
Output Based Grid Adaptation for Viscous
Flow

Julie C. Andren1 and Michael A. Park2

1 Massachusetts Institute of Technology, jandren@mit.edu
2 NASA Langley Research Center, Computational AeroSciences Branch,
Mike.Park@NASA.gov

1 Introduction

Output (adjoint) based adaptation is a method that has been used to auto-
mate the unstructured grid generation task of inviscid [3] and two-dimensional
(2D) turbulent [6,7] flow simulation. This project challenges existing three di-
mensional (3D) techniques to produce strongly anisotropic grids for modeling
the boundary layer on a flat plate. Elements with large face angles can cause
difficulties for the diffusion operator employed in this study [1], so a range
of Reynolds numbers are explored to quantify the accuracy of the solutions
on the output adapted grids. Laminar and turbulent flows are simulated on
an extruded flat plate to exercise the 3D algorithm on a case with a know
solution. Regular, fully adapted, and hybrid unstructured tetrahedral grids
are used to examine the ability of different grid constructions to reproduce
Blasius or empirically derived velocity profiles. The hybrid approach retained
the original regular tetrahedral grid near the flat plate and adapted the grid
outside of this region. This approach produced similar velocity profiles to the
regular grids and better results than the fully adaptive cases for the highest
Reynolds number cases.

2 Output-Based Adaptation

The output adaptive capability of the FUN3D suite of computational fluid
dynamics tools is utilized. The FUN3D website http://fun3d.larc.nasa.
gov contains a user manual as well as an extensive list of references. The
embedded-grid error estimation procedure [2, 6, 7] for the output of drag on
the flat plate is combined with the Mach Hessian to produce an anisotropic
metric. Parallel 3D grid mechanics [3,4] that include enrichment, coarsening,
node movement, and element connectivity changes utilize this metric.

2 Julie C. Andren and Michael A. Park

3 Results

The grid on one symmetry plane of the 3D extruded flat plate domain is
shown in Fig. 1. Flow is from left to right. The original grid used for full
adaptation, Fig. 1(a), has a coarse isotropic grid spacing with refinement at
the leading edge singularity of the flat plate. This initial spacing is not suitable
for laminar flow simulation and is intended to stress the adaptive process. The
regular grid is shown in Fig. 1(b). It has a sinusoidal spacing along the plate
to provide clustering near the leading edge singularity. A geometric growth
of grid spacing is applied in the direction normal to the plate. This regular
grid is also used as the initial grid for hybrid adaptation where the grid is
held constant or frozen in the region where η <= 1 near the flat plate, where
η = z

√
Re, z is the distance normal to the plate, and Re is the Reynolds

number.
The final grid for the fully adapted case is shown in Fig. 1(c). A detail of

the boundary layer region is shown in Fig. 1(e). The vertical axis of Fig. 1(e)
is stretched by a factor of ten to improve visualization of the high aspect ratio
grid. The final grid for the hybrid case is shown in Fig. 1(d) and Fig. 1(f) with
an expanded vertical axis. Adaptation refines the elements near the leading
edge and in the boundary layer. These grids are used to simulate laminar
flow at a Re = 1,000,000. The initial grids are simple and easy to manually
generate for this case with trivial geometry, but can be difficult for more
general problems. The boundary layer detail clearly shows the stretched high
aspect ratio cells.

The regular and fully adapted grid laminar boundary layer velocity pro-
files for Re = 100,000 and Re = 1,000,000 are shown in Fig. 2. Simulation
results are plotted with red circles to compare with the blue line of the Blasius
solution. The velocity is sampled across the span of the 3D extruded domain,
so any spanwise variation is velocity is seen as red circle scatter. Profiles pro-
duced by the regular grid closely fit the Blasius solution for both Re cases,
as shown in Fig. 2(a) and Fig. 2(b). The full adaptation approach is able
to produce a velocity profile that matches the Blasius solution for the Re =
100,000 case, Fig. 2(c). However, the Re = 1,000,000 full adaptation case was
not able to produce a suitable grid. A significant variability in the velocity
across the span of the flat plate results in the scatter of the Figure 2(d) circle
symbols. The scalar output adaptation request for the Re = 1,000,000 full
adaptation case is shown in Fig. 3. The adaptation parameter is less than
one in the boundary layer, indicating that grid refinement is being requested.
However, the existing grid mechanics are unable to satisfy it because of grid
quality constraints built into the adaptation mechanics.

The hybrid adaptive grid approach is employed to produce the velocity
profiles in Fig. 4. Figure 4(a) is a laminar flat plate at Re = 1,000,000 and
Fig. 4(b) is a turbulent flat plate at Re = 10,000,000. The one equation
Spalart-Allmaras turbulence model [5] is employed for the turbulent calcula-
tion. The Re = 1,000,000 laminar hybrid case, Fig. 4(a), produced an improved

Output Based Grid Adaptation for Viscous Flow 3

(a) Initial Grid for Full Adaptation (b) Initial Hybrid Grid

(c) Final Fully Adapted Grid (d) Final Hybrid Grid

(e) Boundary Layer Detail (Ex-
panded 10x in Vertical Axis)

(f) Boundary Layer Detail (Expanded
10x in Vertical Axis)

Fig. 1. Initial, Final, and Boundary Layer Grids for Full Adaptation and Hybrid
Methods, Laminar, Re = 1,000,000.

velocity profile as compared to the regular, Fig. 2(b), and full adaptation,
Fig. 2(d), grid solutions. The turbulent fully adaptive method (not shown)
failed to complete the adaptive process when started with the coarse initial
isotropic grid, Fig. 1(a). The turbulent hybrid case matched the expected blue
asymptotic curves for both the sublayer and log layers. The grid was frozen
for points in the sublayer and most of the log layer, y+ < 300.

4 Julie C. Andren and Michael A. Park

(a) Regular Grid. Re = 100,000 (b) Regular Grid. Re = 1,000,000

(c) Full Adaptation. Re = 100,000 (d) Full Adaptation. Re = 1,000,000

Fig. 2. Velocity Profiles for Laminar Boundary Layer

Fig. 3. Drag Output Adaptation Parameter for Re = 1,000,000 Laminar Case
(Expanded 10x in Vertical Axis).

4 Summary

Grid adaptation for 3D viscous flows is studied by comparing three tetrahe-
dral grid generation techniques: regular, full grid adaptation, and hybrid grid
adaptation. Full adaptation is successful for the lower Re case, but is cur-
rently unable to accurately refine cells in boundary layers with the greater Re
when coarse isotropic initial grids are employed. The hybrid approach does
not alter the regular cells near a solid wall while adapting all other cells. Mod-

Output Based Grid Adaptation for Viscous Flow 5

eling viscous flow using a hybrid grid eliminates the spanwise scatter of the
fully adapted grid and yields similar, if not more accurate, results to those
produced when using regular grids. The hybrid adaptation technique also ac-
curately predicted a turbulent boundary layer with a one equation turbulence
model. This hybrid approach maintains the solution in the lowest portion of
the boundary layer using regular grids and adaptation away from the body.

(a) Laminar. Re = 1,000,000 (b) Turbulent. Re = 10,000,000

Fig. 4. Velocity Profiles Using Hybrid Grid Generation

References

1. B. Diskin, J. L. Thomas, E. J. Nielsen, H. Nishikawa, and J. A. White. Compari-
son of node-centered and cell-centered unstructured finite-volume discretizations.
part i: viscous fluxes. AIAA Paper 2009–597, 2009.

2. M. A. Park. Three–dimensional turbulent rans adjoint–based error correction.
AIAA Paper 2003–3849, 2003.

3. M. A. Park. Anisotropic Output-Based Adaptation with Tetrahedral Cut Cells for
Compressible Flows. PhD thesis, Massachusetts Institute of Technology, Sept.
2008.

4. M. A. Park and D. Darmofal. Parallel anisotropic tetrahedral adaptation. AIAA
Paper 2008–917, 2008.

5. P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerody-
namic flows. La Recherche Aerospatiale, (1):5–21, 1994.

6. D. A. Venditti. Grid Adaptation for Functional Outputs of Compressible Flow
Simulations. PhD thesis, Massachusetts Institute of Technology, 2002.

7. D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for functional
outputs: Application to two-dimensional viscous flows. Journal Computational
Physics, 187:22–46, 2003.

 1

Graph Based Boundary Recovery for Complex

Geometry with Multiply Connected Domains

Andrey Mezentsev

Schlumberger, AMezentsev@slb.com

Abstract.

The paper addresses the problem of the 3D meshing of the complex free form

Boundary Representation geometry with multiple domains. It introduces a generic graph

based method of the CAD model analyses with optimal boundary recovery. A three stage

approach is used: firstly, an underlying geometry is repaired to provide a conformal

model without gaps and overlaps. Secondly, the model is analyzed and a special

topological graph is introduced. Finally, an unstructured 3D Delaunay mesh is generated

using the properties of the spanning tree of the domain graph to provide an optimal

boundary recovery during meshing with a minimal number of inserted nodes. The

properties of the domain graph are discussed in the context of unstructured mesh

generation. The paper provides examples, showing efficiency of the method for optimal

meshing of complex Geological Geometry.

1. Introduction

In recent years the development of robust mesh generation and CAD healing

techniques [1] has significantly increased the complexity of meshed geometry. Now it is

possible to perform 3D unstructured meshing of different CAD models - Constructive

Solid and Boundary Representation (BREP) - with multiple sub-domains in different

application areas. Moreover, recent developments have extended applicability of the

CAD solid models from traditional engineering domains to natural sciences, such as

geology, reservoir engineering, and hydrology. Meshing of such complex geometry (see,

for example, Fig. 1) faces challenges of efficient boundary recovery and the problem is

mostly related to the absence of a generic methodology of the CAD model analyses for

meshing [1].

The presence of multiple geometrical constraints in the CAD model (Fig. 1) results in

insertion of excessive nodes during boundary recovery in the traditional meshing

approaches similar to [2]. All-hexahedral meshing faces more difficulties, related to the

generic complexity of the unstructured hexahedral meshing algorithms for free form

domains. The Control Volume (CV) node-centered discretisation is also non-optimal [3-

4], as near the boundary a node (see Fig. 2) is typically shared by a large number of

elements, and the CV flux computation for the node-centered schemes involves large

 2

numbers of the CV cell polyhedral faces, as shown in Fig. 2. This significantly slows the

computation [4].

Abstraction of the BREP models has been addressed in different spheres of

engineering. For example, Similarity Analyses of the CAD models provide an interesting

background for the CAD model analyses for meshing (see [5] for an overview of the

methods). Shape abstraction techniques summarize topological properties of the CAD

model partition of space to sub-volumes.

Fig. 1. Typical geological BREP geometry with multiple (N>100) domains: the CAD

model (fractured stone) and hex-dominant mesh of the fault. Numerous CAD constraints

make the boundary recovery difficult and induce large number of nodes and elements.

 a) b)

Fig. 2. The node centered CV polyhedral cell: a) with a complex (38 facets) boundary for

all-tetrahedral and b) boundary-optimal (20 facets) hybrid cell.

A conformal BREP CAD model provides a 3D partition of space to free-form sub-

domains, further CAD meshing ensures domains subdivision to computational primitives

– tetrahedrons, hexahedrons, etc. So far systematic connection of the CAD partition with

Complex polyhedral CV boundary

Node Simple CV boundary

Multiply connected

domains

Geometrical Constraints

 3

computational meshing has not been established and our work attempts to close this gap

using the graph-theoretical approach.

2. Proposed Method

The idea of the method is based on application of the Shape Similarity Assessment

Algorithms [5] to the underlying BREP model. Similar methods are used in the area of

product design and manufacturing. In this area, a number of efficient CAD model

abstractions have been developed to define a measure of CAD model similarity for

production purposes. One of the measures is using topological graphs of the solid CAD

model to provide a summary of the object shape for downstream applications, i.e. for

mesh generation. In our implementation the method uses a direct interface to the BREP

CAD model, when a solid is defined by a special data structure [6], providing the

geometry and topology of its bounding faces. Recently the BREP approach has become

the representation of choice in solid modeling for engineering and natural science

applications due to its flexibility and robustness [4,6].

Previously graph approach have been used in mesh generation for hybrid meshing [7],

mesh optimization [2] and other problems, taking advantage of the efficiency and

robustness of the graph based algorithms. However, diversity and complexity of existing

CAD models still pose a challenge for an efficient CAD analyses for meshing.

Fig. 3. The MSG graph (the blue nodes and edges, left and right) for a synthetic cube

geometry with multiply connected domains, partitioned by green free form surfaces (left).

Topological graphs represent the connectivity information of the solid boundary such

as adjacency of faces. Meshkat and Talmor [7] used graphs, representing adjacency of

volumes (region-face graph technique) for hybrid meshing, but it is hardly applicable to

meshing-related CAD model analyses. Indeed, the techniques, proposed in [7] provide

the formalism for hexahedra and pentahedra composition from existing tetrahedrons.

However, the so called Model Signature Graph (MSG) is capable of providing useful

information on geometric constraints of the CAD model. The MSG is directly

constructed from the BREP structure [5]: each node of the MSG represents a face of the

BREP solid. The edge between two nodes of the graph corresponds to adjacency of two

faces. This graph forms a synthetic surface-volume abstraction of the model boundary

and can be used in the process of boundary recovery or domain decomposition for

 4

meshing (Fig.3). Along with the topological connectivity between faces any extra

information like average distance to neighboring faces, faces area, and other CAD model

properties can be stored at the graph nodes, linking the MSG with the other known graph

formalism of CAD model description – the so called Multiresolutional Reeb Graph

(MRG) [5]. This graph is defined by obtaining a suitable function over the 3D object

boundary (i.e. geodesic curvature or distance to neighboring faces). Then the function

value range over the object is split into a number of sub ranges. A region of the solid

object corresponds to each sub range, and each region forms the node of the MRG. Edges

of the MRG are obtained from the BREP model connectivity of shells (topological sub-

volumes) [6]. The MRG can be stored as additional information at MSG graph nodes.

We use Delaunay 3D mesh generation [8] and boundary recovery is based on the

known node insertion technique [2]. In a standard implementation model faces are

recovered using the ad-hock order obtained directly from the BREP model without

reference to meshing. However, analyses of the Signature graph provide extra data on the

influence of internal geometrical constraints on boundary recovery. Here the boundary is

reconstructed selectively, using a special order of faces to be recovered. A minimum

spanning tree of the MSG is constructed [9] and edges of the tree provide the order of

face reconstruction during boundary recovery. Due to the properties of the graph [5] and

its tree [9], in problematic geometrically over-constrained region boundaries are

recovered in an optimal way, resulting in insertion of fewer nodes. To summarize, in our

proposed approach the following steps are performed:

• CAD repair of the BREP model to ensure model conformity

• Generation of the MSG with attributes for the BREP model

• Construction of the MSG minimal spanning tree

• Surface mesh generation on the external and internal boundary faces

• Delaunay volumetric mesh generation

• Boundary recovery for the MSG tree faces using the node insertion technique

• Boundary recovery for the remaining faces, not belonging to the tree.

3. Results and Discussion

The method has two distinct advantages. Firstly, it provides a generic graph method for

description of the BREP geometrical complexity. Secondly, it formulates an algorithm

for optimal boundary recovery of the geometry with multiply connected domains. The

algorithm also ensures significant reduction in the number of nodes (around 43 per cent),

inserted in the vicinity of the internal and external boundaries, as shown in Table 1.

Table1. Number of nodes in traditional and proposed boundary recovery.

Model Domains Traditional Proposed Reduction,

%

Partitioned Cube 734 9327 6249 49.26

Fault 57 256349 182008 40.84

Fractured stone 289 1178252 853223 38.94

 5

The cube geometry is a synthetic test case with internal faces corresponding to

quadratic curvilinear patches. For details we are referring the reader to a full version of

the paper to appear next year. Interestingly, the reduction in the number of nodes as

expected improves the speed of the numerical flux calculation for the numerical solvers

of hyperbolic transport problems [3]. Using our new meshing approach for flux

computations, based on the Schlumberger analytical pressure solver (GREAT) for the

diffusion equation (Darcy flow) we managed to obtain nearly 50% speed increase in flux

computation for multiphase simulations due to the reduced number of nodes.

4. Conclusion

We have developed a new graph approach for the BREP model analyses, ensuring

significant reduction of the number of nodes during selective boundary recovery, based

on the properties of the minimal spanning tree of the MSG graph.

The author would like to thank Schlumberger for the permission to publish this partly

independent research on the MSG graph method and for the support during preparation of

the paper, especially my colleagues - Dr. B. Samson, Dr. J.P. Gilchrist and R. Banerjee.

References
[1] Thompson, J.F., Soni, B., Weatherill, N.P., Handbook of grid generation, CRC Press,

1998.

[2] Weatherill, N.P., Hassan, O., Efficient Three-dimensional Delaunay Triangulation

with Automatic Point Creation and Imposed Boundary Conditions, International

Journal for �umerical methods in Engineering, 37: 2005-2039, 1994.

[3] Leveque, R.J., Finite volume methods for hyperbolic problems, Cambridge

University Press: Cambridge, 2003.

[4] Matthäi, S.K., Mezentsev, A.A., Pain, C.C., Eaton, M.D., A High Order TVD

Transport Method for Hybrid Meshes on Complex Geological Geometry,

International Journal for �umerical Methods in Fluids, 47: 1181-1187, 2005.

[5] Cardone, A., Gupta, S.K., Karnik, M., A Survey of Shape Similarity Assessment

Algorithms for Product Design and Manufacturing Applications, Journal of

Computing and Information Science in Engineering, Vol. 3: 109-118, 2003.

[6] ACIS V.8.0 User Guide, Spatial Inc., 2003.

[7] Meshkat, S., Talmor, D., Generating a Mixed Mesh of Hexahedra, Pentahedra and

Tetrahedra from an Underlying Tetrahedral Mesh, International Journal for

�umerical methods in Engineering, 49: 17-30, 2000.

[8] Mezentsev, A.A., MezGen – an unstructured Object-Oriented hybrid mesh generator

with efficient boundary recovery, http://www.geocities.com/

aamezentsev/Mezgen.htm, 23/07/2009.

 [9] Yao, A.C., On constructing minimum spanning trees in k-dimensional space and

related problems, SIAM Journal of Computing, vol. 11: 721-736, 1982.

[10] Busswell, G., Banerjee, R., Thambynayagam, R. K. M, Gilchrist, J.P., Spath, J.

Generalized Analytical Solution for Reservoir Problems with Multiple Wells and

Boundary Conditions, SPE Paper 99288, 2008.

A New Anisotropic Mesh Adaptation Method

Based upon Hierarchical A Posteriori Error

Estimates

Lennard Kamenski1, Weizhang Huang2, and Jens Lang3

1 Technische Universität Darmstadt kamenski@mathematik.tu-darmstadt.de
2 University of Kansas, Lawrence huang@math.ku.edu
3 Technische Universität Darmstadt lang@mathematik.tu-darmstadt.de

Summary. An anisotropic mesh adaptation strategy for finite element solution
of elliptic differential equations is considered. The adaptation method generates
anisotropic adaptive meshes as quasi-uniform ones in some metric space. The as-
sociated metric tensor is computed by means of a posteriori hierarchical error es-
timates. A global hierarchical error estimate is employed in this study to obtain
reliable directional information of the solution. Mesh examples are presented for the
mathematical model for heat conduction in a thermal battery with large orthotropic
jumps in the material coefficients4.

Key words: mesh adaptation; anisotropic mesh; finite element; a posteriori error
estimates

1 Introduction

Anisotropic mesh adaptation has proved to be a useful tool in numerical so-
lution of partial differential equations. This is especially true when problems
arising from science and engineering have distinct anisotropic features. The
ability to adapt the size, shape, and orientation of mesh elements according
to certain quantities of interest can significantly improve the accuracy of the
solution and enhance the computational efficiency.

A common approach for generating an anisotropic mesh is based on gen-
eration of a quasi-uniform mesh in some metric space. Typically, the appro-
priate metric depends on the Hessian of the exact solution of the underlying
problem, which is often unavailable in practical computation. The common
approach to avoid this difficulty is to recover an approximate Hessian from the
computed solution. The purpose of this research is to consider an alternative
approach and to study the use of a posteriori error estimates in anisotropic
mesh adaptation.

4A Sandia National Laboratories benchmark problem.

2 Lennard Kamenski, Weizhang Huang, and Jens Lang

A key idea in the new approach is the use of the hierarchical error estima-
tor for reliable directional information of the solution. The solution error can
be bounded by the interpolation error of an appropriately defined reconstruc-
tion applied to the finite element approximation. One possibility to achieve
the desired property is to use the hierarchical decomposition of the finite ele-
ment space. The solution error is then bounded by the explicitly computable
interpolation error of the hierarchical basis error estimator. Anisotropic inter-
polation error estimates are developed in [2, 3] and [4]. We follow the theory in
[4] to define the optimal metric tensor for minimizing the interpolation error
of the hierarchical a posteriori error estimator.

It has been pointed out that error estimation based on solving local er-
ror problems can be inaccurate on anisotropic meshes [1]. We thus choose to
develop our approach based on error estimation by means of globally defined
error problem. To avoid the expensive exact solution of the global error prob-
lem, we employed only a few steps of the symmetric Gauß-Seidel iteration for
the efficient solution of the resulting linear system. Numerical results have
shown that this is sufficient for obtaining an approximation to the error good
enough for the purpose of mesh adaptation.

First numerical results have shown that the new method is fully compa-
rable in accuracy with commonly used Hessian-recovery-based methods and
can be more efficient for some examples by producing only necessary element
concentration.

2 Numerical Example: Heat Conduction in a Thermal

Battery

We consider heat conduction in a thermal battery with large orthotropic jumps
in the material coefficients. The mathematical model considered here is taken
from [5, 6] and described by

{

∇ · (Dk
∇u) = fk in Ω,

Dk
∇u · n = gi

− αiu on ∂Ω,
(1)

where Ω = (0, 8.4) × (0, 24) and

Dk =

[

Dk
x 0

0 Dk
y

]

.

The data for each material k and for each of the four sides i of the boundary
starting with the left hand side boundary and ordering them clockwise are
given in Table 1 .

The analytical solution for this problem is unavailable. The geometry and
the contour and surface plots of a finite element approximation are given in
Fig. 1. Typical adaptive meshes with predefined interface edges are shown in
Fig. 2.

Anisotropic Mesh Adaptation Based upon A Posteriori Error Estimates 3

When the mesh contains all the information of the interface, common
recovery-based adaptation methods will produce a mesh with strong element
concentration near all internal interfaces (Fig. 2a, using quadratic least squares
Hessian recovery as proposed in [7]), whereas the error estimator leads to a
mesh that has higher element concentration in the corners of the regions
(Fig. 2b), has a proper element orientation near the interfaces between the
regions 2 and 3, and is almost uniform in regions where the solution is nearly
linear (cf. Fig. 1c for the surface plot of a computed solution).

Thus, the new method produces only necessary concentration and is able
to catch the directional information of the solution required for proper el-
ement alignment. This example demonstrates that the new method can be
successfully used for problems with strong anisotropic features and jumping
coefficients.

References

1. M. Dobrowolski, S. Gräf, and C. Pflaum. On a posteriori error estimators in the
finite element method on anisotropic meshes. Electron. Trans. Numer. Anal.,
8:36–45, 1999.

2. L. Formaggia and S. Perotto. New anisotropic a priori error estimates. Numer.

Math., 89(4):641–667, 2001.
3. L. Formaggia and S. Perotto. Anisotropic error estimates for elliptic problems.

Numer. Math., 94(1):67–92, 2003.
4. W. Huang and W. W. Sun. Variational mesh adaptation II: error estimates and

monitor functions. J. Comput. Phys., 184(2):619–648, 2003.
5. J. S. Ovall. The dangers to avoid when using gradient recovery methods for

finite element error estimation and adaptivity. Technical Report 6, Max Planck
Institute for Mathematics in the Sciences, 2006.

6. D. Pardo and L. Demkowicz. Integration of hp-adaptivity and a two-grid solver
for elliptic problems. Comput. Methods Appl. Mech. Engrg., 195(7-8):674 – 710,
2006.

7. Z. Zhang and A. Naga. A new finite element gradient recovery method: Super-
convergence property. SIAM J. Sci. Comput., 26(4):1192–1213, 2005.

4 Lennard Kamenski, Weizhang Huang, and Jens Lang

Region k Dk
x Dk

y fk

1 25 25 0
2 7 0.8 1
3 5 0.0001 1
4 0.2 0.2 0
5 0.05 0.05 0

(a) Material coefficients.

Boundary i αi gi

1 0 0
2 1 3
3 2 2
4 3 0

(b) Boundary con-
ditions.

Table 1: Heat conduction in a thermal battery: material coefficients and boundary
conditions.

k=1

k=2

k=4

k=3

k=5

k=2

k=5

(a) (b) (c)

Fig. 1: Heat conduction in a thermal battery: (a) device geometry, (b) contour plot,
and (c) surface plot of a linear finite element solution.

Anisotropic Mesh Adaptation Based upon A Posteriori Error Estimates 5

(a) Quadratic least squares Hessian re-
covery: maximum aspect ratio 57.3.

(b) Error estimator: maximum aspect
ratio 60.8.

Fig. 2: Heat conduction in a thermal battery: adaptive meshes obtained by means of
(a) quadratic least squares Hessian recovery and (b) hierarchical basis a posteriori
error estimator.

Model Sensitivity of Edges to a Parameter

David S. Lazzara, Mark Drela, and Robert Haimes

Massachusetts Institute of Technology
77 Massachusetts Ave., Cambridge, MA 02139

Geometry differentiation is necessary when using solid model representations
within design frameworks that employ gradient-based optimization. This pre-
requisite becomes a greater challenge if the solid model was obtained from
a Computer Aided Design (CAD) system. In these cases, the solid model
is usually a manifold boundary representation (BRep) created from a master
model that contains driving parameters and a three-dimensional (3D) feature-
construction recipe. Since access to the CAD system source code is normally
unavailable and a geometry differentiation capability is also unavailable within
the CAD system, other methods of differentiation must be employed.

With access to the master-model, parameters driving the solid model can
be perturbed by some step-size in order to determine the design velocity (i.e.
the mapping of a geometry feature from an initial to a perturbed domain)
of each feature. This translates into a design velocity for each face, trim
curve and node in the BRep. Armstrong et al. [1] utilized finite-differencing
to find the design velocity normal to the model boundary in this manner.
Although doing this for each driving parameter and topology feature in a
complex model is tedious (requiring at least one new instance for each param-
eter perturbation), others have attempted different approaches. For example,
to approximate geometry differentiation (assuming no topology changes) for
aerodynamics analysis of an aircraft outer mold-line, Nemec et al. [2, 3] used
centered finite-differencing of surface tessellations while tracking mesh nodes
to determine the design velocity w.r.t. model parameters. Chen et al. proposed
a method in [4] that required deriving implicit representations of active prim-
itives in a solid model to determine the design velocity of active boundaries
driven by model parameters.

In this research note, a method is presented for calculating the design
velocity of trim curves, or edges, w.r.t. model parameters that drive the inter-
secting surfaces. As noted in some texts, such as [5], the design velocity along
the intersection of parametrically defined surfaces can be determined using
a vector equation (obtained by noting that the intersection curve is common
to both surfaces) and an additional scalar constraint equation; however, the

2 David S. Lazzara, Mark Drela, and Robert Haimes

added constraint equation is not given. Herein a rigorous derivation of design
velocity for an edge is presented by specifying a reasonable constraint equation
and solving for the sensitivity to model parameters.

Derivation of the Sensitivity Along an Edge

(a) (b)

Fig. 1. (a) A trim curve defines the intersection of two surfaces. The point of
interest on the trim curve is labeled pi. (b) Perturbation of the trim curve and the
resulting movement of pi as viewed normal to the local tangent vector

Let two distinct surfaces in <3, named surface 1 and 2, that are at least
C1-regular share a common edge and be defined via the coordinates (u1, v1)
and (u2, v2), respectively. These surfaces are parameterized by parameters
{P1, P2 . . . Pj . . . PJ}, where each parameter Pj influences either surface 1, or
surface 2, or both. A point p = [x, y, z]T (in Euclidean space) on surface 1 can
be represented as ~r1(u1, v1;Pj), and on surface 2 a point can be described as
~r2(u2, v2;Pj).

The intersection of surfaces 1 and 2 is represented as a trim curve, ~rT ,
shown in Figure 1(a), where the vector equation ~r1i

− ~r2i
= 0 is satisfied

at each pi along ~rT . When one or more of the parameters Pj are perturbed,
surfaces 1 and 2 are perturbed as well by some δ~r1 and δ~r2, respectively. This
results in a perturbation of the trim curve to ~r′

T . Figure 1(b) illustrates a
perturbed trim curve and possible locations for the perturbed point p′

i. At
any p′

i along ~r′
T , we can then write

~r′
1 −~r′

2 = 0
~r1 + δ~r1 −~r2 − δ~r2 = 0

(~r1 −~r2) + (δ~r1 − δ~r2) = 0
⇒ δ~r1 − δ~r2 = 0 (1)

Model Sensitivity of Edges to a Parameter 3

Both δ~r1 and δ~r2 can be expressed by the linearized responses of ~r1 and ~r2 to
the parameter perturbations δPj at pi, giving

δ~r1 =
∂~r1

∂u1

∂u1

∂Pj
δPj +

∂~r1

∂v1

∂v1
∂Pj

δPj +
∂~r1

∂Pj
δPj (2)

δ~r2 =
∂~r2

∂u2

∂u2

∂Pj
δPj +

∂~r2

∂v2

∂v2
∂Pj

δPj +
∂~r2

∂Pj
δPj . (3)

Note that summation over the parameters Pj is implied in (2) and (3), meaning

δ ~r1 =
∂~r
∂u1

∑
j

∂u1

∂Pj
δPj +

∂~r
∂v1

∑
j

∂v1
∂Pj

δPj +
∑

j

∂~r
∂Pj

δPj

δ ~r2 =
∂~r
∂u2

∑
j

∂u2

∂Pj
δPj +

∂~r
∂v2

∑
j

∂v2
∂Pj

δPj +
∑

j

∂~r
∂Pj

δPj .

Equations (2) and (3) are then substituted into (1) to yield

∂~r1

∂u1

∂u1

∂Pj
δPj +

∂~r1

∂v1

∂v1
∂Pj

δPj +
∂~r1

∂Pj
δPj

−
[
∂~r2

∂u2

∂u2

∂Pj
δPj +

∂~r2

∂v2

∂v2
∂Pj

δPj +
∂~r2

∂Pj
δPj

]
= 0.

This equation must hold for any set of chosen δPj ’s, therefore we require that
the coefficient of each δPj is zero:

∂~r1

∂u1

∂u1

∂Pj
+
∂~r1

∂v1

∂v1
∂Pj
− ∂~r2

∂u2

∂u2

∂Pj
− ∂~r2

∂v2

∂v2
∂Pj

=
∂~r2

∂Pj
− ∂~r1

∂Pj
. (4)

Equation (4) is a vector equation containing the three [x, y, z] component

equations. Since the unknowns we desire to compute are
∂u1

∂Pj
,
∂v1
∂Pj

,
∂u2

∂Pj
and

∂v2
∂Pj

, a fourth equation is needed. The chosen fourth equation also needs to

represent the trim curve that each pi pertains to. One way of identifying this
added relation is by using the tangent vector, ~s, at pi on the trim curve ~rT .
We choose to use a perturbation δ~rT that lies normal to ~s to create some
point p′

i, which gives δ~rT · ~s = 0. Since ~rT = ~r1, we can substitute (2) into
this fourth equation and obtain the scalar equation(

∂~r1

∂u1

∂u1

∂Pj
δPj +

∂~r1

∂v1

∂v1
∂Pj

δPj +
∂~r1

∂Pj
δPj

)
·~s = 0

⇒
(
∂~r1

∂u1
·~s
)
∂u1

∂Pj
+
(
∂~r1

∂v1
·~s
)
∂v1
∂Pj

= − ∂
~r1

∂Pj
·~s. (5)

At this point, the sensitivity of point pi on the trim curve ~rT to parameters
Pj can be determined by combining (4) and (5) into

4 David S. Lazzara, Mark Drela, and Robert Haimes

∂x1

∂u1

∂x1

∂v1
−∂x2

∂u2
−∂x2

∂v2
∂y1
∂u1

∂y1
∂v1

− ∂y2
∂u2

−∂y2
∂v2

∂z1
∂u1

∂z1
∂v1

− ∂z2
∂u2

−∂z2
∂v2

∂~r1

∂u1
·~s ∂~r1

∂v1
·~s 0 0

i

∂u1

∂Pj

∂v1
∂Pj

∂u2

∂Pj

∂v2
∂Pj

i

=

∂x2

∂Pj
− ∂x1

∂Pj

∂y2
∂Pj
− ∂y1
∂Pj

∂z2
∂Pj
− ∂z1
∂Pj

− ∂
~r1

∂Pj
·~s

i

, (6)

which is a 4 × 4 linear system with multiple righthand sides, one for each
parameter Pj . The coefficient matrix and the righthand sides are readily eval-
uated from CAD data. It is understood that if ~r1 does not depend on one
particular Pj , then

∂~r
∂Pj

=
∂x1

∂Pj
=
∂y1
∂Pj

=
∂z1
∂Pj

= 0

in the j’th righthand side expression, and likewise for ~r2.
The system (6) is readily solved using pivoting LU decomposition and

multiple back-substitutions, which yields the sensitivities of u1, v1, u2, v2 w.r.t.
Pj at point pi on the trim curve:

⇒

∂u1

∂Pj

∂v1
∂Pj

∂u2

∂Pj

∂v2
∂Pj

i

, j = 1 . . . J (7)

These derivatives can then be used in (2) or (3) to compute the linear displace-
ment of point pi in response to any set of chosen δPj ’s. All of these operations
are repeated for each point pi on the trim curve, thus allowing the calculation
of the overall trim curve’s linear displacement in response to the δPj ’s.

References

1. Armstrong, C. G., Robinson, T. T., Ou, H., and Othmer, C., “Linking Adjoint
Sensitivity Maps with CAD Parameters,” Evolutionary Methods for Design, Op-
timization and Control, CIMNE, Barcelona, Spain, 2007.

2. Nemec, M. and Aftosmis, M. J., “Adjoint Algorithm for CAD-Based Shape Opti-
mization Using a Cartesian Method,” 17th Computational Fluid Dynamics Con-
ference, American Institute of Aeronautics and Astronautics, Toronto, Ontario
Canada, 6-9 June 2005, NAS-05-014.

Model Sensitivity of Edges to a Parameter 5

3. Nemec, M. and Aftosmis, M. J., “Aerodynamic Shape Optimization Using a
Cartesian Adjoint Method and CAD Geometry,” 24th AIAA Applied Aerody-
namics Conference, American Institute of Aeronautics and Astronautics, San
Francisco, California, 5-8 June 2006, NAS-06-007.

4. Chen, J., Freytag, M., and Shapiro, V., “Shape Sensitivity of Constructive Rep-
resentations,” SPM, Association for Computing Machinery, Inc., Beijing, China,
4-6 June 2007, pp. 85–96.

5. Faux, I. and Pratt, M., Computational Geometry for Design and Manufacture,
Mathematics and its Applications, Ellis Horwood Limited, Market Cross House,
Cooper Street, Chichester, West Sussex, England, 1979.

A Comparison of Parametric Space vs. Real
Space Triangular Meshing Algorithms

Karl G. Merkley1 and Mark L. Dewey2

1 Elemental Technologies, Inc karl@elemtech.com
2 Elemental Technologies Inc. mildewey@elemtech.com

Summary. We present a triangulation algorithm that is a hybrid between a Delau-
nay triangulation and an advancing front algorithm. The Delaunay triangulation is
performed in parametric space and Steiner points are inserted based on an advanc-
ing front criteria. This Advancing Steiner Point (ASP) algorithm is compared with
the three-space advancing front algorithm that is currently implemented in Cubit, a
mesh generation tool developed at Sandia National Laboratories. We find that the
two algorithms are comparable in both speed and quality on analytic surfaces while
the ASP algorithm has significant speed advantages on parametric and complex
surfaces.

Key words: Triangle meshing, parametric space, advancing front mesh

1 Introduction

The Cubit meshing toolkit [1] is a research and production meshing tool de-
veloped at Sandia National Laboratories. In recent years, most of the Cubit
development efforts have been directed at developing quadrilateral and hex-
ahedral meshing methods. Cubit has supported triangular and tetrahedral
meshing but this has not been a primary focus. However, as the Cubit user
base increases there are more requests to support improved triangular mesh-
ing methods. Cubit has supported Delaunay methods [2] but pure Delaunay
is limited to planar surfaces. It has also supported an advancing front algo-
rithm [3][4] that is very robust but in some cases it is very slow compared
with commercial meshing packages.

In this paper we introduce a parametric space triangular meshing algo-
rithm that is being developed as part of the Cubit Adaptive Meshing Al-
gorithms Library (CAMAL) . The algorithm introduced here is a hybrid of
Delaunay and advancing front techniques. It creates a Delaunay triangulation
in parametric space and inserts Steiner points into the triangulation based on
an advancing front technique. The methods used by the Advancing Steiner
Point (ASP) algorithm are similar to AFLR developed by Marcum.[5][6].

2 Karl G. Merkley and Mark L. Dewey

2 Advancing Steiner Points

The Advancing Steiner Point (ASP) algorithm is a combination of the Delau-
nay algorithm and the advancing front algorithm. The algorithm creates an
initial Delaunay triangulation as in steps 1 to 4 of the Delaunay algorithm and
then inserts Steiner points chosen based on the techniques of the advancing
front algorithm. The algorithm proceeds as follows.

1. Specify node placement on the surface boundaries.
2. Create a bounding polygon extending beyond the surface boundaries
3. Generate a valid triangulation of the bounding polygon including the

nodes on the surface boundaries and recover the boundary.
4. Assign a point distribution function to each boundary point based on

the local point spacing. 5) Determine boundary point normals and add
additional boundary normals where the boundaries are discontinuous.

5. Based on the normals at the boundary insert points along the front. Stop
point insertion if the spacing has grown to the desired size. Also, stop if
fronts overlap.

6. Subdivide elements of the initial triangulation at the inserted point.
7. Optimize the connectivity using recursive edge swaps. For each element

pair, compare the reconnection criterion (min-max) for all possible con-
nectivities and swap edges using the most optimal one.

8. Repeat steps 7 and 8 until the stopping criteria are met.
9. Smooth the nodal coordinates using a simple Laplacian algorithm.

10. Check for any other required edge swaps to optimize the grid.

The smoothing and edge swap optimizations in steps 9 and 10 improve
the overall quality of elements in the grid. Care must be taken to avoid swap-
ping across areas of high curvature and smoothing should be performed in
parametric space to avoid time-consuming computations in real space.

3 Results

The Advancing Steiner Point algorithm outperforms the existing Cubit ad-
vancing front algorithm in both speed and element quality in every case except
for a simple square. In the case of the square the two algorithms are nearly
equal with a slight speed advantage to the advancing front algorithm. In every
other case the ASP algorithm is faster than the advancing front algorithm.
The following cases document the performance of the both algorithms in a
variety of cases. Speed is measured as user experience. This measures the time
the meshing process is started until the graphics display is completed.

Title Suppressed Due to Excessive Length 3

3.1 Well Field

Figures 1 and 2 show the projection of a complex well field onto the z-plane.
The 1 shows the results of an ASP grid using a natural neighbor [7] sizing
algorithm. Since there is an underlying grid that exists at every point in
the algorithm this is an obvious algorithm for calculating element sizes. The
existing linear sizing algorithm in Cubit is based on a linear weighting of the
points on the boundary. In this example, the combination of algorithm and
sizing function forces a rapid change in element size near the boundary as
shown in figure 2. As opposed to the more gradual change in element size
shown in figure 1.

Table 1 shows the resulting time and element quality for the resulting
mesh. We see that the ASP algorithm is about three times faster. In addition
the minimum angle is quality criteria is much better for the ASP algorithm.

Fig. 1. Well field projected onto the z-plane and meshed with the ASP algorithm
and a close-up of the resulting mesh.

Table 1. Advancing Front vs. Advancing Steiner Point on planar well mesh.

Algorithm Time (sec) Minimum Angle (degrees)

Advancing Front 7.27 8.4

ASP 2.34 20.46

3.2 Wing Surface

The wing surface shown in figure 3 is a NURBS surface with a high curvature
on the leading edge. Table 2 shows that there is an order of magnitude in speed

4 Karl G. Merkley and Mark L. Dewey

Fig. 2. Well field projected onto the z-plane and meshed with the Cubit advancing
front algorithm and a closeup of the resulting mesh.

between the advancing front algorithm and the ASP algorithm. The difference
in speed derives from several points. First, the ASP algorithm computes in-
tersections in parameter space. Second, the ASP algorithm does not require
an inverted element check that calculates normals on the surface for every
triangle. Finally, the ASP algorithm performs smoothing in parametric space.
Smoothing in real space requires a calculation to ensure that smoothed points
are moved to the surface. By reducing the number of real space evaluations
on the NURBS surface we see a dramatic improvement in performance.

Fig. 3. NURBS wing surface meshed with the ASP algorithm.

Title Suppressed Due to Excessive Length 5

Table 2. Advancing Front vs. Advancing Steiner Point on wing surface.

Algorithm Time (sec) Minimum Angle (degrees)

Advancing Front 67.03 19.1

ASP .62 29.6

3.3 Cubit Test Suite

Cubit has an extensive set of test problems. Most of these problems are me-
chanical parts such as those shown in figure 4. These parts are primarily
composed of analytical surfaces such as planes, cylinders, and cones. Timing
results were computed for time to mesh all of the surfaces in a set of fifty-four
of these test problems. The advancing front algorithm performs very well on
the majority of these surfaces. There was one model that skewed the timing
results. In this model the advancing front algorithm required 2500 seconds
to complete the mesh. The ASP algorithm completed this same model in 20
seconds. Table 3 shows that the overall quality for these type of surfaces are
comparable with the ASP algorithm being about 20% faster overall. Quality
metrics for these models were also computed but the minimum angle com-
putation is skewed because there are sliver surfaces that are not removed by
either algorithm.

Table 3. Advancing Front vs. Advancing Steiner Point on 54 parts in the Cubit
test suite.

Algorithm Time (sec) Minimum Angle (degrees)

Advancing Front 160.34 .9

ASP 198.82 .5

4 Conclusion

The current Cubit advancing front algorithm performs intersections compu-
tation in real space whereas the Advancing Steiner Point algorithm does these
same calculations in parameter space. While the parameter space computa-
tion is somewhat faster, it appears that the main time drivers are related to
finalizing the mesh. The Cubit advancing front algorithm has to do a normal
check to ensure that the <3 intersections have not created inverted triangles.
It also does an optimization based smoothing <3 that can be very compu-
tationally expensive. The most expensive call is a normal calculation on a
NURBS surface. This same call is inexpensive on analytic surfaces and thus
we see that the two algorithms are comparable on analytic surfaces.

The Advancing Steiner Point algorithm creates better elements at the
closure conditions because it maintains a continuous Delaunay mesh at every

6 Karl G. Merkley and Mark L. Dewey

Fig. 4. Sample models from the Cubit test suite.

point in the process. Thus the closure process for the advancing is simply
bounded by the element size indicating when no further points should be
inserted. The Advancing Steiner Point algorithm provides both speed and
improved element quality over the existing Cubit advancing front algorithm.

References

1. The CUBIT Geometry and Mesh Generation Toolkit, Sandia National Labora-
tories, http://cubit.sandia.gov/, 2009.

2. Alper Üngör. Off-centers: A new type of steiner points for computing size-
optimal quality-guaranteed delaunay triangulations. Comput. Geom. Theory
Appl., 42(2):109–118, 2009.

3. S.H. Lo. A new mesh generation scheme for arbitrary planar domains. IJNME,
21:1403–1426, 1985.

4. T.S. Lau and S.H. Lo. Finite element mesh generation over analytical surfaces.
Computers and Structures, 59(2):301–309, 1996.

5. Marcum and Nigel P. Weatherill. Unstructured grid generation using iterative
point insertion and local reconnection. AIAA Journal, 33(9):1619–1625, 1995.

6. D.L. Marcum. Point insertion methods. In J.F. Thompson, B.K. Soni, and N.P.
Weatherill, editors, Handbook of grid generation. CRC Press, Boca Raton, 1999.

7. Steven J. Owen and Sunil Saigal. Surface mesh sizing control. International
Journal for Numerical Methods in Engineering, 47(1):497–511, 2000.

	andren-park-imr18-updated-10SEP2009
	IMR18_Mezentsev
	KamenskiHuangLang
	LazzaraDrelaHaimes_ResearchNote
	trihybrid

