of-the-art algorithms
and metrics to guarantee improvement in mesh qual-
ity. Because the definition of mesh quality is applica-
tion specific, we provide quality metrics that allow the
user to untangle meshes, improve mesh smoothness, el-
ement size, and shape. In the future these metrics will
be referenced to permit non-isotropic smoothing and
adaptivity. The software is easily customizable, en-
abling users to insert their own quality metrics, objec-
tive functions, and algorithms and also provides mech-
anisms for creating combined approaches that use one
or more improvement algorithms.

Inter-operable. To ensure that Mesquite is inter-
operable with a large number of mesh generation pack-
ages, we will use the common interfaces for mesh
query currently under development by the TSTT
center. These interfaces provide uniform access to
mesh geometry and topology and will be implemented
by all TSTT center software including several DOE-
supported mesh generation packages. We are work-
ing with the TSTT interface design team to ensure
that Mesquite has efficient access to mesh and geome-
try information through strategies such as information
caching and agglomeration. We are also participating
in the design of interfaces needed to support topolog-
ical changes generated by mesh swapping and flipping
algorithms and to constrain vertices to the surface of
a geometrical model.

Efficient. The outer layers of Mesquite use object-
oriented design in C++ while the inner kernels use
optimizable coding constructs such as arrays and in-
lined functions. To ensure efficient use of computa-
tionally intensive optimization algorithms, we employ
inexpensive smoothers, such as Laplacian smoothing,
as “preconditioners” for the more expensive optimiza-
tion techniques. In addition, mesh culling algorithms
can be used to smooth only those areas of the mesh
that require improvement. Considerable attention has
been devoted to understanding and implementing a va-
riety of termination criteria that can be used to control
the computational cost of the optimization algorithms.

3. MESQUITE ARCHITECTURE

The Mesquite architecture, shown in Figure 1, closely
follows the abstractions defined by the mathemat-
ical framework to describe the optimization prob-
lem. In particular, the core abstract classes needed
to define a mesh quality improvement algorithm

| L _ Imareciianesur

' o D[I ey (iR e |
Cualesu s |

o gunity i
| e S ULETIRAS, SR o o X Mishin
A + B PN Jrp ey MF’W‘ 2 == Maah Flarsh
RN, R - | TETT Wesh Haarde |
[iRy i | i
| P ey e | gy pmin ovar ek for e
R T
—_——— I
Guattpimpoeer | R Qigerfsrfusciion | inrehings pe RS B -l Duakvyibivine
+m3d, niE, e i 1 1 coTEuiE_sraivics] grasemmn | I K]
e, u-u:hl] K o
Fhop_ s medk g ey A e w g w b el i e)
AN DEN S + CATEEEE FEFHELE S BEHTi i) +cErui _sleTan _rererine pradenl
+4E1 | TR D TITHTLEE + DO B PR _Te R o RN S TR P Tebi o H D
+auabare’ = Feddaail
T L] T
|l|H'TI:I.=-I_I- i I-Fl_l';llflml_._" | IIlIHIIJ'FHﬁ
i | o I+Hl.|ill'| +tl'l'|'.|ll-| A lII'l[l +|\il|||l€l N
| | - TEANRIEH, AT E
| | vl Laial = | s
_— [Ta—— . anpaserlituk
Vermuidirner | Tapabiprifodifiar s | palnslnl] e
o meELa) T THETRE | ¥
| £ wEiPER_j .|| | £ figucekyyd |
! f T =
f 1 —— 1 L Pl T ETEE L 20 LITTT
Coipipale Gramsi | Aalive et [= e e +-:-r:m:-elnwr-..lwz:‘1.!r-qm|
ArEpETies_ seree_ pond o) | L] }l’ lascéagyi _ —_ W TR e, Pl
+avaLmefi
Faashin Newion |
i, pdids]

Figure 1: Mesquite user interface UML class diagram. Abstract classes and virtual functions are in italic. Vertical links
with a triangle indicate inheritance. Plain links indicate association. Protected functions are prefixed with ‘#', public ones

with '+’

are QualityMetric, ObjectiveFunction (which takes
a QualityMetric as input), and QualityImprover
(which takes an ObjectiveFunction as input).

In addition, a number of other classes have been cre-
ated to support the needs of mesh quality improve-
ment algorithms:

e QualityAssessor: to provide an evaluation of
mesh quality using standard statistical proce-
dures,

e TerminationCriterion: to customize the stop-
ping criteria used with a mesh quality improve-
ment algorithm,

e InstructionQueue: to compose quality im-
provers and quality assessors together to form ef-
ficient mesh quality improvement and evaluation
methods, and

e MeshSet and PatchData: to provide the mech-
anisms for managing the application mesh and
geometry information and the mesh sub-domains
used in optimization procedures.

The Mesquite architecture uses as much dynamic poly-
morphism in the form of inheritance and virtual func-
tions as is possible without degrading performance.
This allows developers to easily add new functionality
to Mesquite by inheriting from the appropriate ab-
stract class and implementing its interface (i.e. its
abstract virtual functions). For example, to imple-
ment a new quality metric, a user must inherit from
the base QualityMetric class and implement only a
single function that returns the value of the metric for
a given mesh entity. We note that the mesh entities,
defined by class MsqMeshEntity, are the only excep-
tion in our architecture. Mesh entities, i.e. triangles,
tetrahedrons, quadrangles and hexahedrons, are im-
plemented in a single class, without the use of dynamic
polymorphism, to eliminate the performance impact of
runtime resolution.

In this section, we describe the details of the
core classes QualityMetric, O0ObjectiveFunction,
TerminationCriterion,
QualityAssessor, MeshSet, PatchData, and
InstructionQueue. In each case, we give de-
tails of the design and discuss the functionality
currently implemented in Mesquite. Often, we will re-

QualityImprover,

fer to software patterns widely used in object-oriented
design — the details of those design patterns are
described in [21].

3.1 Quality Metrics

In Mesquite, the QualityMetric class provides a mea-
sure of the quality of individual mesh entities. Quality
metrics can evaluate either element quality (for exam-
ple, the mean ratio shape quality metric) or vertex
quality (for example, the sum of the adjacent edge
lengths squared can be used as a measure of vertex
smoothness). The primary functionality associated
with the QualityMetric class is the ‘evaluate’ func-
tion which returns a single quality value for a given
mesh entity.

To increase the flexibility of the QualityMetric class,
we also provide a number of mechanisms that allow
the user to modify the metric in a variety of ways.
For example, the condition number quality metric for
a quadrilateral or hexahedral element is computed by
evaluating the condition number at a number of sam-
ple points in the element. Mesquite allows the user to
select which set of sample points are used in this calcu-
lation (e.g., the element’s vertices) and how these val-
ues are combined to form a single metric value (e.g.,
linear averaging). In addition, Mesquite is currently
being extended to allow the user to reference certain
quality metrics to a non-isotropic element.

In addition to the quality metric function value,
the QualityMetric class also provides the gradient
and Hessian information needed for many optimiza-
tion algorithms. Numerical approximations of the
gradient and Hessian are automatically provided by
the QualityMetric base class. Concrete instantia-
tions can also optionally include analytical expressions
which are potentially more computationally efficient.
For example, in the case of the mean ratio quality
metric implementation, the analytic calculation is ap-
proximately twice as fast as the numerical computa-
tion although this improved efficiency often comes at
a higher implementation cost. The cost of implement-
ing the analytical gradients and Hessians can often be
alleviated, however, by the use of automatic differen-
tiation tools (for example, [22]).

Mesquite also allows the user to scale metric values
or combine multiple metrics together to form a com-
posite metric. However, only metrics which are evalu-
ated on the same type of mesh entity can be composed
together. That is, Mesquite does not allow element-
based metrics and vertex-based metrics to be added or
multiplied together because the result is not a mean-
ingful measure of either element or vertex quality.

Currently Available Quality Metrics. There are cur-
rently nine quality metrics available within Mesquite,

and these are listed in Table 3.1 (detailed definitions
of the metrics are given in [23]). These quality metrics
are grouped by the type of mesh properties that they
measure, in particular: shape, smoothness, volume,
and untangle. There are also two composite metrics
which allow users to multiply two metrics’ values to-
gether or to raise a single metric’s value to a given
power. The latter allows for negative powers and can
therefore be used to obtain the inverse of any Mesquite
quality metric. We note that the implementation of
the mean ratio metric has been extensively optimized,
and analytical gradients and Hessians are available for
that function. Other metrics currently use numerical
gradients and Hessians. Future Mesquite development
will include the implementation of metrics falling un-
der other group headings such as orthogonality, shear,
and alignment.

3.2 Objective Functions

While the QualityMetric class provides a way to eval-
uate the properties of individual mesh entities, the
ObjectiveFunction class provides a way of combin-
ing those values into a single number for the domain
of the optimization problem. This domain can either
be the entire mesh or a sub-mesh containing a subset
of the free vertices. For example, one available objec-
tive function template f is the £3 function which is the
standard ¢> vector norm squared. Given an element-
based quality metric ¢ and a mesh sub-domain F, the
mesh quality objective function F would be the com-
position of the template objective function and the
quality metric function

Fx)=foalx) = (ai(x))” . 1)

i€EE

The ObjectiveFunction derived class computes the
value of F and, for f and ¢ satisfying the appropri-
ate smoothness conditions, the mesh quality objective
function’s gradient and Hessian with respect to the
vertex positions. As with QualityMetric, Mesquite
allows the gradient of F to be calculated either ana-
lytically or numerically. Computing the gradient of F
numerically is computationally expensive but requires
only the quality metric values. If the gradient is calcu-
lated analytically, the first derivative of the template
objective function f' and the quality metric gradient
Vg are both required.! To obtain the gradient of F,
the chain rule is applied

VF(x) =Wier [Vai(x)(f 0 q(x))] , (2)

where f’ oq(x) is a scalar and ;¢ denotes the assem-
bly over all the elements or vertices, for element-based

I The quality metric gradients Vg can be provided either
numerically or analytically.

Metric Group Mesh Type | Feasibility Region | Entity Type
Area Smoothness Smoothness Any No Elements
Aspect Ratio Shape Tri/Tet No Elements
Composite Mult. Composite Any Yes/No Either
Composite Power Composite Any Yes/No Either
Cond. Num. Shape Any Yes Elements
Corner Jacobian Volume Any No Elements
Edge Length Smoothness Any No Vertices
Edge Length Range | Smoothness Any No Vertices
Mean Ratio Shape Any Yes Elements
Untangle Beta Untangle Any Yes Elements
Vert. Cond. Num. Shape Any Yes Vertices

Table 1: List of the current Mesquite quality metrics. The table also indicates the metric group, the mesh types for which
the metric is valid, whether the metric is only valid within a feasible region, and the type of entity for which the metric is
defined (elements or vertices). Note that there may be a feasible region for composite metrics depending on whether the

underlying metrics require such a constraint.

or vertex-based quality metrics respectively. Analyti-
cal gradients have been implemented for all of the con-
tinuously differentiable template objective functions in
Mesquite, and an analytical Hessian calculation has
been implemented for the £ template objective func-
tion.

Avwailable Template Objective Functions. Mesquite
currently has objective function templates for the
standard ¢p (where P is a positive integer) and f«
vector norms. A separate template is provided for ¢5,
a function which has several nice properties includ-
ing a sparse Hessian matrix. All of Mesquite’s quality
improvers are designed to minimize a given objective
function. For objective functions that need to be max-
imized (e.g. an ¢; objective function using an inverted
mean ratio metric), the function value is multiplied
by negative one to obtain the equivalent minimization
problem.

Mesquite has four composite objective functions that
allow the user to add and multiply objective functions
by each other or by scalar values. These can be used
to modify the optimization problem, to ease interpre-
tation of the objective function value, or to ensure
compatibility with termination criterion based on ob-
jective function values. Unlike quality metrics, two
objective functions can be combined even if the un-
derlying quality metrics are defined on different entity
types. That is, an objective function which operates
on a vertex-based quality metric can be added to an
objective function which operates on an element-based
quality metric. This allows the user to have the maxi-
mum flexibility in defining an objective function with
which to measure the quality of a mesh.

3.3 Quality Improvers

The mesh quality improvement algorithms are a cru-
cial component of the Mesquite framework. The two
main types of improvement schemes designed into
Mesquite are VertexMover and TopologyModifier
for vertex relocation or topology modification, re-
spectively. These methods take as input an
ObjectiveFunction and often make extensive use
of the gradient and Hessian information pro-
vided therein. = When writing a new algorithm,
the concrete QualityImprover always acts on an
ObjectiveFunction pointer to retrieve the function
value and gradient for a certain mesh and concrete
ObjectiveFunction / QualityMetric combination.

A new quality improver is defined by inheriting from
either the VertexMover or the TopologyModifier ab-
stract class. Both classes are intermediate abstract
classes inheriting from the QualityImprover class (see
Figure 1). One important aspect of both vertex
movers and topology modifiers is the ability to seam-
lessly perform their operations globally on the entire
mesh or on local sub-patches of the mesh. The be-
havior is chosen by the user at compile time using the
set_patch_type function from QualityImprover. The
primary functionality in these intermediate classes
is the implementation of the loop_over mesh virtual
function which shields the optimization algorithm de-
veloper from the need to distinguish between local
or global patches. The appropriate mesh informa-
tion is gathered into a “patch” by the MeshSet and
PatchData classes and given to the QualityImprover
in the loop_over mesh function. The VertexMover
base class also checks the outer termination criterion
to stop iterating over mesh subsets (see section 3.4)
and updates the application mesh after optimizing a
patch.

Available Quality Improvement Algorithms. There
are currently three major concrete optimization algo-
rithms implemented as VertexMovers in Mesquite: the
conjugate gradient algorithm, the feasible Newton al-
gorithm, and the active set algorithm. The optimiza-
tion of mesh topology has been accounted for in the
architecture, but no implementation is available yet.

Conjugate Gradient Algorithm. This algorithm is
appropriate for optimizing any combination of C* ob-
jective functions and quality metrics (see [5] for more
details). The conjugate gradient algorithm has a lin-
ear convergence property for most problems. By using
the Polak-Ribiéere scheme to select a search direction
which is a combination of the gradient at the current
iteration with the gradient from one or more previous
iterations, it avoids the zigzagging behavior exhibited
by the steepest descent algorithm when the equal cost
surfaces of the objective function are elongated (e.g.
in narrow valleys). The algorithm requires the objec-
tive function value and gradient and can be used on
mesh patches of any size.

Feasible Newton Algorithm. Newton’s method
minimizes a quadratic approximation of a non-linear
objective function. Newton’s method is known to con-
verge super-linearly near a non-singular local min-
imum. Mesh-optimization problems that are per-
formed within the neighborhood of the minimum are
a perfect application for Newton’s method. The algo-
rithm requires the objective function value, gradient,
and Hessian information. In Mesquite this algorithm
can be used with mesh patches of any size, making
it appropriate to optimize all vertex positions simul-
taneously for any C? objective function with a sparse
Hessian®. In practice, users will often observe an order
of magnitude improvement in computation time when
using the feasible Newton algorithm instead of the con-
jugate gradient algorithm, making feasible Newton a
worthwhile choice when applicable (see [5] for more
details).

Active Set Algorithm. The active set algorithm
has been developed for non-continuously differentiable
objective functions such as those computing the max-
imum value of a quality metric within a patch of ele-
ments. This method is based on a non-smooth steepest
descent algorithm which efficiently computes a search
direction and step size based on the gradients of the
values contained in the active set. Currently, this al-
gorithm works on a patch of triangular or tetrahedral
elements that contain a single free vertex. Repeated
sweeps over the free vertices in the mesh leads to over-

2Note that objective functions that lead to non-sparse
Hessians entail a prohibitive memory cost in Mesquite; £,
for p > 2 is such a function. The number of variables in
the objective function is the number of degrees of freedom
of the mesh, which must be squared to obtain the number
of entries in a dense Hessian.

all mesh improvement (see [24] for more details).

3.4 Termination Criterion

Mesquite’s TerminationCriterion class contains
functionality to customize the termination of the mesh
quality improvement process. As mentioned previ-
ously, many quality improvement algorithms can per-
form mesh optimization on either the global mesh or
on sub-meshes. In the latter case, the algorithm must
be capable of determining when to terminate two pro-
cesses: 1) an inner criterion is used to terminate the
optimization algorithm on a sub-mesh and 2) an outer
criterion is used to terminate the iteration over the
sub-meshes. Typically, quality improvers that support
both local and global optimizations always use two ter-
mination criterion. In the global case, the outer crite-
ria is set to terminate the optimization process after
one iteration.

Awailable Termination Criterion. A wide range of
cost, quality, and progress-centric termination crite-
rion types have been studied. These criteria have
two basic types - absolute or relative - depend-
ing on whether or not the criterion is scale depen-
dent. Fourteen of these have been implemented
in TerminationCriterion. Among the implemented
types are criteria which terminate optimization pro-
cedures due to exceeding a set number of iterations,
exceeding an allotted amount of time, or reaching a
mesh with a sufficiently small objective function gra-
dient. Any combination of the available criteria can be
set on a given TerminationCriterion object. Com-
pound criteria types consist of statements joined by
‘OR’, for which the optimization process will be ter-
minated when any of the criteria have been satisfied.
Currently we have found little use for compound cri-
teria joined by ‘AND’, but this also could be imple-
mented.

3.5 Quality Assessors

Mesquite’s QualityAssessor class encapsulates func-
tionality to evaluate quality metric values for a given
mesh, to accumulate statistical information about
those values, and to report that data to the user.
In particular, a QualityAssessor object takes a
QualityMetric class as input to evaluate a given mesh
and then reports information like the maximum, aver-
age, and standard deviation of those values.

3.6 Mesh Data Classes

There are two mesh data classes in Mesquite, MeshSet
and PatchData, which have been designed to meet two
different needs. The MeshSet class is a container that
holds pointers, or handles, to the meshes provided by

the application. It does not store any detailed infor-
mation about the mesh such as vertex coordinates or
element connectivities, but provides the mechanisms
necessary to obtain this information from the applica-
tion through a well-defined, flexible API (see Section
3.6.1). Detailed mesh information obtained through
the MeshSet API is stored only in the PatchData class
for the sub-patches given to the quality improver pro-
cedures. The PatchData class makes Mesquite scalable
in that prohibitive memory costs associated with mak-
ing a copy of a large application mesh can be avoided
by dividing the mesh into patches on which to perform
the optimization sequentially.

3.6.1 MeshSet Interactions with Appli-
cation Meshes

The MeshSet class is responsible for gathering infor-
mation from the application’s mesh and geometry and
placing this information into PatchData. Because
Mesquite is designed as a library to work on a broad
assortment of mesh and element types on complex ge-
ometrical domains, a general, data-structure neutral
API is needed. In general, Mesquite requires access
to basic information about the mesh such as the num-
ber of vertices and elements in the mesh, the vertex
locations, and the element connectivities. To move
the vertex locations, Mesquite needs to set the ver-
tex coordinate positions, and eventually, to perform
swapping operations Mesquite will need to add and
delete various mesh entities. In addition, for smooth-
ing meshes on complex surfaces, access to operations
on the underlying solid model such as normal infor-
mation and closest point information are required to
ensure vertices are constrained to the surface.

To allow an application to expose this information to
Mesquite, we have defined a set of interfaces (C+-+
abstract base classes) that are specifically designed
for mesh quality improvement needs. There are four
such interfaces: Mesh, VertexIterator, ElementItera-
tor, and MeshDomain.

e Mesh: The Mesh interface represents the set of
mesh entities that are to be operated on. It is
through this interface that one retrieves informa-
tion about the mesh and its entities. Examples of
functionality provided by this interface include:
retrieving the number of elements in the mesh,
determining which elements contain a particular
vertex, and modifying vertex coordinates.

o Vertexlterator: The VertexIterator provides ac-
cess to each vertex in a mesh. A VertexIterator
is obtained from a Mesh object, and is used to
iterate through the list of all vertices in the Mesh
from which it was obtained.

o FElementlterator: The Elementlterator provides
access to each element in a mesh. Other than
the type of entity it exposes, it is identical to the
VertexlIterator.

o MeshDomain The MeshDomain represents the
set of geometric domains to which the mesh may
be constrained. The MeshDomain interface en-
ables an application to restrict the locations to
which a vertex can be moved, such as constrain-
ing a vertex to a surface. Through the Mesh-
Domain interface, Mesquite’s algorithms can also
obtain a domain’s normal vector, which aides va-
lidity checking and decision making during the
quality improvement process.

These interfaces are data-structure neutral and use
only primitive data types; an application may imple-
ment the Mesquite interfaces without changing its ex-
isting mesh data structures. Instead of representing
mesh entities with complex data structures or with
typed pointers, entities are identified with opaque val-
ues called handles. Each mesh entity has a unique
handle value, but otherwise handles have no intrinsic
meaning to Mesquite.

Mesquite can also use the mesh interfaces currently
being developed through the TSTT center. This in-
terface definition effort focuses on providing access
to information pertaining to low level mesh objects
such as vertices, edges, faces, and regions through
both array-based and iterator-based mechanisms. It
is designed to support existing packages such as CU-
BIT, NWGrid, PAOMD, and Overture. Considera-
tions such as data neutrality, language interoperability
(achieved through use of the SIDL/Babel tools from
LLNL [25]), and achieving consensus within a large
group of participants is paramount (see [17], [18], [26],
and [19]). This interface definition effort is evolv-
ing, and the Mesquite team is actively participating to
ensure that our needs for mesh quality improvement
are adequately and efficiently addressed. A TSTT-
based implementation of the Mesquite interfaces will
be available soon. As such, any tool that exposes its
mesh through the TSTT interfaces can be used with
Mesquite without additional development.

The Mesquite-specific interfaces are fully compatible
with the current TSTT mesh and geometry interfaces,
and in fact, Mesquite’s approach to data structure neu-
trality is directly derived from the TSTT interfaces.
Although similar in spirit to the TSTT interface, the
Mesquite-specific interface is not as general, and there-
fore consist of fewer functions and does not require
additional tools such as Babel.

3.6.2 PatchData Interactions with
Qualitylmprovers

Quality improvers are written to relocate nodes or
modify topology within a PatchData, without any
need to know whether the PatchData corresponds to
the whole mesh or a subset of it. The PatchData in-
formation is generated by the MeshSet class with the
get_next_patch function — the equivalent of an itera-
tor over a series of patches covering the mesh. The user
can set Mesquite to use different types of PatchData,
ranging from a patch of elements containing one par-
ticular vertex to a patch of vertices connected to a
central vertex through edges or a unique patch that
covers the whole MeshSet.

PatchData and its associated classes (e.g.
PatchDataVerticesMemento) provide much func-
tionality to the optimization algorithms. Memento
patterns [21] can remember the state of a PatchData
geometry or topology at a given iteration and restore
the PatchData to that state later. Simple functions
can move the PatchData n vertices in a direction
d € R®" while constraining the boundary vertices to
their geometrical surface.

3.7 The Instruction Queue

The InstructionQueue class allows a sequence of op-
erations such as quality assessment and quality im-
provement to be performed on a MeshSet object. The
InstructionQueue provides a convenient framework
to shield the user from the algorithm syntax and to en-
sure a consistent use of the Mesquite capabilities. One
or more quality improvers can be associated with an
InstructionQueue, but one must be designated as the
master quality improver that determines the ultimate
improvement goal. All progress made by Mesquite
will be measured against the quality metrics set in
the master quality improver. To improve the effec-
tiveness and efficiency of the mesh quality improve-
ment process, several quality improvers can be used as
‘pre-conditioners’ for the master quality improver. For
example, a user may precede an optimization-based
master quality improver with a mesh untangler and/or
Laplacian smoothing.

Some predefined InstructionQueue objects, called
wrappers, are available for high-level or novice users.
Those typically consist of a quality assessor, followed
by a mesh pre-conditioner such as an untangler, fol-
lowed by a master quality improver, and finally an-
other quality assessor. Once an InstructionQueue has
been defined, a single call to run_instructions will
perform all the contained operations. We note that
once an InstructionQueue has been defined, it can
be used for several MeshSet objects.

3.8 Code Testing Framework

Another integral part of the Mesquite framework is the
code testing infrastructure. Several testing method-
ologies have been included within Mesquite. Unit test-
ing is extensively used to facilitate development and
ensure low-level robustness. Functional testing is used
to ensure that user case scenarios run smoothly.

We use a broad definition for unit tests in Mesquite.
Any test performed on a class without need for the
entire Mesquite framework is considered a unit test.
This encompasses simple assertions like checking the
result of the multiplication of a matrix A € R¥*3 by
a vector v € R® to more complex assertions such as
checking that a concrete QualityImprover correctly
repositions a free vertex in a simple patch for a given
objective function and quality metric. Mesquite uses
a readily available testing framework called CppUnit
[27] — essentially the well known jUnit testing frame-
work ported to C++.

Applications using Mesquite may also find the testing
framework useful when verifying their additions to the
code. In particular, applications that prefer to imple-
ment Mesquite’s mesh interface instead of using the
TSTT mesh interface can heck their implementation
with the corresponding unit test collection available in
Mesquite. In addition, analytic gradient and Hessian
implementations can be checked against the numeri-
cal version provided by the QualityMetric base class
using readily available unit tests.

In addition to unit tests, the Mesquite test suite also
includes a range of functional tests. While these tests
also use the CppUnit framework, they differ from
unit tests in that functional tests require the entire
Mesquite framework. The functional tests are com-
plete and often complex mesh optimization problems.
These tests are intended to ensure that the individ-
ual units of the Mesquite code work together correctly.
Performing these tests not only helps validate the code
but also allows developers to evaluate the effects of
code modifications in terms of Mesquite’s accuracy
and efficiency on ‘real world’ problems.

4. USER PROGRAMMING INTERFACES

We provide a number of mechanisms that lower the
“expertise” barrier for using Mesquite. In the sim-
plest usage scenario, a TSTT mesh pointer is passed
to Mesquite and improved using a default set of met-
rics and strategies determined by the mesh type (Sec-
tion 4.2). If desired, the user can guide the mesh im-
provement process by setting a few parameter values
indicating preferred metrics and strategies from a list
of provided functionalities. Once these parameters are
defined, Mesquite optimizes the mesh without further
input from the user. Additional interfaces are pro-

vided for those who desire advanced functionalities,
user-defined metrics or objective functions, or more
control over the optimization process (Section 4.1).

In sections 4.1 and 4.2, we assume that a MeshSet has
already been instantiated and a TSTT mesh handle
given to it to populate the database as shown below:

// Create a TSTT mesh
TSTT: :Mesh wing = TSTT::Mesh::_create();
wing.load(‘wing_file.xx’’);

// Create a Mesquite MeshSet
Mesquite: :MeshSet mesh_set;
mesh_set.add_mesh(wing) ;

4.1 Low-level API

Extensive control over the mesh quality improvement
process is provided through the direct use of the
Mesquite classes. In particular, the user can specify
the quality metric, objective function template, and
optimization algorithm by instantiating particular in-
stances of each. For each, various options such as nu-
merical or analytical gradient and Hessian evaluations
or the patch size can be selected. Furthermore, the
user can fine tune the optimization algorithm perfor-
mance by creating and setting the parameters of the
termination criterion for both inner and outer itera-
tions.

Once these core objects have been created and cus-
tomized, the user creates an instruction queue and
adds one or more quality improvers and quality as-
sessors. The mesh optimization process is initiated
with the run_instructions method on the instruc-
tion queue class. For example, in the code given be-
low, a mean ratio quality metric is created and ana-
lytic gradient and hessian computations are selected.
The mean ratio quality metric is provided as input to
the objective function template constructor, which will
also use analytical gradient computations. The feasi-
ble Newton vertex mover is created and the patch size
is set to be the global mesh. A termination criterion
that checks the value of the ¢2 norm of the gradient
of the objective function is added to the quality im-
prover. Finally an instruction queue that checks the
quality of the mesh both before and after the feasi-
ble Newton algorithm runs is created and run on the
mesh_set.

// creates a mean ratio quality metric ...
ShapeQM* m_ratio = MeanRatioQM::create_new();
m_ratio->set_gradient_type (ANALYTIC_GRADIENT) ;
m_ratio->set_hessian_type (ANALYTIC_HESSIAN) ;

// sets the objective function template
LPtoPTemplate obj_func(m_ratio, 2);

obj_func->set_gradient_type (ANALYTIC_GRADIENT) ;

// creates the optimization procedures
FeasibleNewton f_newton(&obj_func);

//performs optimization globally
f_newton->set_patch_type (GLOBAL_PATCH) ;

// creates a termination criterion and

// add it to the optimization procedure

// outer loop: default behavior: 1 iteration

// inner loop: stop if gradient norm < eps
TerminationCriterion tc_inner;
tc_inner.add_criterion_type (GRAD_L2_NORM, e-4);
f_newton->set_inner_terminate_crit (&tc_inner);

// creates a quality assessor
QualityAssessor m_ratio_qa(&m_ratio,AVERAGE);

// creates an instruction queue
InstructionQueue queuel;
queuel.add_quality_assessor (&m_ratio_qga);
queuel.set_master_quality_improver (&f _newton);
queuel.add_quality_assessor (&m_ratio_qga);

// launches optimization on the mesh_set
queuel.run_instructions(mesh_set);

4.2 High-level APl — Wrappers

To improve meshes with a minimum number of
Mesquite function calls, we have provided a set of
wrapper classes that encapsulate the most commonly
used combination of quality metrics, improvement al-
gorithms and stopping criterion. The wrappers inherit
from the InstructionQueue class and set the algo-
rithms used in their constructors. Using these wrap-
pers, only two lines of code are required to improve a
MeshSet.

For example, the ShapelmprovementWrapper shown
below performs operations similar to the low-level code
given in section 4.1, but without providing access to
low-level features such as setting a specific termina-
tion criterion. This wrapper first uses the mean ratio
quality metric to assess and report the quality of the
mesh elements. It then untangles the mesh if neces-
sary and improves the mesh with the feasible Newton
algorithm applied to the composition of the mean ratio
quality metric with the ¢2 objective function. Finally,
the mesh quality is assessed and reported again.

// Creates wrapper and improves mesh
Mesquite: :ShapelmprovementWrapper shape_improver;
shape_improver.run_instructions(mesh_set);

(a) (b)

Figure 2: (a) A ‘zoomed-in’ picture of a hybrid triangular and quadrilateral mesh. (b) A tetrahedral mesh. (c) A hybrid
tetrahedral and hexahedral mesh. (d) A tetrahedral mesh of a tire incinerator. Meshes (a), (b), and (c) were generated

with CUBIT (see [17]).

5. EXAMPLES

Although currently in a pre-release state, Mesquite has
been used to improve a variety of mesh types. As men-
tioned previously, Mesquite is designed to efficiently
handle a mesh of any size and element type. While
not all element types are currently implemented, the
code can handle triangular, quadrilateral, tetrahedral,
and hexahedral elements, as well as hybrid combina-
tions of those types. Examples of optimizations on
each of these mesh types are given in Table 2. The
selected meshes also represent a wide range of initial
mesh qualities with two of the initial meshes contain-
ing invalid elements. Each mesh was optimized using
the same objective functions and algorithms. They
were first untangled (a process which has no effect on
the initially valid meshes), and they were then op-
timized with respect to the mean ratio metric using
the conjugate gradient algorithm and an ¢» objective
function template. The table shows the average mean
ratio metric value of both the initial and the optimized
meshes.

Mesh Vertices | Init. pavg | Final pavg
Tri. 10300 1.036781 1.033657
Quad. 267 00 2.485082
Hybrid 2D | 263 1.166410 1.103776
Tet. 21156 1.168008 1.119870
Hex. 12753 3.497623 3.096999
Hybrid 3D | 9200 00 1.098384

Table 2: Meshes with different element types opti-
mized using Mesquite. The average mean ratio, pavg,
is given for the initial and the final mesh. The hybrid 2-
dimensional mesh, the tetrahedral mesh, and the hybrid
3-dimensional mesh are shown in Figures 2 (a), (b), and
(c), respectively. The other meshes are not shown.

Figures 2 (b) and (d) show two tetrahedral meshes.
The first mesh, given in Figure 2 (b) and Table 2, is a
wedge-shaped block containing 112,393 tetrahedral el-

ements and 21,156 vertices. The second mesh, given in
Figure 2 (b), contains 11,098 elements and 2,570 ver-
tices and is the mesh of a tire incinerator. These two
meshes were optimized using three different quality
improvers and objective function templates. Each op-
timization was based on the mean ratio quality metric.
The quality of the resulting meshes is given in Table
3.

Mesh Algorithm Func. | max. p | avg. p
Tire Initial Mesh - 22.6413 | 1.30354
Active Set loo 6.11002 | 1.37703
Conj. Grad. 12 6.11002 | 1.25832
Feas. Newton | /3 6.11002 | 1.25913
Wedge | Initial Mesh - 4.19031 | 1.16800
Active Set l 1.54073 | 1.18224
Conj. Grad. 41 2.26029 | 1.11937
Feas. Newton | (5 2.04328 | 1.11950

Table 3: Metric values for tetrahedral meshes of a tire
incinerator (Tire) and a wedge-shaped block (Wedge) op-
timized using three different quality improvement algo-
rithms and objective functions. Each objective function
uses the element-based mean ratio metric, denoted as .
Tire is shown in Figure 2 (d), and Wedge is shown in
Figure 2 (b).

Mesquite has also been used to optimize a geodesic
mesh provide by the climate group at Colorado State
University. This mesh is a dense, triangular element
mesh called a twisted icosahedron grid. It is formed by
refining the triangles of an icosahedron and projecting
the new vertices to the unit sphere. This meshing
scheme produces a relatively regular mesh with slight
variations in the elements’ shapes and sizes. Mesquite
was therefore used to decrease the magnitude of those
variations to produce a smoother mesh in terms of
both element areas and edge lengths.

6. SUMMARY AND FUTURE WORK

The Mesquite design evolved to address the high level
goals of flexibility, comprehensiveness, efficiency, and
interoperability through a careful balancing of upper-
level C++ classes and a low-level optimizable kernel.
Years of prior experience with a variety of mesh qual-
ity improvement problems guided the design so that,
although the design is still evolving (as is the mathe-
matical framework which supports it), we expect the
addition of new capabilities to impact the design rel-
atively little. Mesquite has progressed rapidly during
the past year to include a considerable number of mesh
quality metrics, objective function templates, solvers,
and termination criteria. Several important develop-
ment objectives remain such as the inclusion of con-
crete ‘topology modifiers’ and new quality metrics to
guide the evolution of deforming meshes, anisotropic
smoothing, and R-type adaptivity based on solution
features or error indicators. Preliminary applications
of Mesquite include the smoothing of geodesic meshes
and the improvement of mesh quality for increasing
Tau3P abort time. Near-term code development is
driven primarily by SciDAC applications, however, we
anticipate many other eventual uses.

Acknowledgments The authors wish to thank Todd
Munson at Argonne National Laboratory for his con-
tributions on the feasible Newton solver and Todd
Ringler at Colorado State University for the geodesic
meshes.

References

[1] Hansbo P. “Generalized Laplacian Smoothing of
Unstructured Grids.” Comm. Num. Meth. Engr.,
vol. 11, 455464, 1995

[2] Winslow A. “Numerical Solution of the quasi-
linear Poisson equations in a nonuniform triangle
mesh.” J. Comp. Phys., vol. 2, 149-172, 1967

[3] Knupp P. “Achieving Finite Element Mesh Qual-
ity via Optimization of the Jacobian Matrix Norm
and Associated Quantities. Part I - A Framework
for Surface Mesh Optimization.” Int’l. J. Numer.
Meth. Engr., vol. 48, no. 3, 401-420, 2000

[4] Freitag L., Knupp P. “Tetrahedral mesh improve-
ment via optimization of the element condition
number.” Intl. J. Numer. Meth. Engr., vol. 53,
1377-1391, 2002

[6] Freitag L., Knupp P., Munson T., Shontz
S. “A Comparison of optimization software
for mesh shape-quality improvement problems.”
Proceedings of the 11th International Meshing
Roundtable, pp. 29-40. Sandia National Labora-
tories, Ithaca, NY, 2002

[6]

[12]

[14]

[16]

[17]

Canann S., Stephenson M., Blacker T. “Op-
tismoothing: An optimization-driven approach to
mesh smoothing.” Finite Elements in Analysis
and Design, vol. 13, 185-190, 1993

Canann S., Tristano J., Staten M. “An ap-
proach to combined Laplacian and optimization-
based smoothing for triangular, quadrilateral,
and quad-dominant meshes.” Proceedings of the
7th International Meshing Roundtable, pp. 479—
494, 1998

Parthasarathy V.N., Kodiyalam S. “A con-
strained optimization approach to finite element
mesh smoothing.” Finite Elements in Analysis
and Design, vol. 9, 309-320, 1991

Amezua E., Hormaza M.V., Hernandez A., Ajuria
M.B.G. “A method of the improvement of 3D
solid finite-element meshes.” Advances in Engi-
neering Software, vol. 22, 45-53, 1995

Joe B. “Three-dimensional triangulations from
local transformations.” SIAM Journal on Scien-
tific Computing, vol. 10, 718-741, 1989

Joe B. “Construction of three-dimensional im-
proved quality triangulations using local trans-
formations.” SIAM Journal on Scientific Com-
puting, vol. 16, 1292-1307, 1995

Edelsbrunner H., Shah N. “Incremental topo-
logical flipping works for regular triangulations.”
Proceedings of the 8th ACM Symposium on Com-
putational Geometry, pp. 43-52. 1992

Freitag L. “Users Manual for Opt-MS: Local
Methods for Simplicial Mesh Smoothing and Un-
tangling.” Tech. Rep. ANL/MCS-TM-239, Ar-
gonne National Laboratory, Chicago, IL, 1999

Brown D., Freitag L., Glimm J. “Creating In-
teroperable Meshing and Discretization Software:
The Terascale Simulation Tools and Technologies
Center.” Proceedings of the Eighth International
Conference on Grid Generation Methods for Nu-
merical Field Simulations. Honolulu, HI, 2002

Randall D., Ringler T., Heikes R., Jones P.,
Baumgardner J. “Climate Modeling with Spher-
ical Geodesic Grids.” Computing in Science and
Engineering, vol. 4, no. 5, 32-41, 2002

Folwell N., Knupp P., Brewer M. “Increasing
Tau3P Abort-Time via Mesh Quality Improve-
ment.” Proceedings of the 12th International
Meshing Roundtable, 2003

“CUBIT Mesh Generation Toolsuite.” URL:
http://cubit.sandia.gov, 2003. Sandia National
Laboratories

18]

[19]

[20]

[21]

[22]

[25]

[26]

[27]

Brown D.L., Henshaw W.D., Quinlan D.J. “Over-
ture: An object oriented framework for solving
partial differential equations.” Scientific Com-
puting in Object-Oriented Parallel Environments,
vol. 1343. Springer Lecture Notes in Computer
Science, 1997

“The P3D Code Development Project.” URL:
http://www.emsl.pnl.gov:2080/nwgrid/, 2003.
Pacific Northwest National Laboratory

Freitag L., Knupp P., Leurent T., Melander D.
“MESQUITE Design: Issues in the Development
of a Mesh Quality Improvement Toolkit.” Pro-
ceedings of the Eighth International Conference
on Grid Generation Methods for Numerical Field
Simulations, pp. 1569-168. Honolulu, HI, 2002

Gamma E., Helm R., Johnson R., Vlissides J.
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995

Bischof C.H., Roh L., Mauer-Oats A.J. “ADIC:
an extensible automatic differentiation tool for
ANSI-C.” Software Practice and Experience,
vol. 27, no. 12, 1427-1456, 1997

Knupp P. “Algebraic Mesh Quality Metrics.”
SIAM J. Sci. Comput., vol. 23, no. 1, 193-218,
2001

Freitag L., Plassmann P. “Local Optimization-
based Simplicial Mesh Untangling and Improve-
ment.” Intl. J. Num. Methods in Engr., vol. 49,
109-125, 2000

Kohn S., Kumfert G., Painter J., Ribbens C. “Di-
vorcing Language Dependencies from a Scientific
Software Library.” Tech. Rep. UCRL-JC-140349,
Lawrence Livermore National Laboratory, Liver-
more, CA, 2001

Remacle J.F., Klass O., Flaherty J.E., Shep-
hard M.S. “Parallel Algorithm oriented mesh
database.” Proceedings of the 10th International
Meshing Roundtable, pp. 197-206. Sandia Na-
tional Laboratories, Newport Beach, CA, 2001

Sommerlade E., Feathers M., Lacoste J., Hoff-
mann J., Lepilleur B., Bakker B.; Robbins S.
“CppUnit — The C++ Unit Testing Library.”
http://cppunit.sourceforge.net

