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ABSTRACT

Conformal refinement using a shrink and connect strategy known as pillowing or buffer insertion contracts contiguous elements
of an all-quadrilateral or an all-hexahedral mesh and reconnects them to locally increase vertex density. Using layers as shrink
sets, the present method anisotropically refines an initial mesh to match a prescribed size map expressed as a metric field. An
anisotropic smoother further enhances vertex clustering to capture the features of the metric. Both two and three-dimensional test
cases confirm the feasibility of such an approach. The present refinement method is not yet complete, however, because it lacks
local vertex removal and reconnection capabilities. It is, nevertheless, a step towards an automated tool for conformal adaptation of
all-quadrilateral and all-hexahedral meshes.
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1. INTRODUCTION

MESHadaptation is used to accurately compute the nu-
merical solution to discretized partial differential equa-

tions. Adaptation methods for unstructured meshes of sim-
plicial elements, triangles in two dimensions and tetrahedra
in three dimensions, have received extensive attention over
the years. These methods are based on mesh density con-
trol by vertex insertion and removal, i.e., mesh refinement
and coarsening, and mesh quality control by vertex reloca-
tion and reconnection. See [1], [2] or [3] and the references
cited therein for example. The Object Oriented Remesh-
ing Toolkit (OORT ) developed at CERCA implements such
methods [4].

However, for meshes of non-simplicial elements, such as
quadrilaterals in two dimensions and hexahedra in three di-
mensions, adaptation methods are usually limited to vertex
relocation to preserve their implicit grid structure. With
such a limitation, the full power of mesh optimization can-
not be unlocked [5]. The advent of tools such as paving [6],
plastering [7], whisker weaving [8], medial axis and sur-
face [9], embedded Voronoi graph [10] or grid-based meth-
ods [11–14] for unstructured quadrilateral and hexahedral
mesh generation brought the need for a new crop of adapta-
tion methods. Recombination of quadrilaterals from adapted
triangles [15,16] is particularly attractive but an extension in
three dimensions has not yet been developed. On the other

hand, iterative local refinement methods using quadtrees in
two dimensions can be extended in three dimensions using
octrees but result in non-conformal elements with hanging
nodes that cannot be treated by some solvers. See [12] for ex-
ample. Although all-quadrilateral transition templates to re-
move those hanging nodes are readily available for quadtrees
[17], it is only recently that all-hexahedral transition patterns
have been developed for octrees [13,14]. The directional re-
finement method of Schneiders uses an octree to insert con-
formal buffer layers in alternatingx, y, andz directions [13].
The resulting mesh is all-hexahedral but the initial octree
must be Cartesian. The clever octree conforming method de-
scribed by Maréchal reduces the set of transition templates to
only two but results in hybrid meshes mixing hexahedral and
prismatic elements [14]. This method does not require the
initial octree to be Cartesian but, to obtain an all-hexahedral
mesh, a final uniform refinement step dicing each hexahe-
dron in eight and each prism in six is needed.

The present paper introduces an alternative method for con-
formal anisotropic all-quadrilateral and all-hexahedral mesh
refinement. This method builds on the directional refinement
idea of Schneiders. However, instead of using a quadtree or
an octree to drive the process, the present method searches
for layers of elements to refine according to a prescribed Rie-
mannian metric, i.e., a size specification map. Contracting
these layers and reconnecting them to the mesh results in
local anisotropic refinements. This shrink and connect strat-



egy known as pillowing is iterated until the mesh satisfies the
prescribed size map. The resulting algorithm is similar to the
directional buffer insertion strategy of Schneiders but, since
no Cartesian quadtree or octree is needed, it can be used on
initially unstructured meshes. It can also be combined with
vertex relocation methods between each refinement iteration
resulting in a faster convergence and a better conformity to
the desired mesh density, stretching and orientation.

This refinement algorithm has been implemented inOORT
and takes full advantage of the adaptation utilities already
available in this package. Before describing the details of
the algorithm, the next two sections present the conformal
refinement primitive, based on a shrink and connect strat-
egy, and the anisotropic control metric. Experiments with
two and three-dimensional test cases then show the capabil-
ities of the method as well as its current shortcomings to be
addressed in future work.

2. CONFORMAL REFINEMENT PRIMITIVE

The present refinement primitive is based on a shrink and
connect strategy and has been extensively used, although un-
der several names, because it is one of the few local opera-
tions that preserves the conformity and the all-quadrilateral
or all-hexahedral characteristic of a mesh. Mitchell and
Tautges [18] dubbed it pillowing and used it to remove de-
generated configurations resulting from plastering [7] and
whisker weaving [8]. The cleave and fill tool of Borden et
al. [19] uses pillowing to locally refine all-hexahedral swept
meshes. The directional buffer insertion of Schneiders [13]
is also a shrink and connect method and, in fact, inspired
the present algorithm. Boundary mesh extrusions used to
remove degenerated configurations resulting from the body
fitting step of grid-based or octree-based hexahedral mesh
generators [11–14] can also be interpreted as shrink and con-
nect methods. Figure 1 illustrates this refinement primitive
in two dimensions. First, a set of contiguous elements is se-
lected (Fig. 1(a)), those elements are then shrunk (Fig. 1(b))
and, finally, the void thus created is filled by a buffer con-
necting the shrunk elements to the remainder of the mesh
(Fig. 1(c)). Note that all the vertices located on the hull of
the selected elements are duplicated. The shrink an connect
strategy is, therefore, a vertex insertion or refinement prim-
itive. Note also that the buffer is in fact an extrusion of this
hull and is exclusively composed of quadrilateral elements.
This primitive is thus conforming and generates only quadri-
laterals in two dimensions. Most interestingly, it keeps those
properties when extended in three dimensions. The hull of
the selected elements is then a quadrilateral mesh that, when
extruded, generates only hexahedral elements.

As noted by Mitchell and Tautges [18] and by Schnei-
ders [13], shrink and connect strategies, such as pillowing
or buffer insertion, can be viewed as spatial twist continuum
(STC) operations. STC is an interpretation of the dual of a
quadrilateral or hexahedral mesh [20]. This dual has a ver-
tex for every mesh element and an edge for every mesh edge
in two dimensions or mesh face in three dimensions. The
present refinement primitive corresponds to the insertion of
dual cycles around the shrunk elements. These cycles, loops
in two dimensions and shells in three dimensions, are the
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Figure 1: Conformal refinement primitive (a–c) and its
dual interpretation (d–f).

dual of the buffer layers connecting the shrunk elements to
the remainder of the mesh. Figures 1(d)–1(f) are the dual
interpretations of Figs. 1(a)–1(c) respectively.

3. ANISOTROPIC CONTROL METRIC

To determine where to apply the local refinement primitive,
an anisotropic control map must not only prescribe the size
but also the stretching and orientation of the mesh elements
to be built. These specifications are given here as the met-
ric of the transformation that maps a perfect mesh element, a
quadrilateral in two dimensions or an hexahedron in three di-
mensions, into a unit square or a unit cube. This Riemannian
metric is defined at every point of the domain by a symmet-
ric positive-definite matrixM, 2� 2 in two dimensions and
3 � 3 in three dimensions. The lengthlAB of an edge be-
tween pointA and pointB in this metric is given by

lAB =

Z 1

0

q
�!
AB

T
M(

�!
P )
�!
AB dt (1)

where
�!
P =

�!
A + t (

�!
B �

�!
A). Such a size specification

map can be given analytically or constructed froma poste-
riori error analysis, from the geometrical properties of the
domain or from any other user defined inputs. An isotropic
size specification map reduces to an identity matrix multi-
plied byh�2 whereh is the desired element size. Whatever
it’s origin, the control metric contains information on the pre-



scribed size, stretching and orientation of the mesh to be built
as an anisotropic metric field. See [21] as well as [1] and [2]
for a more complete discussion on metrics.

To identify mesh elements to be refined, we thus compute the
length of their edges in the control metric using Relation (1).
If an edge is shorter than unity in our control space then
the mesh is already locally too dense and no refinement is
needed. If an edge is longer than unity then the mesh is
locally too coarse and the connected elements are processed
by the anisotropic refinement algorithm.

4. ANISOTROPIC REFINEMENT ALGORITHM

The control metric locates regions to refine and the refine-
ment primitive gives a method to insert additional vertices.
However, to achieve the desired anisotropic effect, a strategy
is needed to group elements in sets that, once shrunk, will di-
rectionally enrich the mesh. Following Schneiders [13], the
present method uses layers of contiguous elements as shrink
sets. Figure 2 illustrates the successive steps of the algorithm
in two dimensions:

1. Compute the metric length of every edge of the mesh.
If it is significantly higher than the unit target, the
edge is tagged for refinement (Fig. 2(a)). The tagging
threshold is typically chosen to be around2:0. This
is higher than the1:4 value used inOORT for sim-
plex adaptation because the present refinement oper-
ator has essentially a1-to-3 refinement ratio while
the edge splitting operator used with simplices has
a 1-to-2 ratio. Note that tagged edges are plotted
thicker in Fig. 2.

2. Form a layer by agglomerating contiguous elements
connected by opposite edges tagged for refinement
(Fig. 2(b)). In three dimensions, the edges of a hexa-
hedron can be grouped in three sets, along the three
local axes of the element. Edges in each of these
sets are considered opposite to each other. The three-
dimensional layer is propagated perpendicularly to
those edges (Fig. 3). Note that, as shown in Fig. 2(b),
the layers are terminated by elements having only one
of their edges tagged in the propagation direction.

3. Shrink and connect this layer (Fig. 2(c)). If the layer
extends up to the boundary of the domain, the refine-
ment primitive considers the boundary edges to be in-
cluded in the shrink set. The refinement tags are re-
moved for all the edges used to form the layer. On the
other hand, the edges located on the hull of the shrink
set are duplicated during the refinement process and
each newly created edge inherits the tag of its parent,
if any, except on corners. Corner edges are defined in
two dimensions as contiguous hull edges connected
to the same layer element. A similar definition can
be given in three dimensions. Figure 4 presents addi-
tional examples of shrink sets and their treatment by
the refinement algorithm for less obvious cases such
as loops and self intersecting layers.

4. Repeat steps 2 and 3 until there is no more edges
tagged for refinement (Figs. 2(d)–2(f)). Note that

(a) Step 1 – Tag edges (b) Step 2 – Form a layer

(c) Step 3 – Shrink and connect (d) Repeat steps 2 and 3

(e) Repeat steps 2 and 3 (f) Repeat steps 2 and 3

Figure 2: Refinement algorithm steps.

Figure 3: Layer agglomeration in three dimensions.

the corner configurations located at the extremities of
the layers degrade mesh quality. This phenomenon
is even more acute when several layers terminate at
the same location (Fig. 2(f)). See below for strategies
used to minimize those configurations.

5. Repeat steps 1 through 4 until all the edges of the
mesh have a metric length below the chosen thresh-
old.

The resulting algorithm was implemented inOORT and
uses the many adaptation utilities provided by this package
such as all the metric related operations. Note that a major
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Figure 4: Examples of shrink layers: (a) whole row; (b)
loop; (c) self-intersecting layer.

concern during the development of the present algorithm has
been maintaining an acceptable mesh quality. Internal ver-
tices in a perfect quadrilateral mesh have a valence of four,
i.e., each vertex is connected to four other vertices. In a per-
fect hexahedral mesh, those vertices have a valence of six.
Starting from such a perfect mesh, the present refinement
primitive will modify this valence and tend to degrade mesh
quality, particularly at the corners of the shrunk layers. That
is why, to minimize this side effect, edge tags are propagated
in step 1 using a strategy similar to quadtree and octree bal-
ancing. If a quadrilateral element has more than two edges
tagged then all its edges are tagged. Similar rules are applied
for hexahedra. Furthermore, layers are augmented in the di-
rection perpendicular to the refinement by their immediate
neighbors in order to smooth out abrupt size variations.

Additional quality improvement methods are still being ex-
plored. Mesh adaptation by vertex relocation, i.e., anisotropic
smoothing, can be performed after step 4 of the algorithm to
improve mesh quality and to align element rows with the
features of the metric to be captured. The combination of
anisotropic refinement and smoothing should have a syner-
gic effect on the convergence of the adaptation process. The
thickness of the layers can also be increased. The layers
shrunk by Schneiders have a thickness of two elements [13]
which is twice what is used in the present algorithm. Alter-
natively, the edges of the mesh can be adapted ton times the

actually required length and then each of itsd-dimensional
elements can be diced innd pieces. The rational behind this
strategy is again to decrease the percentage of corner con-
figurations resulting from refinement but also to smooth out
element size variations. Results using each of these methods
are presented in the next section.

5. RESULTS AND DISCUSSION

To illustrate the capabilities of the present method, only aca-
demic test cases with analytical metrics are presented here-
after. The first goal is, indeed, to assess how close to the
prescribed metric the present algorithm can adapt a quadri-
lateral or hexahedral mesh. A second goal is to determine
which additional mesh quality improvement method is ef-
fective. We hope to tackle more realistic test cases in the
next development stage of this method.

5.1. Two-Dimensional Test Cases

The first two cases are typically used to test triangular mesh
adaptation [1]. The first one has an isotropic metric defined
on a[0; 7] � [0; 9] rectangular domain by

M =

�
h�21 0
0 h�22

�
(2)

whereh1 = h2 = h(x; y) is given by

h(x; y) =

8><
>:

1� 19y=40 if y 2 [0; 2];

20(2y�9)=5 if y 2 ]2; 4:5];

5(9�2y)=5 if y 2 ]4:5; 7];
1=5 + (y � 7)4=20 if y 2 ]7; 9]:

(3)

A uniform initial mesh with7� 9 square elements was used
for convenience. Figures 5(a) to 5(d) present the evolution
of the refinement process. Note that, although we start from
a uniform Cartesian mesh, it becomes unstructured just after
a few iterations and the algorithm is, therefore, effectively
applied on irregular meshes. Figure 5(e) presents the final
mesh after adaptation by the vertex relocation algorithm im-
plemented inOORT . This algorithm basically smoothes
the mesh in the Riemannian metric space [22]. For compar-
ison, Figure 5(f) presents a triangular mesh adapted to the
same metric byOORT [23] and gives a visual clue of the
features of the metric. As can be seen in those figures, the
refined mesh is clustered aroundy = 2 and y = 7 both
horizontally and vertically. In contrast, adaptation by ver-
tex relocation only of a structured quadrilateral grid could
achieve some clustering along they axis but not along thex
axis: it would always have either too many or too few ver-
tices somewhere in the grid. Table 1 compares the minimum,
the average�, the maximum and the standard deviation� of
the metric edge lengthl and the metric element shape mea-
sure� associated with the mesh before and after refinement.
The metric lengthl is computed using Relation (1) for each
edge and the corresponding entriesNb in Table 1 indicate
the total number of edges in the mesh. The measure� is
computed as the worst metric shape of the corner simplices
of each element. The corresponding entriesNb in Table 1



(a) Initial mesh (b) First refinement iteration (c) Second refinement iteration

(d) Final refinement iteration (e) Smoothed mesh (f) Reference triangular mesh [23]

Figure 5: Mesh obtained using the isotropic metric given by Eqs. (2) and (3).

thus indicate the total number of elements in the mesh. The
metric shape of ad-dimensional corner simplexK is given
by

� = CV
2=d
K

� neX
i=1

l2i (4)

whereC is a normalization factor such as� ranges from0
for a degenerated simplex to1 for a perfectly right-angle unit
corner,ne is the number of edges ofK, li is the metric length
of edgei and the area or volume of a simplexK in a met-
ric M is given byVK =

R
K

p
det(M)dV . Note that�

was chosen because it measures the shape in a Riemannian
metric and thus better reflects how well the final mesh con-
forms to the prescribed metric size map than the usual shape
measures computed in Euclidean space. See [24] for fur-
ther information on element shape measures evaluated with
a metric.

In a mesh perfectly adapted to a metric, all the edges have
a unit metric length and all the elements have a unit metric
shape. Although the refined mesh in Fig. 5(e) does not per-
fectly match the prescribed metric, Table 1 shows that the
average edge length is very close to unity instead of the ini-

Table 1: Quality indicators evaluated in the isotropic met-
ric given by Eqs. (2) and (3) for the meshes of Fig. 5.

Indicator Nb min � max �
lini (Fig. 5(a)) 142 1.000 4.205 20.0 1.042
�ini 63 0.179 0.642 1.04 0.398
lfin (Fig. 5(e)) 4427 0.321 0.919 1.88 0.303
�fin 2182 0.271 0.782 0.98 0.247
lref (Fig. 5(f)) 6326 0.789 0.998 1.31 0.076
�ref 4189 0.880 0.982 1.00 0.018



(a) Refined mesh (b) Smoothed mesh (c) Reference triangular mesh [23]

Figure 6: Mesh obtained using the anisotropic metric given by Eqs. (2) and (5).

tial value of4:205 and the standard deviation was divided
by three. A simplicial adaptor gives an even better aver-
age edge length and element shape and, most importantly,
a much smaller standard deviation, almost one order of mag-
nitude smaller as can be seen in Table 1. This was to be ex-
pected since the present algorithm is mainly for refinement
and cannot coarsen nor reconnect the mesh contrary to sim-
plicial algorithms. It has, therefore, less flexibility in con-
trolling vertex density and cannot achieve the same level of
performance except for special cases.

The second two-dimensional test is such a special case. Its
anisotropic metric is defined by Eq. (2) whereh1 andh2 are
given by

h1=

8>><
>>:

1� 19x=40 if x 2 [0; 2];

20(2x�7)=3 if x 2 ]2; 3:5];

5(7�2x)=3 if x 2 ]3:5; 5];

1=5 + (x� 5)4=20 if x 2 ]5; 7];

h2=

8>><
>>:

1� 19y=40 if y 2 [0; 2];

20(2y�9)=5 if y 2 ]2; 4:5];

5(9�2y)=5 if y 2 ]4:5; 7];

1=5 + (y � 7)4=20 if y 2 ]7; 9]:

(5)

Table 2: Quality indicators evaluated in the anisotropic
metric given by Eqs. (2) and (5) for the meshes of Fig. 6.

Indicator Nb min � max �
lini 142 1.275 3.875 11.7 0.703
�ini 63 0.229 0.730 1.00 0.280
lfin (Fig. 6(b)) 1372 1.181 1.197 1.21 0.012
�fin 660 0.953 0.993 1.00 0.007
lref (Fig. 6(c)) 3238 0.768 1.022 1.35 0.071
�ref 2119 0.806 0.985 1.00 0.020

The same domain and initial mesh as in the isotropic case
are used. Figures 6(a) and 6(b) present the refined mesh
before and after smoothing respectively. For comparison,
Figure 6(c) presents a triangular mesh adapted to the same
metric byOORT [23]. The corresponding quality indica-
tors are given in Table 2. These indicators are much closer
to unity than in the first case with a very small standard de-
viation indicating a high degree of adaptation bettering what
can be achieved with simplices. This is, however, due to the
alignment of the features to be captured with the rows of the
initial mesh.

To see how the algorithm fairs on non-mesh-aligned fea-
tures, the third test case has the following metric defined on
a [�1; 1] � [�1; 1] square domain

M = R�

�
h�21 0
0 h�22

�
R�

�1 (6)

whereR� is a rotation matrix

R� =

�
cos � � sin �
sin � cos �

�
(7)

and

8<
:

� = arctan(y=x);

h1 = r=120 + j1� rj =2;

h2 = r=30 + j1� rj =2:

(8)

with r =
p

x2 + y2. This metric was inspired by a test case
used in [25] and prescribes stretched quadrilaterals aligned
along a0:5 radius circle centered at the origin. The ini-
tial mesh is presented in Fig. 7(a). The refined mesh before
smoothing is plotted in Fig. 7(b) and the final smoothed mesh
is plotted in Fig. 7(c).

To test the effectiveness of the quality improvement strate-
gies suggested in section 4, this mesh was regenerated twice
using modified algorithms. The first modification imple-
ments a coarse refinement followed by a uniform dicing



(a) Initial mesh (b) Original algorithm – Refined mesh (c) Original algorithm – Smoothed mesh

(d) Modified algorithm 1 – Coarsely refined mesh (e) Modified algorithm 1 – Diced mesh (f) Modified algorithm 1 – Smoothed mesh

(g) Modified algorithm 2 – Smoothed initial mesh (h) Modified algorithm 2 – First iteration (i) Modified algorithm 2 – Second and final iteration

Figure 7: Meshes obtained for the metric given by Eqs. (6)–(8) using the original algorithm and two modified versions.

strategy. Figure 7(d) presents the refined mesh obtained
for a coarse metric where the prescribed edge sizes have
been multiplied by three. Figure 7(e) presents the same
mesh after all interior quadrilateral elements have been diced
in nine and Fig. 7(f) plots the final result after smooth-
ing. The second modification implements a combined re-
finement and smoothing strategy by the addition of interme-

diate smoothing after step 4 of the algorithm. Figure 7(g)
plots the smoothed initial mesh. Figure 7(h) presents the
mesh after the first combined refinement and smoothing it-
eration and Figure 7(i) shows the final mesh obtained after
the second iteration. Note that without intermediate smooth-
ing, four refinement iterations are needed to generate the
mesh in Fig. 7(c). Figure 8 magnifies the upper right quad-



(a) Original algorithm (b) Modified algorithm 1 (c) Modified algorithm 2

Figure 8: Detail of the meshes obtained using the metric given by Eqs. (6)–(8).

rant of the three meshes showing a region where the initial
rows of quadrilateral elements were completely misaligned
with the specified metric. First note that the original al-
gorithm doesn’t realign the elements when the rows of the
initial mesh do not follow the features of the metric. That
is why, as can be seen in Fig. 8(a), the refinement is ef-
fectively isotropic in those regions although the metric pre-
scribes stretched elements.OORT anisotropic smoother
can counteract this effect but the particular mesh topology
resulting from the present refinement strategy is very stiff
and precludes significant improvement. However, dicing
a coarse mesh produces a more regular topology and the
smoother can do its work (Fig. 8(b)). Combining refinement
and anisotropic smoothing also improves the shape of the el-
ements in this region (Fig. 8(c)). The smoother tends to align
the element rows with the features of the metric and, indeed,
changes the layers the refinement primitive will choose to
contract. Table 3 compares the corresponding quality indi-
cators. Dicing a coarse mesh improves the shape of the ele-
ments from an average of0:645 to 0:743 but increases their
overall number from3316 to 4672. This method produces
nicer transitions but inserts too many vertices. Dicing could
also complicate coupling with solvers because a coarsely
adapted mesh won’t be available. A better way to achieve
the same effect would be to shrink thicker layers. On the
other hand, combining refinement with anisotropic smooth-
ing not only improves the shape of the elements from an av-
erage of0:645 to 0:672 but also decreases their final number
elements from3316 to 2460 and improves convergence, i.e.,

Table 3: Quality indicators evaluated in the metric given
by Eqs. (6)–(8) for the meshes of Fig. 7.

Indicator Nb min � max �
lini (Fig. 7(a)) 220 0.447 2.126 10.3 1.246
�ini 100 0.103 0.689 0.94 0.375
lfin (Fig. 7(c)) 6660 0.295 0.663 1.39 0.292
�fin 3316 0.215 0.645 0.97 0.269
lfin (Fig. 7(f)) 9400 0.139 0.529 1.32 0.474
�fin 4672 0.205 0.743 0.98 0.156
lfin (Fig. 7(i)) 4968 0.199 0.775 2.05 0.307
�fin 2460 0.139 0.672 0.98 0.260

two iterations instead of four. Intermediate smoothing thus
improves the overall efficiency of the algorithm. However,
at present, the smoothing process has to be controlled man-
ually. Too few iterations and the effect is lost. Too many
iterations and the mesh is badly distorted. A better approach
would be to let the smoother fully converge to a modified
metric. This metric should selectively smooth out brutal vari-
ations to preserve intermediate mesh quality.

One final observation valid for all three meshes is that the
present algorithm tends to overly refine them: the final av-
erage metric edge length ranges from0:529 to 0:775. The
first explanation is that we tried to bias the algorithm to-
wards shape quality over size conformity. The layers are
augmented by their immediate neighbors to have better size
transition for example. The second explanation is more fun-
damental: the algorithm can only refine and there is no op-
eration to coarsen the mesh. If initial edges are already too
small then the algorithm cannot do anything. All it can do is
split edges that are too long and drive the maximum metric
edge length under the chosen threshold value. The present
method is not competing with simplicial adaptation algo-
rithms but rather addresses the automated conformal refine-
ment problem for quadrilateral and hexahedral meshes. To
truly adapt such meshes, local coarsening and reconnection
tools have to be developed to complement the present refine-
ment and vertex relocation tools.

5.2. Three-Dimensional Test Cases

Some very preliminary results were also generated for three-
dimensional test cases using an extension of the original
two-dimensional algorithm. The first test case, from [26],
is a refined mesh for a unit cube with a non-uniform tar-
get edge length of0:05 + 0:15z, and is plotted in Figs. 9(a)
and 9(b). For comparison, Figure 9(c) presents a tetrahedral
mesh adapted to the same metric byOORT [26]. The ini-
tial mesh was uniform and had4 � 4 � 4 cubic elements.
The corresponding statistical data is given in Table 4. The
final metric edge length has an average of1:072 and a maxi-
mum value just around the refinement threshold of2:0. The
standard deviation of the metric edge length was divided by
two compared to the initial mesh. We have again, how-



(a) Refined mesh (b) Smoothed mesh (c) Reference tetrahedral mesh [26]

Figure 9: Mesh obtained for a unit cube with a target edge length of 0:05 + 0:15z.

ever, a non-negligible reduction of the average shape indi-
cator from0:895 to 0:770. The present algorithm trades off
shape quality for size conformity.

The second three-dimensional test case is also a unit cube
but this time the metric is given by

M = R�R�

 
h�21 0 0
0 h�22 0
0 0 h�23

!
R�

�1R�
�1 (9)

whereR� andR� are rotation matrices

R� =

 
cos � � sin � 0
sin � cos � 0
0 0 1

!
(10)

R� =

 
cos� 0 sin�
0 1 0

� sin� 0 cos�

!
(11)

with

8>><
>>:

� = arctan(y=x);

� = arccos(z=r)� �=2;

h1 = r=40 + 3 j1� rj =2;

h2 = h3 = r=10 + 3 j1� rj =2:

(12)

with r =
p

x2 + y2 + z2. This metric field prescribes
stretched elements along a0:5 radius sphere centered at the
origin. The mesh plotted in Fig. 10 was obtained starting
from a uniform mesh of5 � 5 � 5 cubic elements and the
corresponding statistics are presented in Table 5. Note the
clustering of the mesh vertices along the sphere and the re-
duction in the maximum edge length. However, the aver-
age edge length was smaller than1:0 in the initial mesh and
could only be reduced in the refined mesh since the present
algorithm cannot remove vertices. Furthermore, the shape of
the smoothed elements is not as good as expected. Improve-
ments using a new vertex relocation scheme are, however,
possible [22].

6. FUTURE WORK

As noted in the previous section, refinement iterations should
be combined with a vertex relocation adaptor, i.e., a smoother.

The metric for these intermediate smoothing iterations should,
however, be modified to preserve mesh quality by avoiding
brutal size transitions during the early stages the refinement
process.

Another way to improve mesh quality is to modify the layer
agglomeration method. The thickness of the layers can be in-
creased. Path optimization can be added. Balancing inspired
from quadtree and octree methods can also help.

Although the presentOORT anisotropic smoother works
well with simplices, it can be improved for quadrilateral and
hexahedral elements. Modifications to the present algorithm
are being explored and some results are presented in [22].

The present refinement method, even when combined with
vertex relocation, is not a full adaptation method. It lacks
vertex removal and reconnection capabilities. Reconnection
methods to improve shape quality have already been devel-
oped for quadrilateral meshes [27, 28]. Figure 11 presents a
quadrilateral mesh adapted by the combination of the present
algorithm with a limited implementation of such reconnec-

Table 4: Quality indicators evaluated for a unit cube with
a target edge length of 0:05 + 0:15z plotted in Fig. 9.

Indicator Nb min � max �
lini 300 1.250 2.456 5.00 0.497
�ini 64 0.815 0.895 0.94 0.056
lfin (Fig. 9(b)) 4168 0.272 1.072 2.12 0.251
�fin 1144 0.244 0.770 0.95 0.179
lref (Fig. 9(c)) 14219 0.726 1.034 1.38 0.124
�ref 10899 0.582 0.914 1.00 0.053

Table 5: Quality indicators evaluated in the metric given
by Eqs. (9)–(12) for the mesh of Fig. 10.

Indicator Nb min � max �
lini 540 0.105 0.464 4.69 1.406
�ini 125 0.099 0.784 0.95 0.260
lfin 18385 0.020 0.339 1.48 0.459
�fin 5638 0.002 0.566 0.93 0.394



(a) Refined mesh

(b) Smoothed mesh

Figure 10: Mesh refinement using the metric given
by Eqs. (9)–(12).

tion tools. The target metric map for this mesh was extracted
from a portrait of German mathematician Bernhard Riemann
(1826-1866). For comparison, a triangular mesh adapted to
the same metric byOORT is also presented in Fig. 11. Sim-
ilar topologic operators have been explored in three dimen-
sions [29, 30]. Those operators should be tested on meshes
generated by the present algorithm to improve the quality of
their hexahedral elements.

7. CONCLUSION

An all-quadrilateral and all-hexahedral refinement method
has been presented. Using a shrink and connect strategy
known as pillowing or buffer insertion, layers of elements
are contracted and reconnected to achieve directional mesh
enrichment according to a size specification map defined as a
Riemannian metric. An anisotropic smoother that optimizes
the location of the vertices of the refined mesh further en-
hances clustering. Both two and three-dimensional test cases
confirm the feasibility of such an approach to refine an initial
mesh to an arbitrary size distribution.

Compared to other non-simplicial conformal refinement ap-
proaches, the present method should prove more flexible. It

works both in two and three dimensions, it can start from
unstructured meshes and it does not require a final uniform
dicing step. Furthermore, the combination of the present re-
finement operator with an anisotropic smoother and a metric
control map is innovative. Element quality can, nevertheless,
still be improved. Future work should include implementa-
tion of reconnection primitives, stronger coupling between
refinement and smoothing, thicker shrink layers and an im-
proved vertex relocation scheme.

Coupling with solvers is possible but the present method is
not yet a full adaptation scheme because it lacks local coars-
ening and topologic improvement capabilities. Applications
to problems such as steady flow computations in CFD should
however be possible in the next development stage of the
present project. Another possible application area is initial
refinement for grid-based hexahedral mesh generation meth-
ods.
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