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1 Introduction

Generation of meshes adapted to a given function u requires a specially de-
signed metric. For metric derived from the Hessian of u, optimal error es-
timates for the interpolation error on simplicial meshes have been proved
in [2, 5, 8, 10, 11]. The Hessian-based metric has been successfully applied
to adaptive solution of PDEs [4, 7, 9]. However, theoretical estimates have
required to make an additional assumption that the discrete Hessian approx-
imates the continuous one in the maximum norm. Despite the fact that this
assumption is frequently violated in many Hessian recovery methods, the gen-
erated adaptive meshes still result in optimal error reduction.

In this article we continue the rigorous analysis [1, 3] of an alternative way
for generating a space tensor metric using the error estimates prescribed to
mesh edges. The new methodology produces meshes resulting in the optimal
reduction of the P1-interpolation error or its gradient. We define a tensor
metric M such that the volume and the perimeter of a simplex measured
in this metric control the norm of error or its gradient. The equidistribution
principle, which can be traced back to D’Azevedo [6], suggests to balance M-
volumes and M-perimeters. This leads to meshes that are quasi-uniform in
the metric M.

The paper outline is as follows. In Section 2, we derive appropriate metrics
from analysis of the interpolation errors. In Section 3, we present the algorithm
for generating adaptive meshes and its application to a model problem.

Acknowledgments. Research of the third author has been supported
partially by the RFBR project 08-01-00159-a.

2 Metric derivation from local error analysis

Let Ω ⊂ ℜd be a bounded polyhedral domain and Ωh be a conformal simplicial
mesh with Nh simplexes. Let M be a piecewise constant tensor metric on Ωh.
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The volume of simplex ∆ and the total length of its edges in this metric are
denoted by |∆|M and |∂∆|M, respectively [2].

Let I1u be the piecewise linear interpolant of u, and I1,∆u be its restriction
to ∆. Our goal is to generate meshes that minimize the Lp-norm, p ∈ (0,∞],
of the interpolation error e = u − I1u or its gradient ∇e.

Let us consider a particular d-simplex ∆ with vertices vi, i = 1, . . . , d + 1,
edge vectors ek = vi − vj , 1 ≤ i < j ≤ d + 1, and mid-edge points ck,
k = 1, . . . , nd, where nd = d(d + 1)/2. Let λi, i = 1, . . . , d + 1, be the linear
functions on ∆ such that λi(vj) = δij where δij is the Kronecker symbol. For
every edge ek, we define the quadratic bubble function bk = λiλj .

Step 1. We begin with the derivation of a tensor metric from edge data.

Lemma 1 (Metric existence [1]). Let αk, k = 1, . . . , nd, be values pre-

scribed to edges of a d-simplex ∆ such that αk ≥ 0 and
∑nd

k=1 αk > 0. Then,

there exists a constant tensor metric M∆ such that

(
d!

(d + 1)(d + 2)

)1/d

|∆|2/d
M∆

≤
nd∑

k=1

αk ≤ |∂∆|2M∆
. (1)

Step 2. Let u2 be a continuous piecewise quadratic function and e2 =
u2 − I1,∆u2 be the linear interpolation error. We have

e2 = 4

nd∑

k=1

(u2(ck) − I1,∆u2(ck)) bk =

nd∑

k=1

γk bk,

where γk = 4(u2(ck) − I1u2(ck)). The L2-norm of the error e2 is given by

‖e2‖2
L2(∆) = |∆| (B γ, γ), (2)

where γ is a vector with nd components γk and B is the nd × nd symmetric
positive definite Gramm matrix with positive entries

Bk,l =
1

|∆|

∫

∆

bkbl dV.

Note that B is spectrally equivalent to the identity matrix. Thus,

c1 |∆|
(

nd∑

k=1

|γk|
)2

≤ ‖e2‖2
L2(∆) ≤ c2 |∆|

(
nd∑

k=1

|γk|
)2

, (3)

where the constants c2 ≥ c1 > 0 depend only on the space dimension d.
Analysis of the L2-norm of ∇e2 in [1] uses the Cholesky decomposition of

B̃ = LL
T , the Gramm matrix for vector-functions ∇bk, to get:

‖∇e2‖2
L2(∆) = |∆|

nd∑

k=1

β2
k, (4)
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where β = L
T γ. Thus, the L2-norms of e2 and ∇e2 are controlled by a sum

of non-negative numbers associated with the edges of simplex ∆ times |∆|.
Using Lemma 1 we build the metric M∆ for e2 by setting αk = |γk|.

Similarly, to build the metric M̃∆ for ∇e2, we set αk = β2
k. In the next step

we convert these metrics to optimal metrics for the Lp-norm.

Step 3. The extension of error estimates to general Lp-norms follows the
path described in [1]. With a slight modification of the argument used there,
we may show that the optimal metrics for the Lp-norm of e2 and ∇e2 are:

M∆,p = (det(M∆))
−1/(d+2p)

M∆ and M̃∆,p = (det(M̃∆))−1/(d+p)
M̃∆.

For simplicity, we confine ourselves to the case p = ∞. In this case, the metrics

generated by Lemma 1 are optimal, i.e. M∆,∞ = M∆ and M̃∆,∞ = M̃∆.

Step 4. For a given continuous function u, we define a computable error
e2 which will be used to estimate the true error e∆:

e2 = I2,∆u − I1,∆u and e∆ = u − I1,∆u,

where I2,∆u be the piecewise quadratic Lagrange interpolant of u on ∆.
Let F be the space of symmetric d × d matrices and |H| be the spectral

module of H ∈ F . We introduce the following notations:

|‖ek|‖2
|H| = max

x∈∆
(|H(x)|ek, ek) and |‖∂∆|‖2

|H| =

nd∑

k=1

|‖ek|‖2
|H|.

Lemma 2 (L2 error). Let u ∈ C2(∆̄). Then

d + 1

2d
‖e2‖L∞

≤ ‖e∆‖L∞
≤ ‖e2‖L∞

+
1

4
inf
F∈F

|‖∂∆|‖2
|H−F|.

Lemma 3 (Gradient error [1]). Let u ∈ C2(∆̄). Then, there exist positive

constants cs, Cs, and c4 = c4(d) such that

cs‖∇e2‖L∞
− osc(H,∆) ≤ ‖∇e∆‖L∞

≤ Cs‖∇e2‖L∞
+ osc(H,∆), (5)

where the oscillation term is

osc(H,∆) = c4
|∂∆|d−1

|∆| inf
F∈F

|‖∂∆|‖2
|H−F|

The oscillation terms are conventional in contemporary error analysis.
Their value depend on the simplex and particular features of the function.
For instance, if u ∈ C2(∆̄), and ∆ is shape regular, then osc(H,∆) ∼ |∂∆|2.

3 Metric-based mesh adaptation

We use the Algorithm 1 to build an adaptive mesh minimizing the Lp-norm
of error or its gradient. The algorithm is more robust for continuous tensor
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Algorithm 1 Adaptive mesh generation

1: Generate an initial mesh Ωh and compute the metric Mp.
2: loop

3: Generate a Mp-quasi-uniform mesh Ωh.
4: Recompute the metric Mp.
5: If Ωh is Mp-quasi-uniform, then exit the loop .
6: end loop

metrics that provide faster convergence and result in smoother meshes. We
suggest two methods for recovering of a continuous nodal-based metric from
the discontinuous piecewise-constant metric Mp.

For every node ai in Ωh, we define the superelement σi as the union of all
d-simplices sharing ai. The first method is based on simple shifting: to every
node ai, we assign the metric with the largest determinant from all metrics
available in superelement σi. The second method is generalization of the ZZ-
recovery method [12]. On every superelement σi, we search for a polynomial
u3 containing only cubic and quadratic terms. Let H3 be the Hessian of u3.
The free parameters are chosen to minimize the functional

∑

1≤j≤k≤d

∑

∆∈σi

(H3,jk(b∆) − (M∆)jk)
2
,

where b∆ is the barycenter of simplex ∆. We set M(ai) = H3(ai). To generate
a M-quasi-uniform mesh, we use local mesh modifications described in [2, 4,
10] and implemented in package Ani2D (sourceforge.net/projects/ani2D).

In Ω = [0, 1]2 we consider the analytical function proposed in [6]:

u(x, y) =
(x − 0.5)2 − (

√
10y + 0.2)2

((x − 0.5)2 + (
√

10y + 0.2)2)2
.

The function has an anisotropic singularity at point (0.5, −0.2/
√

10) located
outside the computational domain but close to its boundary. Table 1 shows
that the L∞-norm of the interpolation error is proportional to N−1

h , while
the L∞-norm of its gradient is proportional to N−0.5

h . Note that the meshes
minimizing the interpolation error and its gradient are different (see Fig. 1).
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Fig. 1. The adaptive meshes with 2000 triangles minimizing the maximum norm of
the interpolation error (left) and its gradient (right).

Method of shifts ZZ-type method

Nh ‖e‖L∞(Ω) ‖∇e‖L∞(Ω) ‖e‖L∞(Ω) ‖∇e‖L∞(Ω)

1000 1.55e-1 6.55e+1 3.74e-1 9.49e+1

4000 4.64e-2 3.16e+1 6.83e-2 4.91e+1

16000 1.14e-2 1.71e+1 2.00e-2 2.79e+1

64000 3.33e-3 8.39e+0 8.14e-3 1.34e+1

rate 0.93 0.49 0.92 0.47
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1 Introduction

In this paper, we build on the mesh improvement methods intended for par-
allel execution with the paving method [1] and introduce topological changes
in an existing quadrilateral-only mesh to improve element shape and nodal
valence. This discussion is intended to demonstrate the effectiveness of utiliz-
ing mesh cleanup operations as a post-processing step to other mesh gener-
ation algorithms. The technique is applied to meshes produced via triangle-
to-quadrilateral subdivision and octree-based surface generation methods to
exemplify dramatric improvement in mesh quality independent of the original
mesh structure and generating method.

2 Mesh Improvement Algorithm

2.1 Mesh Improvement

The purpose of this research is to identify poor topological conditions in
quadrilateral meshes and replace specific templates with alternate templates
to improve quality and topology and improve mesh structure by targeting high
vertex valence. The templates are illustrated in Figure 1. Although most Dou-
blets are resolved with a face close operation, doublets that are constrained
by curves must be treated with a doublet insertion and edge swap (case 2) or
a face open operation (case 3). Triangular Quadrilaterals are cleaned up by a
doublet insertion and then are treated by case 2 of the Doublet Removal oper-
ation. Similarly, Flat Quadrilaterals are modified with an edge swap and then
treated as Triangular Quadrilaterals. The Diamond Collapse and Quadrilat-
eral Edge Swap operations are respectively a face close operation or an edge
swap operation performed on specific topologies, always resulting in a more
structured mesh. High Valence Nodes are resolved with either a face open
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Fig. 1. Quadrilateral improvement operations.

operation (case 1) or a face close operation (case 2). To avoid creating addi-
tional problematic topologies, the more simple operations are performed first
and the more difficult ones later, in this order: Diamond Removal, Doublet
Removal, Quadrilateral Edge Swap, Triangle Quads, and finally High Valence
Nodes.

2.2 Geometric Constraints and Smoothing

When performing local topological changes to a surface mesh, care must be
taken not to alter the geometry of the model. Geometric features are identified
a priori and template replacement that results in the removal of geometric
features is disallowed. Additionally, to preserve geometric characteristics that
are not explicitly defined by curves or vertices, the normal of each pair of
adjacent quadrilaterals is calculated. Large differences in the angles of the
normal vectors of adjacent quadrilaterals indicate the presence of a geometric
feature. If this is the case, the edge and nodes common to the quadrilaterals
are marked to be treated as a curve to preserve the feature.

Element quality is considered in addition to local topology, and smoothing
is performed after each iteration of the algorithm. An iterative centroid area
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scheme is used because it is very straight-forward to implement and requires
much less computational effort than many other smoothers [2].

3 Examples

3.1 Plane Mesh Improvement

The first example, illustrated in Figure 2, is a triangle mesh that has been
subdivided into quadrilaterals using a Catmull-Clark subdivision and then
cleaned up with the method presented in Section 2. As can be seen in Table
1 the number of elements was reduced and the mesh quality was improved
significantly, with dramatic improvement in the mesh topology as shown in
Figure 2.

Fig. 2. Before and after quadrilateral improvement on a triangle mesh that has
been split into quadrilaterals.

3.2 Surface Mesh Improvement

The triceratops and rabbit examples demonstrate the effectiveness of the al-
gorithm on three-dimensional surface meshes, illustrated in Figure 3. The
topology results are illustrated in Figure 3 and the element quality and node
valences are further analyzed in Table 2. The cleanup algorithm presented in
this paper improves the average scaled Jacobian of the meshes by significantly
increasing the number of structured nodes and generating many near square
elements.

3.3 Limitations

The methods demonstrated in this paper are straight-forward to implement
and can be applied to any quadrilateral mesh. Since the improvement oper-
ations tend to increase structure, the likelihood of algorithmic circularity is
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Table 1. Before and after comparisons of the number of quadrilateral elements, the
average, minimum and maximum scaled Jacobians (SJ), and the valence histograms
(number of nodes |N| and % of the total) of mesh shown in Figure 2.

Quality Circular Disk
Metric Before After % Change

|Quad| 333 269 −19.2
Ave. SJ 0.804 0.951 18.2
Min. SJ 0.648 0.717 10.7
Max. SJ 0.878 1.000 13.8

Histogram |N| % |N| %

Val. 2 0 0.0 0 0.0
Val. 3 111 30.9 26 8.8
Val. 4 179 49.9 222 75.3
Val. 5 13 3.6 47 15.9
Val. 6 49 13.6 0 0
Val. 7+ 7 1.9 0 0

Table 2. Before and after comparisons of the number of quadrilateral elements, the
average, minimum and maximum scaled Jacobians (SJ), and the valence histograms
(number of nodes |N| and % of the total) of the two meshes shown in Figure 3.

Quality Rabbit Triceratops
Metric Before After % Change Before After % Change

|Quad| 21714 19675 −9.4 19274 17607 −8.6
Ave. SJ 0.904 0.968 7.1 0.903 0.962 6.5
Min. SJ 0.453 0.436 −3.8 −0.500 0.031 106.2
Max. SJ 1.000 1.000 0.0 1.000 1.000 0.0

Histogram |N| % |N| % |N| % |N| %

Val. 2 0 0.0 0 0.0 0 0.0 0 0.0
Val. 3 5099 23.5 1078 5.5 4190 21.7 880 5.0
Val. 4 12163 56.0 17530 89.1 11434 59.3 15859 90.1
Val. 5 3817 17.6 1068 5.4 3122 16.2 868 4.9
Val. 6 637 2.9 1 0.0 530 2.7 2 0.0
Val. 7+ 0 0.0 0 0.0 0 0.0 0 0.0

low. The order of operations can affect the level of results achieved and the
heuristic ordering that we have chosen for our algorithm may not be gener-
ally appropriate for all mesh generation methods. However, for the examples
shown, this recipe has led to pleasing results, especially for the triangle sub-
division mesh.

4 Conclusion

In this paper, we introduce topological changes in an existing quadrilateral
mesh to improve quadrilateral shape and nodal valence. Our purpose is to
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Fig. 3. Before and after quadrilateral improvement on two meshes constructed as
grafted quadrilateral surfaces. Despite the generation type and original connectivity,
our improvement methods greatly increase the percentage of ideal nodes and element
quality.

show the impact of topological improvement operations for all quadrilateral
generation methods. We have demonstrated these mesh improvement opera-
tions with several different quadrilateral mesh schemes and have shown dra-
matic improvement in the quality of these meshes.
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1. Introduction 

 

The objective of this note is to demonstrate the necessity of using an appropriate automatic adaptive 

meshing technique so as to handle complex microstructural evolutions. Examples of such 

microstructural evolutions include the deformation and recrystallization of polycrystalline aggregates 

or the growth of dendrites occurring during the solidification of metallic alloys. In such applications, it 

is required to track and/or capture accurately the interface between two or several domains having 

different mechanical behaviour. Also, the interface is a region where strong physical and/or kinematic 

incompatibilities, stemming from the heterogeneity of the mechanical response, occur. Gradients of 

the various mechanical fields develop across the interface and are expected to be significant in the 

direction perpendicular to the boundary. For these reasons, anisotropic mesh refinement along the 

interface, with a smaller mesh size in the perpendicular direction to it, is needed. This strategy 

represents a good compromise between accuracy and computation time as the mesh refinement is 

performed only where it is necessary. The level set framework used in our approach to represent and 

follow the boundaries is fully compatible with this meshing technique and allows for the remeshing to 

be handled quite easily throughout the evolution of the microstruture as often as needed. 

 

After presenting briefly the basis of the anisotropic meshing and remeshing tool, two illustrative 

applications are presented.  

2. Anisotropic meshing and remeshing based on the level set framework 

 

In order to construct an anisotropic mesh, an appropriate anisotropic metric has to be defined. In our 

approach, the construction of the metric is based on the level set framework which is used for domain 

representation. The level set is defined as a signed distance function φ with a zero level corresponding 

to the interfaceΓ : 

{ }



=Ω∈=Γ
Ω∈Γ=
0)(,

),,()(

xx

xxdx

φ
φ

 
(1) 

 

The direction of mesh refinement is the normal to the interface which is defined by the gradient of the 

level set function φ∇=n . Figure 1 illustrates the concept in 2D. Let h1 be the desired mesh size far 

from the interface where isotropic mesh is needed and h2 the desired mesh size in the direction of φ∇  

in the region close the to the interface where anisotropic mesh is needed. As seen on figure 1, h1 is also 

the mesh size in the direction perpendicular to φ∇  in the region surrounding the interface. 



 

Fig. 1.  Left: level set function in 2D with its zero level and the direction of its gradient; right: a close up 

view of the region near the zero level. 

 

The metric M is defined as follows: 

( )
2

1h

Id
CM +∇⊗∇= φφ  

(2) 

   

where Id is the identity tensor, C  a scalar parameter which is equal to 
2

1

2

2

11

hh
−  in the anisotropic 

region and 0 in the isotropic region. One can verify that such common definition for the metric leads 
to an isotropic mesh far from the interface and an anisotropic mesh near a specified region around the 

boundary. 

The metric M is fed into MTC [1] which builds the corresponding mesh. Most importantly, the 

level set description is fully compatible with automatic remeshing. The values of the level set function 

are directly interpolated from the old mesh to the new one and the corresponding anisotropic metric 

and mesh are reconstructed. Thus, periodic adaptive automatic remeshing can be easily performed, 

thereby always ensuring appropriate refinement near the interface. 

3. Application 1: deformation and subsequent primary recrystallization of 
polycrystalline aggregates 

Recrystallization phenomena inevitably occur during thermal and mechanical processes and have a 

major impact on the final in-use properties of the polycrystalline metallic materials [2]. The objective 

of this study is to model the deformation of 3D grain structures subjected to important strains in an 

attempt to provide reliable quantitative data to be used for the modelling of the recrystallization. 

3D polycrystalline volumes are constructed using random Voronoï tesselation or based on voxelized 

experimental data. When dealing with a polycrystalline aggregate, an individual level set function is 

used for each grain: { }Gi Ni ≤≤1,φ  , with NG the total number of grains in the aggregate. One can 

also define a global level set function as { }Giglob Ni ≤≤= 1,max φφ with a zero value corresponding 

to the interface between all grains. The obtained digital microstructures are meshed anisotropically and 

adaptively, with refinement close to the grain boundaries as seen on figure 2. Digital mechanical 

testing then takes place using classical crystal plasticity constitutive law [3] coupled to a non-linear 

finite element solver in an updated Lagrangian framework. In this context, the level set function of 

each grain moves according to the material velocity, which corresponds here to the mesh velocity. The 

large deformation of the aggregate is responsible for strong mesh distortion as seen on figure 2, hence 

the need for frequent remeshing. 

Anisotropic 

mesh 

Isotropic 

mesh 

Isotropic 

mesh 1h

2h
φ∇

Γ Γ



 

Fig. 2.  1000 grains polycrystal. Left: Anisotropic mesh before deformation (2 125 688 nodes, 12 385 889 

elements) ; right : mesh after 70% thickness reduction 

The deformation simulation provides an estimate of the spatial distribution of strain energy within 

the polycrystalline aggregate. The latter quantity is used as input for modelling subsequent primary 

recrystallization as seen on figure 3. As in the deformation stage, level set functions are used to 

represent grains during the recrystallization stage. The microstructure obtained at the end of the 

deformation step is used as input to the recrystallization simulation. New nuclei are introduced in the 

simulation by creating new level set functions based on the gradient of the stored energy.  

 

 

Fig. 3. Left: stored energy at the grains interface after deformation; right: the gradient of the stored 

energy 

 

Fig. 4.  From left to right and top to bottom: evolution of the recrystallized part in blue 

 



 

 

As opposed to the deformation step, the microstructure evolution during the recrystallization stage 

is perfomed in Eulerian context. Thus, the level set function of each grain is convected throughout the 

mesh. In order to correctly evolve the fronts, several issues need to be addressed. The main problem is 

the development of vacuum and/or overlapping regions. A highly refined mesh is needed near the 

interfaces of the grains so as to ensure a good accuracy in the computation of the interface velocities. 

The adaptive meshing technique described previously has proved to be an efficient tool in achieving 

this objective [4]. Frequent remeshing is needed as the microstructure evolves as seen on figure 4. 

4. Application 2: dendritic growth 

Dendritic growth occurs during complex heat/solute diffusion processes associated to curvature 

effects and all at their own length and time scale. First numerical results concerning the simulation of 

dendritic growth of a single dendrite in two dimensions is presented in this section. Material 

parameters and geometry were taken from [5]. The initial solid grain is a circle with an initial 

concentration corresponding to the equilibrium liquid concentration of the phase diagram and is 

inserted in a square domain. As with recrystallization simulation, the level set framework is used in an 

eulerian context for the evolution of the microstructure. Frequent remeshing is needed and for the case 

presented here the frequency of remeshing was 20, for several thousands of time steps. Figure 5 

illustrates the evolution of the different computed variables during dendritic growth. One can observe 

a logical anisotropic growth, as well as the solute’s migration between phases and the different thermal 

and solutal diffusion layers. Even though these first results are promising, dendrite final shape is not 

quite well achieved: due to curvature effects, dendrite's tip should be rounded and instabilities 

occuring at the interface should vanish with time. If we look at the mesh during growth (figure 6)  we 

can see that although a relatively fine adaptation near the interface was performed, it may not be 

sufficient to capture the anisotropic curvature correctly. Moreover, we may also need to enlarge the 

adaptation to the whole solutal diffusion layer (due to the abrupt concentration's pattern in this zone). 

Perspectives of this work include the use of a posteriori error estimators both on level set and 

concentration solutions to better guide the meshing procedures. 

 

 

Fig. 5. Growth of one dendrite. From left to right and from top to bottom: representation of the 

adimensional concentration, of a normalized [0,1] function of the level set, of the real concentration and of 

the adimensional temperature 

 

 



 

Fig. 6. Mesh evolution during dendritic growth showing anisotropic refinement near the moving front 

5. Conclusion 

It has been shown that an adaptive anisotropic automatic meshing and remeshing technique coupled 

to a level set framework is a promising tool to describe complex phenomena such as the deformation 

and subsequent primary recrystallization in polycrystalline materials and dendritic growth during 

solidification of metallic alloys. Indeed, in the case of polycrystalline aggregates, large plastic 

deformation is achieved on a representative volume element of 1000 grains and for primary 

recristallization modelling, full kinematic compatibilities are enforced, and nucleation and growth 

phenomena are implemented. Perspectives for recrystallization modelling include simulations with a 

statistical number of grains, the prediction of recrystallization kinetics and the comparison with other 

models. Concerning dendritic growth, perspectives include a better guidance of the adaptive meshing 

procedure using error estimators. Furthermore, a local level set method can also be adopted, to avoid 

advection of the function over the whole computational domain. 

It should be noted that this research note presents a first promising step in the simulation of complex 

phenomena at the microscale. The adaptative meshing technique presented here seems to be an 

unavoidable tool if we wish to simulate microstructural evolutions at even smaller scales. 
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A new technique for adaptive grid generation is presented. This technique
is fast and based on quad-tree decomposition. The resulting mesh is quad-
dominant and ready for the application of finite element and multigrid meth-
ods. The lower bound of the interior angles of any element is set to be 45◦

except at those parts of the boundaries where the geometry is discontinuous.
Narrow regions of the domain are automatically detected and represented ef-
ficiently. An algorithm for mesh modification in the boundary layer region is
presented. Several application examples are provided to emphasize the main
features of this new approach.

1 Introduction

Grid generation is a first step in the solution of many computational problems,
especially those arising in scientific computing and computer graphics. For ex-
ample, the accuracy of the numerical solution of partial differential equations
depends on the quality of the grid used in the discretization of the problem.

Over the last two decades, adaptive methods have stirred much interest in
the engineering community. For compressible flow applications, such methods
are crucial because of the pressing need for accurate computation of flows
with variable density and/or shock waves. Adaptive methods offer a means
of tackling complex flow problems at a reasonable cost and of controlling the
accuracy of numerical simulations.

The purpose of this paper is to describe a high-quality mesh generation
technique for planar domains of arbitrary shape based on quad-tree decompo-
sition. Our goal for this new technique is to achieve the following requirements:

• Fast and adaptive.
• Capable of automatic detection and efficient representation of narrow and

slope-discontinuous regions in the domain.
• Efficient representation of the boundary layer region.
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• Ready for the application of finite element methods.
• Ready for the application of multigrid and line-solver methods.
• Most of the domain is covered by squares.
• Minimum angle in any element should be greater than or equal to 45◦ with

the exception of those elements with a node where the boundary of the
domain is slope-discontinous.

Our mesh generation technique can be summarized in the following steps:

1. Linear representation of the domain boundaries based on its curvature:
• Each closed boundary curve is represented initially with a two-line

segment ployline.
• The number of the line segements in each polyline increases through

an iteraive adaptive refinement procedure.
• A parameter, ε, is responsible for the termination of the iterative re-

finement procedure which stops when all the angles, αi, of the closed
polyline satisfy 180◦ − ε < αi < 180◦ + ε

2. Refinement of a background Cartesian mesh based on quad-tree decom-
position and distribution of boundary edges:
• The size of the near boundary elements is determined based on the

length of the nearest boundary edge.
• Narrow domain regions are detected and refined.

3. Detection of the points out of the domain.
• Standard Delaunay triangulation is used to cover each closed curve

with triangles.
• Exterior elements are then removed.

4. Optimization of near-boundary elements:
• Buffer zone creation around each shape and removal of external ele-

ments.
• Covering the buffer zone between the terminal elements and the bound-

aries of the domain.
• Modification of the boundary layer elements to enable efficient captur-

ing of the velocity variables for viscous flows.
5. Mesh adaption based on some error function during numerical simulation.

The output of these steps is demonstrated using the following figures. Figure 1
shows the linear representation of two different domain boundaries; a smooth
one with varying curvature and another one with discontinuous-slope and
narrow regions. Figure 2 shows the spatial decomposition around the two types
of boundaries (varying curvature and narrow region). The result from step 3 in
which the domain is covered with triangles is shown in Fig. 3. The optimization
step and the modification of the elements in the boundary layer region is
demonstrated using Figs. 4 and 5. Finally the solution based adaptation and
the multigrid levels are demonstrated in Figs. 6 and 7 for unsteady flow over
two vertical cylinders..
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(a) ε = 10◦ (b) ε = 30◦

Fig. 1. Linear representation of the domain boundaries

(a) Domain with bound-
aries of varying curvature

(b) Domain with narrow re-
gions

(c) Zoom A (d) Zoom C

Fig. 2. Spatial decomposition based on quad-tree and boundary edge distribution

(a) Output of Standard De-
launay algorithm

(b) External Elements Re-
moved

Fig. 3. Covering the domain with triangles
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(a) Domain with boundaries of vary-
ing curvature

(b) Domain with narrow regions

(c) Zoom A (d) Zoom A

Fig. 4. Optimization Step

(a) (b)

Fig. 5. Modification of the elements in the boundary layer region
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(a) t = 1.00 (b) t = 4.00 (c) t = 8.00

(d) t = 12.00 (e) t = 16.00 (f) t = 20.00

Fig. 6. Evolution of grid and vorticity contours for flow over two vertical cylinders
at Re = 200

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

(e) Level 5 (f) Level 6 (g) Level 7 (h) Level 7 - zoom
in

(i) Level 8 (j) Level 9 (k) Level 10 (l) Level 11

Fig. 7. Grid Levels for a domain with two vertical cylinders
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Summary. Since 1995, when Ruppert invented his Delaunay mesh refinement algorithm and
proved that it always produces a mesh barely larger than is optimal, a number of techniques
have extended his work to various settings: higher dimension, curved features, fast runtime,
parallelism, etc. Each extension needs a different method to choose vertices for the mesh, and
thus each extension needs its own tedious proof of the output size guarantee. In this research
note, I show how to classify points as safe or potentially unsafe; any algorithm that chooses
only safe points achieves the sizing guarantee. Furthermore, I show that it is easy to classify
as safe the vertices chosen in prior work. This work frees future meshing researchers to more
easily consider varying the choice of vertices in order to achieve important new properties.

1 Introduction
The Delaunay refinement method [Rup95, She98] sits at a happy confluence of the-
oretically provable qualities and good behaviour in practice. The method starts by
computing a Delaunay triangulation, then incrementally adds vertices one by one,
retriangulating after each insertion, until the mesh has the desired properties: every
mesh element has good quality, and the geometric model being meshed is accurately
represented. According to Shewchuk [She98]: The central question of any Delaunay
refinement algorithm is “where should the next vertex be inserted?” He gives what
he calls a “reasonable” answer, but it is not the only one.

In particular, Boivin and Ollivier-Gooch show how to adapt Ruppert’s algorithm
for some curved inputs [BOG02], adding vertices near the middle of a curved seg-
ment, instead of at the midpoint of a linear segment. There have recently been sev-
eral results on meshing piecewise smooth inputs in higher dimension (e.g. [RY07,
CDL07]) that discuss where to put new vertices on the curved surfaces. Away from
any surfaces, Üngör recommends using the off-center [Üng04] rather than the tra-
ditional circumcenter, nearly halving the output size in practice. Har-Peled and
Üngör [HPÜ05] use off-centers to achieve fast runtime. Alternately, Hudson, Miller,
and Phillips [HMP06] achieve fast runtime on a broader class of inputs by starting
with a very coarse mesh, then alternating between inserting input points and Steiner
(created) vertices. Refinement can also be done in parallel: the question becomes to
find a set of vertices to insert simultaneously [STÜ07, STÜ04, HMP07].
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p

q

rp

rq

Fig. 1: Two curved features: a curve (left), and an ellipse (right). The ball B(p, rp) intersects
the curve twice, so lfs(p) < rp. Similarly, B(q, rq) intersects the ellipse in a sphere, not a ball,
so lfs(q) < rq . The local feature size is the maximum function that satisfies these constraints.

All of these articles reproduce, with minor adjustments, a proof pioneered by
Ruppert. The proof states that the algorithm terminates, and outputs a mesh only
slightly larger than is optimal. It is typically two pages long. Chernikov and Chriso-
choides [CC07] have a more general proof that encompasses a few algorithms, but
the present work provides a much broader generalization, allowing far more radical
departures from tradition.

Contributions: I describe simple rules for categorizing one or more vertices as safe
to insert, even in parallel. The rules appear in Section 3. In this research note, I
formally state the main theoretical result (Section 4), but leave the proofs to an online
manuscript [Hud08]. Finally, I provide an example of how to apply the proof.

2 Preliminaries

The quality criterion I use in this work is the Voronoi quality, which is closely related
to the well-known radius-edge ratio. Let NN(v) be the distance from a vertex v to its
nearest neighbour. Let R(v) be the distance from v to the farthest node of its Voronoi
cell. Then the vertex v is ρ-good if R(v) ≤ ρ NN(v). As input, I assume the mesher
receives a piecewise smooth complex: a set X of smooth manifolds—which I call
features—that do not intersect except at their boundaries. In the end, the mesh should
respect the geometry: each input feature should be represented or approximated by a
union of simplices (segments, or triangles) in the output mesh.

To respect both the geometry and the spacing function, the mesh must pack ver-
tices sufficiently densely. This induces a so-called local feature size function: in the
output mesh, for every point p ∈ Ω, there must be a mesh vertex within a distance of
O(lfs(p)). The function is minimal on the features, where it is defined as illustrated
in Figure 1, and elsewhere grows proportionally as we move away from features. See
the full version of this paper for a technical definition. One unfortunate fact about the
local feature size function I use is that it is only bounded away from zero if the com-
plex is non-acute—intersecting features must meet at right or obtuse angles. This is
a traditional problem with all Delaunay mesh refinement algorithms; some specially
handle small angles, while others fail or risk failing when faced with acute angles.
Properly handling inputs with acute angles remains a major open problem.
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p

u

v

(a) QUALITY

δr

p

q

r

v

(b) YIELDING

p

(c) ENCROACHMENT

Fig. 2: Examples of almost-safe points.

3 Safe Points

Fundamentally, the safety rules must ensure that if the algorithm were to insert a
point p, then, in the output, the relation NN(p) ∈ Ω(lfs(p)) holds—that is, not only
is the mesh at least as dense as local feature size, but it is no denser. However, the
safety rules should also resemble conditions that algorithms can easily test. For the
analysis, I define safety not on points but on triples 〈p, r, f〉. They should be read
as denoting an open ball B(p, r) with radius r, centered on a point p that lies on a
feature f . Ideally, the ball should be empty of any vertices; the parameter δ allows
accounting for either purposeful perturbation or rounding errors.

Definition 1 (Almost-safe). Let X be a piecewise manifold complex. Let B(p, r) be
a ball centered on an input feature f ∈ X , but not centered on any lower-dimensional
feature. The triple 〈p, r, f〉 is almost safe if no vertex on f , nor any 0-manifold that
is a subfeature of f , lies within B(p, δr), and also one or more of the following
conditions hold (see Figure 2):
• INPUT: p ∈ X . Then we define r ≡ ∞.
• ENCROACHMENT: For some f ′ ∈ X , B(p, r) ∩ (f ∪ f ′) is not contractible.
• QUALITY: B(p, r) contains a vertex v, and |pv| ≥ ρ NN(v).
• YIELDING: B(p, r) contains both a point q that lies on fq and a vertex v that

lies on f ; f is a subfeature of fq; and q is the center of an almost-safe triple.
Under these conditions, we say that q yields to p.

I call these triples merely almost-safe, because they could be arbitrarily close to
a feature. The QUALITY and YIELDING rules would then allow arbitrary amounts of
refinement. Following prior work, I solve this issue by requiring that an almost-safe
triple that can yield must not be inserted:

Definition 2 (Full Safety). Let 〈p, r, f〉 be an almost-safe triple. The triple is fully
safe if p does not yield to any point on a subfeature of f .

The safety rules are all local checks, so we should not be surprised that we can
apply them in parallel. I use the technique of serialization: an algorithm is allowed to
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insert a set of safe triples in parallel if there exists at least one sequential ordering of
the insertions under which each triple is safe when it is inserted. This is equivalent
to the following geometric condition (see the full-length paper):

Definition 3 (Safe Set). Let S = {〈pi, ri, fi〉, . . .} be a set of triples. We say the set
is safe if S does not have a pair of triples on the same feature, 〈p, r, f〉 and 〈p′, r′, f〉
with |pp′| < δ min(r, r′).

Definition 4 (Safe Meshing Algorithm). An algorithm is a safe meshing algorithm
for an input X if it incrementally inserts safe sets, and no other points.

p

qr

v

Fig. 3: PROJECTION

In the next section, I claim that a safe meshing al-
gorithm will necessarily terminate, as long as ρ is set
sufficiently large (we cannot ask for triangles arbitrar-
ily close to equilateral). In the case of piecewise linear
complexes, the requirement on ρ can be improved by
replacing the YIELDING rule with:

PROJECTION: 〈p, r, f〉 satisfies the YIELDING con-
ditions, and, additionally, the orthogonal projection of
q onto f is closer to v than is p, where v is defined as
in the YIELDING rule.

4 Termination proof

The key theorem shows that the lfs function acts as a lower bound on the spacing
between vertices in the final output mesh of a safe algorithm, assuming that the
quality criterion is appropriately set. Then the safe algorithm must terminate. The
proof [Hud08] invokes a parameter β. In an algorithm that uses the PROJECTION
rule, β =

√
2. If we can only prove that it uses the YIELDING rule, then β = 2. Most

extant algorithms assume they make no numerical error, and thus δ = 1.

Theorem 1. Consider the output of a safe meshing algorithm with ρ such that

δdρ > βd−1

Then, at any vertex v in the mesh, NN(v) ∈ Ω(lfs(v)). On a piecewise linear com-
plex, this means that the mesh output by the algorithm is within a constant factor
of the smallest possible mesh. For any input, this means the algorithm terminates as
long as lfs is bounded away from zero everywhere.

5 Application of the proof

Ruppert and Shewchuk give algorithms to mesh non-acute piecewise linear com-
plexes. For brevity, I discuss only Shewchuk’s algorithm, which is the three-dimen-
sional analogue of Ruppert’s. The initial step is to compute the Delaunay triangu-
lation of the input points. This corresponds to repeatedly invoking the INPUT rule,
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which is always safe. Shewchuk also recommends maintaining a triangulation for
each input feature (each input polygon is a set of triangles, and each input segment
is a set of subsegments). Shewchuk defines an encroached subsimplex as being one
whose associated ball contains either a vertex of a disjoint feature, or a point be-
ing considered for insertion. When a subfacet is encroached, we should insert its
circumcenter p — unless the circumcenter itself encroaches a subsegment. This cor-
responds to the ENCROACHMENT and YIELDING rules. Finally, if a tetrahedron is
skinny (that is, if it has circumradius r, shortest edge uv, and r ≥ ρ|uv|), then we
may attempt to insert its circumcenter, yielding as necessary, which directly corre-
sponds to the QUALITY rule. Shewchuk proves a projection lemma: when a subsim-
plex is encroached, another subsimplex on the same feature is also encroached for
which the PROJECTION rule applies. Shewchuk uses δ = 1 in theory (in practice, nu-
merical errors may reduce δ). Theorem 1 thus proves that the algorithm terminates
for any ρ > 2, matching Shewchuk’s bound; or, in two dimensions, for ρ >

√
2,

matching Ruppert’s bound.
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Traditionally, methods for solving partial differential equations such as the
Finite Element method and the Finite Difference method can not deal with
open region problems. On the other hand, when applying these methods, the
computational domain has to be truncated to keep the computational costs
at a reasonable level. To resolve this discrepancy, many different approaches
have been followed. Techniques that treat the interior as well as the exterior
problem by discretising the underlying partial differential equation rely on a
discretisation of the exterior domain that satisfies several crucial conditions.
We will discuss the problems these conditions pose and present an algorithm
that will provide such a discretisation if one exists.

1 Background

The ambivalence between bounded computational domains and unbounded
problem formulations is inherent in many applications. Each method applied
to resolve this discrepancy requires the coupling of interior and exterior do-
mains. This is either accomplished by the construction of transparent bound-
ary conditions or by combining differentiation techniques for the solution of
the coupled problem. The techniques we consider are the Perfectly Matched
Layers (PML) Method as formulated by Bérenger in [1] and the Pole Con-
dition formulated by F. Schmidt in [2]. Both require a discretisation of the
unbounded exterior domain. Yet, while the triangulation of inhomogeneous
bounded interior domains via constraint delaunay algorithms and Rupperts
algorithms for refinement and mesh quality enforcement is already very elab-
orate [3, 4, 5], to our knowledge the discretisation of inhomogeneous exterior
domains was not approached so far.
Surprisingly enough, it is sometimes non-trivial to find discretisations of het-
erogeneous exterior domains and we will show that even in the two dimensional
case we can find simple examples where such a discretisation does not exist
at all.
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2 Discretisation in two dimensional space

In this section we will start by defining the conditions a discretisation of
the exterior will have to fulfil in order to be admissible for our application.
We will then introduce an algorithm that can produce such discretisations and
prove the existence of solutions and the consistence of the algorithm. Both our
applications require a discretisation of the exterior domain with quadrilaterals
(two dimensions) or prisms (three dimensions) for our discretisation to be
admissible we will require the following conditions:

A1: The quadrilaterals have to have one side on the boundary of the compu-
tational domain and the other side infinitely far from it

A2: Each quadrilateral or prism has to be homogenous in its interior. So if
the inhomogeneities in the exterior domain such as waveguides in optics,
are depicted as infinite rays leaving the computational domain, these rays
must be contained in exactly one quadrilateral or prism for all times.

A3: For our application these prisms are cut off parallel to the boundary of
the computational domain at a finite distance from it. It is necessary for
both methods, that the so-created edges parallel to the computational
domain form a closed polygon or in the three dimensional case a closed
polyhedron, a scaled and distorted version of the computational domain.

While the conditions A1 and A2 are merely local criteria, condition A3 is a
global condition to be fulfilled which is one of the difficulties to be mastered
to gain a valid discretisation of the exterior domain.

2.1 Challenges

We will first depict the challenges of creating a valid discretisation and then
show an example where no valid discretisation can exist. For our example we
will choose the unit square as computational domain. Assume light scattering
off an object containing four waveguides that leave this computational do-
main, each on one side of the square, and stretch to infinity. Now let these
waveguides stretch into the directions c1, c2, c3 and c4 numbered counter
clockwise starting from the waveguide leaving the domain through the edge
on the x-axis (c.f. Fig. 1).
If one considers the corners of the computational domain, rays for the dis-
cretisation of the exterior, that attach to these corners have to lie within a
cone that is spanned by the prolongation of the edges. If an inhomogeneity
is given, this cone is narrowed by a side parallel to this inhomogeneity going
through the corresponding corner. In Fig. 1 at the edges of the computational
domain, these narrowed cones are marked grey and the discretisation rays are
depicted as dashed lines. Note that each inhomogeneity only affects one cone.
This is not the general case since in computational domains with inner angles
larger than 90◦ some inhomogeneities might affect several edges.
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Computational

domain

c1

c2

c3

c4

Fig. 1. Four waveguide inhomogeneities leaving the computational domain each
through one edge. Dashed lines are exemplatory discretisation rays.

Let αi denote the angle between ci and the edge through which the inhomo-
geneity defined by ci leaves the computational domain.

Lemma 1. Let the computational Domain be the unit square and the inho-

mogeneities ci be defined as before. Let 0 < αi < π
4 for i = 1, ..., 4. Then there

exists no discretisation of the exterior domain that satisfies the conditions A1,

A2 and A3.

Proof. The situation is depicted in Fig. 2. If the first quadrilateral of an exte-
rior domain discretisation is cut off at a distance d1 from the computational
domain, then the closest cut off distance for its neighbour such that a line
connecting the corner of the computational domain with the corner created
by both cut offs for trigonometrical reasons has a distance of d2 = d1

tan α1

to
the computational domain. Since α1 < 45◦, d2 > d1. So if all four inhomo-
geneities have angles less than 45◦, by applying the same argument at each
corner of the computational domain, we see that the minimal distance for the
last cutoff is d4 > d1. Via d1, the x-coordinate of the intersection between the
first and the last cutoff is already fixed while −d4 determines the y-coordinate.
For the discretisation to be conforming to the given criteria, said intersection
point has to lie in the cone formed by the x-axis and c1. Yet a line parallel
to the second edge of the computational domain with a distance of d1 to it,
intersects this cone only in the interval [0,−d1 ∗ tan(α1)] which contains only
points whose y-coordinate is less than d1. Thus both lines can not intersect in
the given cone and thus not form a valid discretisation of the exterior domain.
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Fig. 2. Schematic of a computational domain together with constraints that make
a valid discretisation of the exterior domain impossible.

2.2 Algorithmic solution

We will now present an algorithmic solution of the problem of creating a valid
discretisation of the exterior domain if it exists and subsequently prove the
existence of a solution and the consistence of the algorithm. The algorithm is
given for 2D computational domains for graphic reasons, but it may also be
extended to 3D computational domains.

Theorem 1. Let the following algorithm find appropriate ξi in step 5 and

thus not terminate in step 6: Algorithm:

1. Embed the problem into R
3 (“lifting”), leaving the computational domain

in the (x1, x2) plane;

2. Define an axis Ξ that is orthogonal to the (x1, x2) plane and intersects

the computational domain in an interior point;

3. For each edge ei of the computational domain, define a plane Ei containing

ei and a point on Ξ having −ξi as x3-coordinate;

4. At each corner Vi of the computational domain, form the intersection of

the planes Ei−1 and Ei containing the adjacent edges ei−1 and ei thus

obtaining lines of intersection Si ⊂ R
3;

5. Select appropriate ξi such that the projections of the Si into the (x1, x2)-
plane do not conflict with any constraints given by inhomogeneities and

do not intersect each other;

6. If such ξi exist, continue. Otherwise exit, there is no valid discretisation;

7. Intersect all Si with a plane parallel to the (x1, x2)-plane;

8. Project the Si into the (x1, x2)-plane. The points of intersection formed

in the last step now define the corners for the quadrilaterals required for

a discretisation of the exterior domain.

Then the following holds true:
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1. Existence: The algorithm it produces a valid discretisation of the exterior

domain, if one exists.

2. Consistence: For each valid discretisation of the exterior domain, there

exist ξ1, ..., ξn for which the algorithm will produce this discretisation.

Proof. The first proposition is evident from the construction principle. If the
algorithm terminates, in step 5, appropriate ξi were chosen. The resulting
lines of intersection of the Ei will then form a valid discretisation of the
exterior domain and since each Ei contains one edge ei of the computational
domain, the endpoints of the projected cut off intersection lines will form
edges parallel to the edges of the computational domain which in turn form a
closed polygon thus resulting in a valid discretisation of the exterior domain.
To prove the second proposition, we lift the scaled computational domain
created by the given discretisation of the exterior domain to a plane in R

3

that is parallel to the (x1, x2)-plane. The corners of this lifted scaled version
of the computational domain are then connected to the corners of the original
computational domain with rays, yielding the Ei and thereby unambiguously
defining the ξi.

2.3 Conclusions

The algorithm presented here may easily be extended to three dimensions. Yet
the selection of the ξi in step 5 is an open issue that will require utilisation of
optimisation algorithms for non-convex, non-linear programming problems.
Also the lifting of the surface grids onto the parallel sides of the prisms in
3D is an open issue that will have to be tackled in the near future. Thus the
first steps towards a fully automatic discretisation of the exterior domain have
been presented, while more work will still have to be done to arrive there.
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1 Introduction

The development of a mesh data structure is a crucial task that needs to
get the right balance between memory consumption and speed performances
and to predict the useful and pertinent characteristics of the data structure.
Today, working in a massive parallel context increases the difficulty of such
a development. For software engineering reasons (code reusing, development
cost) and technical reasons (mesh connectivity management, generality level,
parallelism), the need for general meshing infrastructures has been recognized.
Several development efforts have been done in the last few years [2, 3, 4, 5].
From our point of view, FMDB [5] is the most complete work. It is a C++
library providing a mathematically-founded mesh data structure which repre-
sents any cellular mesh in a memory distributed context. But, essentially due
to an intensive use of STL containers, it consumes too much memory. In our
applicative context, this drawback is very penalizing that is why we develop a
new generic parallel C++ mesh data structure dedicated to mesh generation
and modification. The proposed data structure, called Generic Mesh Data
Structure (GMDS) is based on two mathematical models: a traditional cellu-
lar model [5] optimized in memory consumption, and the combinatorial map
model [1] which allows us to handle global unpredictable topological modifi-
cations and provides a high level of genericity that you can not reach with
traditional approachs.

This paper provides a snapshot of this work in progress. Sections 2 and3
describe our cellular model and the one based on combinatorial maps. Section
4 provides first memory consumption comparisons between our data structure,
FMDB and MSTK [2].
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2 Cellular Model

A n-dimensional cellular mesh model can be defined by the cells it handles and
the available connectivities between these cells3. Such a description is topolog-
ical, it gives an unambiguous shape-independent representation of the mesh.
Some mesh models are given in Fig. 1. The description we use to modelize a
mesh consists of a n-dimensional vector C and a n × n matrix4 D. Vector C
describes the stored cells and matrix D the stored connectivities. Di,j = 1 (re-
spectively 0) means that connectivities from i-cells to j-cells are stored (resp.
not stored). A second n × n matrix I is computed from D and C to know
which indirect adjacencies are available in the mesh model. Direct and indirect
matrices of models M3 and M4 are given in Fig. 2. Indirect adjacencies are
computed on the fly to satisfy a user request. A similar representation is used
in FMDB where a single 4×4 matrix stores the available cells in the diagonal
and cell adjacency otherwise. Adjacency between same dimension cells can
not be stored while it is important in many meshing algorithms.

Fig. 1. Some mesh models. M1 and M2 are reduced models where only nodes and
regions are present. Connectivities are modelized by arrows. In M2, a region stores
its nodes and some adjacent regions.

GMDS is a C++ library that intensively uses object-oriented concepts and
generic programming. Generic classes are used to optimize storage consump-
tion while interface classes provide flexibility and a user-friendly interface.
every template classes has a parameter defining available cells and connectiv-
ities in the mesh. Direct and indirect matrices are computed from it. Generic
programming techniques, like traits usage, optimize accesses and basic mod-
ifications throw exceptions without any test when an operation is not avail-
able for a specific mesh model. Generic cell classes have an extra parameter
specifying the cell type (quad, triangle, hexahedron, tetrahedron,etc). This
parameter coupled with the mesh model description allows us to optimize cell
storage: Every cell class has a pointer C-style tabular whose size is defined
at compile time considering mesh model and cell type. Downward connectiv-
ities are stored with the just necessary space while upward connectivities use
two extra pointers to handle an extensible collection of connectivities. Let us
3 Such a definition is not sharp enough to define a family of meshes. Generally,

supported n-dimensional meshes are equivalent to n-dimensional quasi-manifolds.
4 In this paper, we do not mathematically define what a cellular mesh is.
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consider models M1 and M2 of Fig. 1. Connectivities of a tetrahedron in M1

are stored inside a 4-size tabular while connectivities of the same tetrahedron
in M2 are stored in a 8-size tabular, the four first item store node adjacency
while four last items store region adjacency. In M2, hexahedron connectivities
are stored using a 16-size tabular.

D3 =

0BB@
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

1CCA I3 =

0BB@
1 × 1 1
× 0 1 2
1 × 1 ×
2 2 × 2

1CCA D4 =

0BB@
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1CCA I4 =

0BB@
1 × × ×
× 0 × ×
× × 1 ×
× × × 2

1CCA
Fig. 2. Direct and indirect matrices of mesh models M3 and M4 given in Fig. 1.
With matrix I3 we know that to get the adjacent nodes of a face we have to go
through edges (I3

2,0 = 1 and I3
1,0 = ×).

3 Combinatorial Map Model

Combinatorial maps define a general framework to encode any subdivision of
n-dimensional topological spaces orientable or non-orientable with or without
boundaries. Traditional cells are replaced by algebraic definitions where topol-
ogy is built from a set of abstract elements, the darts, and applications αi,
with 0 < i ≤ n, defined on these darts. In 3D, we get the following definition
which can be generalized to any dimension.

Definition 1 A combinatorial 3-map M is a 4-tuple (D,α1, α2, α3) where α1

is a permutation5 on D and α2 and α3 are involutions6 on D.

Usual mesh cells can be built as dart subsets obtained using αi applications.
For instance, on Fig. 3, the quad face can be described by dart d and applica-
tion α1. Note that a cell is a particular case of orbit7. An example of orbit is
a face inside a region which allows you to attach properties to the two sides of
a face. Combinatorial map model provides us a generic data structure which
eases algorithm development: orbit notion gives flexibility to attach new types
of properties; the management of any 3D cell is direct as cells are implicitly
defined; all topological traversals and adjacency retrievals are possible. More-
over, it is a performing issue to handle dual meshes, block-structured meshes
and non-conforming meshes.

Combinatorial maps are defined using three classes for maps, darts and
orbits. Parameters defining a map-based mesh are the mesh dimension and
5 A permutation f on X is a one-to-one mapping on X such that ∀x ∈ X,∃k ≥

1, fk(x) = x.
6 An involution f on X is a one-to-one mapping on X such that f2 = id.
7 In 3D, there exist 16 orbits and 4 cells.
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Fig. 3. A 2-dimensional combinatorial map. Darts are modelized by arrows as they
are oriented. α1 (resp. α2) links darts belonging to adjacent edges (resp. faces).

the available orbits. Adjacency relations have not to be specified since they
intrinsically exist in the combinatorial map model. The storage is very simple
since the only entities to store are darts and orbits. Darts are defined by point-
ers given relation α1, α2 (and α3 in 3D) and pointers to the orbits containing
them. Orbits are defined by a pointer on a dart to access to the topology and
an id defining it.

4 Memory Consumption Comparison

We have compared memory consumption between our data structure, FMDB
and MSTK to evaluate the potential gain of our approach. This comparison
is based on source code analysis by keeping comparable information. For in-
stance, in FMDB, we do not consider elements relative to parallelism and geo-
metric classification. To estimate ”cell cost”, we consider the type of attributes
(int, long, T*), container strategies and potential virtual table pointers. The
cost of a mesh is then computed using the next formula given in [2, 3]:

Storage(M) =
3∑

d=0

Nd∑
i=1

(Scell +
3∑

q=0

|{Md
i {Mq}}| × Sadj)

where Nd is the number of d-dimensional cells, Sent is the amount of mem-
ory each cell uses, Sadj is the amount of memory each adjacency uses, and
|{Md

i {Mq}}| is the number of q-cells adjacent to d-cell Md
i and stored in the

mesh. The formula is different for combinatorial maps:

Storage(M) =
3∑

d=0

Nd∑
i=1

Scell +
Nk∑
k=0

Sdart

where Nk is the number of darts and Sdart is the amount of memory each
dart uses8. We get results of Tab. 1 where the cost of mesh is the specified
number of bytes × the number of mesh nodes. For any models M1, M2, M3

and M4, we consider tetrahedral (T) and hexahedral (H) meshes. The current
GMDS cellular model consumes less memory than FMBD and MSTK while
8 That is, 2 or 3 pointers to store αi and a pointer by available orbit type.
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combinatorial maps are expensive for reduced models. The low cost of cellular
models is due to the fact we do no store downward adjacencies with generic
containers. The high cost of combinatorial maps is due to the presence of
all connectivities whatever the mesh model it is. Note this overcost is not
prohibitive for full models.

Table 1. Memory Consumption Comparison on 64 bit machines (in bytes).

M1 (T) M1 (H) M2 (T) M2 (H) M3 (T) M3 (H) M4 (T) M4 (H)

FMDB 193 66 × × 882 284 1247 408
MSTK 145 50 203 70 513 168 822 272

GMDS(cell) 71 28 117 44 325 112 506 178
GMDS(map) 642 254 642 254 1015 392 1015 392

5 Conclusion and Future Works

In this note, we have shortly introduced a mesh data structure based on a
generic cellular model and combinatorial maps. This combination will allow
us to represent any kind of meshes while optimizing memory consumption for
cellular models. Combinatorial maps are memory expensive but they provide
a high genericity level allowing us to easily handle complex kinds of meshes.
Moreover it is a perfect framework to prototype new algorithms before con-
verting them into an memory-optimized mesh model. The development of this
data structure just begins and several studies and developments are expected
in little time. Other memory consumption comparisons and speed compar-
isons will be then done. Some other developments are also planned: conversion
from a model to another one, managment of memory-distributed applications,
user-friendly mecanism to develop algorithms above GMDS and so on.
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Summary. The primary requirement for a mesh generator used in an automated
tool is robustness. Surface based meshing algorithms fail very often especially with
invalid boundary representation geometries. With generic boundary representation
formats like STEP or IGES, invalid geometries are very common due to the loss of
information and precision in CAD Data Exchange. This paper presents an approach
to a robust hexahedral mesh generator that is insensitive to invalid geometries and
produces meshes which can be used for stiffness calculations.

1 Motivation

A special preprocessor for the multibody system simulation of crankshafts (CAD-
SimShaft [SL07]) is under development by the Chair for Engineering Design and
Product Reliability at Berlin Institute of Technology. An important part of the pre-
processing is the stiffness calculation of crankshaft parts. Stiffness calculation is a
common task in mechanical engineering and easily done using the finite element
method. But first of all a model preparation is needed that includes the most im-
portant part, the mesh generation.

CADSimShaft uses OpenCASCADE [OPE08] as its geometry kernel. The CAD
models of the crankshafts are imported using generic CAD data exchange formats
like STEP and IGES resulting in invalid geometries sometimes. But even if the
geometry is valid the surface based mesh algorithms are not always successful. Of
44 different CAD crankweb models only 9 could be meshed using the available
algorithms in the Salome [OPE06] project. Common cause for the failed meshes was
a failure to create a consistent and closed surface mesh in order to initialize the
volume meshing algorithm.

Robustness of the mesh generation process is an absolute necessity for the CAD-
SimShaft software, even with geometrically invalid boundary representation models.
All failures are surface related, therefore a new volume based mesh generator is be-
ing developed. Hexahedral meshes are preferred over tetrahedral meshes because of
usually better computational results [BPM+95].



2 Torsten Sadowski and Robert Liebich

2 Volume based Hexahedral Meshing

Volume meshes can be build from a mesh of the surface of the model or directly with-
out an existing surface mesh. The volume meshing algorithms presented in [Owe98]
can be classified into both groups. The algorithms working directly with the sur-
face or a surface mesh are: Boundary Constrained Triangulation, Advancing Front,
Medial Surface, Plastering and Whisker Weaving.

Volume oriented algorithms do not require a surface mesh and cope better with
dirty geometries[WS02][LLG+06]. They can be used as long as it is possible to
check if a point is inside or outside of a volume. This can be successfully determined
using the CAD kernel even if the surface representation is not completely valid.
The Octree-based and Grid-based algorithms can be used for tetrahedral and for
hexahedral meshing. An interesting variation of the octree for hexahedral meshes,
the 27-tree, is presented in [SSW96].

3 CAD Model Preparation

Complete CAD models are unnecessarily complex for mesh generation. A reduc-
tion of their complexity is possible with the CAD software used to design the
model. It is quite easy to export the design before all fillets and chamfers are
applied if the full design model and not just a generic exchange file is available.
A different approach is using feature recognition [Tau01] to remove needless de-
tail. Much research effort is spent on the closely related automatic decomposi-
tion [Bla96][LG96][LGT99][LGT01]. Automatic decomposition is difficult to imple-
ment for complex shapes where fillets on other fillets might have erased the basic
geometry.

Two more simple approaches do exist. Either the many small faces are combined
to fewer but larger approximations [Mez08] or the individual faces are ignored and
used to support a mesh node only if necessary.

Boundary Representations (BRep) of solid parts are constructed from six differ-
ent topological entities: Vertex, Edge, Wire, Face, Shell and Solid [OPE07]. Three
of these (Wire, Shell, Solid) carry organizational information only, the other three
(Vertex, Edge, Face) have geometrical information as well.

Most of the edges result from fillet patches. These patches can be very small
or narrow and have edges connecting tangent surfaces. They are detrimental to the
mesh because of the small face they define. In order to maintain the shape it is
necessary to identify those topological faces, edges and vertices which are important
for the model.

Automatic classification can be based on entities carrying geometric information
only. Possible classifications for faces are tangency at face boundaries, surface area
and aspect ratio. Edges can be classified by tangency of connecting faces and length.

The general shape of CAD models is preserved good enough for most applica-
tions if all sharp edges and vertices at corners are represented in the mesh. Only a
single parameter, the “sharpness” of an edge is necessary for an automatic complex-
ity reduction of the CAD model. The required information is given by the standard
exchange formats STEP and IGES. Tangency is therefore the most important clas-
sification possibility and can either be checked for each edge or for each face. Edge



Hexahedral Meshing of complex and invalid CAD Geometries 3

based classification is easier to implement because every edge is connected to exactly
2 faces whereas faces are bounded by n edges connecting them to n more faces. This
is similar to [Mez08] but individual faces are not used to rebuild a new surface in
the present approach.

Edge tangency checking is done by calculating the angle between the surface
normals on the faces at several points along the connecting edge. If an angle is
larger than a given threshold the edge must be considered in the mesh. The result
is a number of master edges of the shape. Vertices at non tangent master edge
connections are master vertices. Approximately one third of the topological edges
and one eighth of the topological vertices are master edges and master vertices for
all tested crankwebs.

Figures 1 and 2 give an impression of the reduction in complexity for a crankweb
using an threshold angle of 6◦. Only a fraction of the topological edges shown in
fig. 1 is selected as master edges. The few master vertices are shown in fig. 2 as small
crosses.

4 Implementation

The mesh can be created with an octree based algorithm or with a grid based al-
gorithm. The grid based approach is easier to implement for a BRep model and
results in a regular mesh for the first step. The grid is created with the help of
the spatial twist continuum (STC) [MBBM]. The STC of a regular hexahedral grid
is a regular hexahedral grid as well. Hence, the additional effort seems unjustified.
On the other hand it is easier to manipulate hexahedral meshes using their dual
STC [BMT+97][TK03][HBO04]. Only one input parameter is used, the average ele-
ment edge length.

The mesh generation is done in six steps: creation of the STC as a regular grid
using ray-casting, deformation of the STC to fit the surface (similar in effect to
[Dho99]), construction of the primal mesh, projection of primal mesh surface nodes
on the model surface, paving of identified master wires, moving mesh nodes on
master vertices.

5 Results and Conclusion

The robust meshing of the crankwebs as the most important target could be
achieved. All crankwebs could be meshed into hexahedra like the example Fig. 3.
First tests for stiffness calculations with hexahedral meshes showed good results. Be-
cause the true stiffness is not known, the results can only be checked against results
from other FEM calculations which are currently used for the multibody dynamic
simulation.

The meshes presented in this work are useful for stiffness calculations but not
yet for stress analysis. But the mesh and its STC is a useful base for improvements
using sheet insertion [HBO04]. The current study showed some elements along the
master wires being deformed into concave shapes. Although this has not been a
challenge for the method so far, sheet insertion to be used in the future would solve
this[MT95][ZHB08][MESB08][PBSB08].
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Fig. 1. Crankweb
with all topological
edges

Fig. 2. Crankweb
showing only master
(sharp) edges

Fig. 3. Finished
Mesh
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Summary. An original approach to locally remeshing CAD models for finite ele-
ments analysis is proposed. The method analyses the geometry of two feature model
variants by individually comparing features. The ideas are validated by experimental
results.

1 Introduction

Finite element analysis is nowadays an integral part of the product develop-
ment cycle. It stands apart from the principal design step, as the two fields
evolved largely separately, each bearing their particular history of developed
solutions and associated practices.

This difference is reflected in practice by design and analysis each having
their distinct geometries. One of the areas addressed by research has been
the link between the design and the analysis model. The former is nowadays
commonly a feature model and the latter a mesh. There does not really exist a
link between the two yet, as the mesh is often completely regenerated at each
step of the design cycle. With models getting more complex, the approach of
reusing meshes by locally adapting them, instead of completely reconstructing
them at every step, is getting more attractive.

2 Basic idea of remeshing

The concept of remeshing for finite element analysis is that, instead of com-
pletely regenerating the mesh for each analysis, the mesh is adapted to reflect
the modifications in the geometry it is linked to. The concept is not new, but
its broader application to the development cycle has yet to catch on. A likely
reason is that the effort is perceived to be too large for the gain: meshes can
be generated fairly quickly and dealing with modifications between geometries
is far from easy. Quality meshes, however, are often more costly to generate.
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What constitutes ‘a quality mesh’ depends on the particular problem context,
but obtaining it usually involves some kind of optimisation procedure or com-
prehensive exploration of a set of possible solutions, e.g. [1] and [2]. Especially
in the case of small modifications to large models that already have a quality
mesh, remeshing is likely to be beneficial.

Many research efforts have been, and still are, directed at the mesh defor-
mation / morphing approach. Here the existing mesh is reshaped, as if it were
rubber, by stretching, compressing and bending. See [3] for a recent example.
The quality of the mesh elements can be severely reduced by such mesh defor-
mation and changes in topology cannot be handled generically. Amongst the
few contributions that did consider modifications to the topology in the con-
text of remeshing are [4] and [5]. These approaches are lacking, however, on
genericness, flexibility, or implementation. Efficiently handling generic topo-
logical changes is in particular relevant when looking at the remeshing prob-
lem in the context of the product development cycle, where changes in model
topology are common.

In our research, we approach the remeshing problem from the angle of
feature modelling and the desire to maintain the analysis model as an integral
part of the design model. To this end, we have come up with a new way to
associate geometry between two different feature models.

3 Remeshing feature models

Feature modelling today is the standard in CAD. There is no uniform defini-
tion of what feature modelling is. Generally it enables a designer to construct
a model by combing higher level objects (the features), instead of manipulat-
ing lower level geometry. Examples of common features are holes, ribs, bumps
and fillets. Features are manipulated through their parameters, which affect
their shape and position in the model. In advanced modelling systems, they
also carry semantics that actively support the designer in his decisions and
can warn him of unintended consequences.

The design space is thus essentially parameterised by means of the features.
This makes it a natural choice to reason by means of the features when looking
at the difference between two models, such as needed when remeshing. The
idea is that each additive feature corresponds to some part(s) of the model’s
mesh. We could say that these features ‘carry’ the mesh. After a modification,
we want to create the new mesh by copying, as much as possible, the mesh
that the features carried in the previous mesh. Figure 1 shows two variants of
a simple model and the corresponding meshes. It is easy to imagine that the
mesh of Figure 1(b) could almost be acquired by just recombining the mesh
covering the base block and the mesh covering the cylinder.

In reality, however, we cannot recombine the meshes corresponding to fea-
tures without some extra work. The principal reason is that features interact,
i.e. they overlap at faces or even with their volumes. Volumetric meshes do
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(a) Original model: base block with
a cylindrical feature on top, and its
mesh

(b) Modified model: base block with
cylindrical feature translated, and its
mesh

Fig. 1. Original and modified model and their meshes

not, and should not, respect the internal feature boundaries, and thus mesh
elements will not align on the whole boundary of features. When the relative
positioning between features changes, such as in Figure 1, then the mesh needs
to be adapted in the areas where the interaction changes.

For our feature-based remeshing approach, we thus need to find all areas
where feature interactions change. Generally, feature modelling systems are
history-based, i.e. they do not explicitly store the interactions of all features,
but compute a new boundary representation (BRep), and continue the rest of
the operations with the new geometry. This approach is thus not suitable for
finding and describing the changes in interaction.

A data structure that does store the complete geometry of all the features
is the cellular model [6]. It does this by keeping the complete geometry of all
features, and where features intersect they are divided into cells. A feature
that covers a cell, is said to own that cell. Each cell is owned by at least one
feature; where features overlap, the cell has multiple owners.

In the cellular model, we have a complete geometric description of each
feature, which includes those parts of its boundary that are not part of the
BRep. It also contains an explicit partition of the volume of the model. After
a model has been modified, we can thus analyse for each feature how its
geometric interaction with the other features has changed. If nothing has
changed, then all mesh elements covering the feature can be copied to the
mesh of the new model.

For the case that something has changed, we need a consistent classification
of what has changed and in what respect. For example, feature geometry that
previously was internal to the model, can have become part of the BRep;
cells that used to be empty, due to overlapping subtractive features, can now
contain material. For this classification, we use the feature difference [7]. The
feature difference compares the geometry of a feature, as it was in a previous
variant of the model, with the geometry of the feature in a new variant of the
model. This geometry includes all cells, faces, edges and vertices that emerged
through interaction with other features in the model.

Based on the feature difference, we can thus decide for each feature which
parts of it could contribute to the new mesh model and where/how the mesh
needs to be adapted. The final challenge is to combine this information, on



4 M. Sypkens Smit and W.F. Bronsvoort

each individual feature, for the construction of a single mesh for the complete
model. Since features intersect, we must be careful not to copy points multiple
times to the same region. Also, we need to identify the regions for which no
mesh can be copied, which can be due to new features or the relocation of
subtractive features. Lastly, we must pinpoint the regions where meshes need
some further work, e.g. because mesh with different origins ended up copied
next to each other, or because of interaction changes (such as in Figure 1.

The outline of the algorithm is: 1) analyse the difference between the two
feature models, 2) identify the regions in the new model for which mesh can
be copied and actually copy it, 3) create new mesh in the remaining areas of
the new model, 4) connect and optimise the mesh in all regions where a (good)
connection is lacking. Figure 2 illustrates the regions of mesh that are fixed
(red) or should be optimised (blue) at the start of step 4 of the algorithm.

(a) Original and modified model (b) Copied nodes (red) and new/active
nodes (blue)

Fig. 2. Example of model modification with corresponding copied nodes (red) and
new/active nodes (blue)

4 Experimental results

To test our feature-based approach to remeshing, we have implemented the
variational tetrahedral meshing algorithm [8], with some minor modifications
that improve its applicability to mechanical models. This algorithm results in
high quality mesh elements, by alternating optimisation steps of the boundary
and interior mesh. This algorithm produces a Delaunay mesh, which is a major
advantage here as it avoids the need to explicitly copy the connectivity of the
elements. Instead, we can just copy the nodes.

Figure 3 illustrates a result of this approach. We compared the result with
that of the full meshing procedure. The remeshing took 30% of the normal
meshing time. The element quality distrubition is nearly identical.

In general, our experiments indicate a efficiency gain between 50% and
80%. The gain depends on the number of mesh nodes, the amount of surface
area relative to the volume, and the extent of change in feature intersections.
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(a) Original and modified model (b) Region of optimisation and result of
remeshing

Fig. 3. The result of remeshing a tool with a new stiffener feature

5 Conclusions and looking ahead

We have demonstrated that our approach to remeshing, based on the feature
difference, is feasible and that it can improve efficiency. The gains depend on
the number of mesh elements, the extent of the model modifications, and the
complexity of the meshing algorithm.

Our current approach is not universal. It relies on the Delaunay criterion
for the connectivity. In order to support other kinds of meshes and meshing
algorithms, we need to be able to reliably copy the mesh connectivity be-
tween the nodes. The handling of graded meshes is another challenge. Can
a sizing field efficiently be maintained under model modification? What are
good strategies to maintain the conformity of the mesh to the sizing field
when remeshing? What is the impact on efficiency? Opportunities for further
research are abundant.
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Abstract:
This paper presents a method for computing thin layers of high-quality, tri-
angular prisms that conform to surfaces that are specified as level sets of an
implicit function. Triangular prisms are important in circumstances where vol-
umetric meshes need to capture the geometries materials with thin layers–i.e.
that are smooth relative to their thickness–or where, as in fluid mechanics sim-
ulations, solutions perpendicular to boundaries exhibit boundary layer com-
plexities that exceed that of the bounding surfaces. “High-quality” triangular
prisms exhibit a roughly linear structure, with nearly regular triangles at the
ends and side faces that are nearly perpendicular to the triangular faces. The
proposed method relies on an iterative relaxation of point samples, which we
call dynamic particles, that simultaneously regularize inter-point distance on
the surfaces while shortening distances to corresponding points on a nearby
offset surface, which establishes the layer. This paper describes the method
and results on meshes of medical data sets that model human vasculature.

1 Introduction

This paper presents a method for computing thin layers of high-quality, tri-
angular prisms that conform to surfaces that are specified as level sets of
an implicit function. This problem statement is motivated by a number of
applications in medicine and biology where simulations are conducted on geo-
metric models derived from 3D images, such as CT, MRI, or various forms of
microscopy. These applications, in fields such as electrophysiology [4], ortho-
pedics, and cardiology [3], rely on a wide range of governing equations, such as
electrostatics, fluid dynamics, solid mechanics, and chemical dynamics. Here
we consider three particular driving problems: electrostatic simulations in the
head for EEG, in which thin layers around the skin and skull present thin, lay-
ered geometries; hyperelastic simulations of mouse bone loading where stress
boundary layers normal to the surface must be captured; and computational
fluid dynamics of human vasculature, where meshes of complex, branching
structures must be augmented with thin layers to capture the properties of
fluid flow near boundaries. In this paper we present meshing results for the
latter.

Figure 1(a)–(b) shows an example of a segmentation from head MRI that
demonstrates the thin layers of tissue which can have very different electri-
cal conductivity—an important consideration in the simulation of biolelectric
fields. Figure 1(c)–(d) shows a segmentation and an adaptive mesh of a rela-
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(a) (b)

(c) (d)

Fig. 1: (a)–(b) Segmentations of MRI head data show thin layers of skin, skull, fat and cerebral
spinal fluid. (c) Isosurfaces of CT angiography give boundaries of vascular lumen, where blood
flows. (d) Adaptive meshes using the method of dynamic particles [2] give good quality triangles
and watertight surfaces.

tively small section of a CT data set from a human head. Fluid simulations
rely on thin elements near the vessel boundaries to capture high gradients in
flow.

One typical strategy for constructing such prisms is to start with a good
quality triangle surface and simply offset the triangle vertices in the direc-
tion of the surface normals (established from the adjacent triangles, e.g. an
average), and build prisms from the set of resulting triangle pairs. The first
problem with this is that the prisms may not be valid. Here we define va-
lidity as nonself-intersecting prisms—that represent a single, connected solid.
For instance, in regions of high curvature, the offsets that form the uprights
of the prisms can cross the quadrilateral faces. The second problem is that
even if the prisms are valid, the quality of the prisms could be compromised
with this approach. This is because surface normals for each vertex are not
parallel and because the inner and out triangular faces are not parallel. This
can change the shape of the individual triangles and cause uprights that are
skewed relative to the faces.

Figure 2a shows quantitative results of this strategy. For triangle quality we
use the radius ratio: Q = 3r/R, where r and R are the radii of inscribing and
circumscribing circles, respectively. This figure shows the effect of the offset on
Q, as represented by histograms, which is quite good for the original triangle
mesh (Fig. 2a—blue), but degrades significantly in the offset (Fig. 2a—red).
The average radius ratio drops from 0.92 to 0.72. The angles between the
quadrilateral faces and the triangles is A = asin(u · n), where u is the unit
vector along the quadrilateral edge, and n is the unit surface normal. Ideally,
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this would be 90 degrees. The average angle is 74 degrees and the minimum
is 0.2 degrees—there are some very skewed prisms. Finally, the number of
incorrect prisms is significant—160 out of 11,854 prisms are of poor quality
(1.3%) and would need to be corrected either by direct user interaction or some
other mechanism. The purpose of this paper is to examine an alternative to
this simple approach.

2 Methods

The meshing method uses a set of points, which we call particles [5, 1], whose
positions are updated along the gradient of an objective function that prefers
regular configurations. In previous work, we have shown that these objective
functions can be constructed to achieve adaptive, high-quality sampling of
implicit surfaces [2]. The objective function is a sum of local potential func-
tions of the form E(rij) ∼ cotan(rij/α), where rij is the distance between
points (particles) i and j, rij = |xi = xj |. The total energy, for N particles is
P =

∑N
i=1

∑
j 6=iE(rij). The derivative of this energy (Figure 2c) is compact,

and particles move with a gradient descent on this potential, constrained to
the isosurface V (x) = k.

For prisms, we establish a set of corresponding particles, with potential
P ′ =

∑N
i′=1

∑
j′ 6=i′ E(ri′j′). These particles are constrained to an alternative

isosurface V (x) = k′, and we obtain an ε offset if k′ = k+ ε and V (x) is a dis-
tance function to the original surface. Finally the two systems of particles are
coupled, in order to keep correspondences close, through a quadratic energy,
Si = |xi − x′i|2, and we have

R = P + P ′ + α

N∑
i=1

Si, (1)

as depicted in Figure 2b.
To initialize, we use the simple method described above, where we first

optimize on the original surface, place twin particles on the offset surface, and
then optimize the joint energy in Equation 1, which optimizes the particles on
the two surface while keeping corresponding particles close. For all the results
in this paper we use α = 10. As in previous work [2], we insert and remove
particles so that each particle (on the original surface) has a distance to its
neighbors that is to within a specified tolerance of the local feature size. The
local feature size is determined by measuring both the surface curvature and
the distance to the medial axis.

3 Results and Conclusions

We begin with a simple geometric structure, which is a metacarpal of a mouse
(finger/paw bone). Figure 3 shows a particle distribution from the proposed
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(a) (b) (c)

Fig. 2: (a) Histograms of radius ratios of the original surface and offset (blue and red respec-
tively), show a degradation of the triangle quality in the offset surface (Radius ratio of 1.0 is
ideal). (b) Particles on each surface, the original and the offset, repel each other to maintain
good configurations, but are attracted to the corresponding particle on the other surface. (c)
The potential energy and repulsive force between particles falls off as cotan, approximating an
electrostatic potential, but with compact support.

method and the resulting mesh. Table 3 summarizes the quantitative results.
The proposed mesh eliminates the five poor quality prisms, improves the av-
erage and minimum radius ratios, but introduces slightly more skew in the
prisms, as indicated by the average and maximum prism angles. Figure 3
shows the prism mesh of the vessel data. The quantitative results in Table 3
demonstrate an overall improvement but not the ideal results. The number of
poor quality elements drops by 75% (160 to 40), and the triangles improve,
but not entirely.

(a) (b) (c) (d)

Fig. 3: (a) Distribution of points/particles on a single surface—red and green are original and
offset surfaces, respectively. (b) Prisms from the proposed method. (c) Offset surface from the
simple method (normal offsets), show invalid (intersecting) elements. (d) Same view as (c) for
the proposed method—showing valid prisms.

The results, therefore, are promising but mixed. In the case of invalid
prisms, one can show that such prisms must always come in pairs, and that
the energy of the system must be improved by swapping vertices. This suggests
that the problem is the minimization, which is certainly getting trapped in
local minima. Also, the parameters themselves—the tradeoff between particle
repulsion and particle attraction—needs further attention. Another issue is
that we use a DT triangulation method on the initial surface, and let the offset
surface inherit this triangulation from the correspondences. We have noticed
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that the triangles are consistently better on the initial surface, suggesting the
need for a more holistic approach for the final meshing phase of the algorithm.
Also, the offsets in these results are large relative to the surface geometry,
which is intentional so that we could examine the behavior of the system as
it fails. For the future, the integration of this system with the construction
of multiple, thinner prismatic layers and tetrahedral volumes could help with
the overall quality and allow better testing of performance.

Method Rad Ratio Avg Rad Ratio Min Angle Avg Angle Min Invalid Elements

Mouse Bone

Simple 0.87 3.0× 10−2 79.8 2.1× 10−1 5

Particle 0.88 7.2× 10−2 67.5 7.2× 10−2 0

Vessels

Simple 0.82 4.9× 10−4 72.7 2.1× 10−2 160

Particle 0.83 4.0× 10−3 74.4 9.7× 10−2 40
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1 Introduction

The problem of body fitting meshes that are both adaptive and geometrically
accurate is important in a variety of biomedical applications in a multitude
of clinical settings, including electrocardiology, neurology, and orthopedics.
Adaptivity is necessary because of the combination of large-scale and small-
scale structures (e.g. relatively small blood vessels spanning a human head).
Geometric accuracy is important for several reasons. In some cases, such as
computational fluid dynamics, the fine-scale structure of the fluid domain is
important for qualitative and quantitative accuracy of the solutions. More
generally, finite element approximations of elliptic problems with rough coef-
ficients require increased spatial resolution normal to material boundaries [3].
The problem of constructing meshes from biomedical images is particularly
difficult because of the complexity and irregularity of the structures, and thus
tuning or correcting meshes by hand is quite difficult and time consuming.
Many researchers and, indeed, commercial products simply subdivide the un-
derlying hexahedral image grid and assign material properties to tetrahedra
based on standard decomposition of each hexahedron into tetrahedra.

This paper presents a small case study of the results of a recently developed
method for multimaterial, tetrahedral meshing of biomedical volumes [6]. The
method uses an iterative relaxation of surface point point positions that are
constrained to subsets of the volume that correspond to boundaries between
different materials. In this paper we briefly review the method and present
results on a set of MRI head images for use in bioelectric field simulation and
source localization.

2 Mesh Generation Methodology

The goal of this paper is to examine the problem of forming anatomy-
conforming tetrahedral meshes from segmented, three-dimensional MRI im-
ages of the human head for the purposes of finite element simulations of the
electric fields. The pipeline for generating tetrahedral meshes from images
consists of three parts: volume preprocessing, surface meshing, and volume
meshing. This meshing method is presented in [6], but we briefly review it
here for completeness.

We represent interfaces in a multimaterial dataset using a model that de-
scribes each material with a smooth, volumetric indicator function, fi [4]. A
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set of N indicator functions F = {fi|fi : V 7→ <} represents n materials. In
practice these functions are formed by smooth interpolations of the output of
segmented volumes or label maps, such as shown in Figure 1. For this work, we
process each label map using a level-set implementation of the grayscale mor-
phology algorithm proposed by Williams and Rossignac [10] called tightening,
which limits the radius of curvature of the resulting boundary.

1f

2f

3f

p

(a) (b) (c) (d) (e)

Fig. 1: (a) Multimaterial volumes, such as this segmentation of a head MRI are used to generate
3D meshes. (b) Generically, in 2D, two or three materials can meet (up to four in 3D). (c)–(d)
Four material junctions are not generic, and result in generic conditions with small perturbations.
(e) The generic case can be represented through smooth indicator functions.

A material label i is assigned to a point x ∈ V if (and only if) fi(x) >
fj(x) ∀ j 6= i. In the case where N > 2, the boundaries that separate ma-
terials are not necessarily manifold, and can form sharp corners and edges.
We characterize each material interface in terms of the number of material
indicator functions that are maximal (and equal) at that junction. After this
preprocessing, we can define inside/outside (IO) functions for each material
so that the boundaries boundaries between different materials, represented as
zero sets of the IO functions, coincide. We define these functions:

f̃i = fi −
n

max
j=1,j 6=i

fj . (1)

Material junctions occur at points where two or more of the indicator
functions (fi) have equal, maximal value. We characterize the order of the
junction by the number of coincident materials. For V ⊂ <2, 2-junctions and
3-junctions occur generically, as shown in Figure 1 (b–c), while a 4-junction
is a nongeneric case, as shown in Figure 1 (d–e). For V ⊂ <d each K-junction
forms a subset of V that is topologically equivalent (homeomorphic) to a
P -disk, where P = d − K + 1. Thus each type of material junction can be
considered a P -cell, as described in the literature on discrete topology [1].
Generically, for d = 3 we have 4-junctions (0-cells), points; 3-junctions (1-
cells), and 2-junctions (2-cells) or surfaces. For the case of the head data in
this paper, we use six materials: grey matter, white matter, CSF, skin, bone,
and air. Thus we have the possibility of 15 different types of 2-junctions (2-
cells), 20 types of 3-junctions (1-cells), and 15 types of 4-junctions (0-cells).
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The meshing method uses a set of points, which we call particles whose
positions are updated along the gradient of a objective function that prefers
regular configurations. In previous work, we have shown that these objective
functions can be constructed to adaptive, high-quality sampling of implicit
surfaces [5]. In this work each particle is constrained to a particular material
junction. This formulation for each type of cell includes a set of projection
operators that force particle motions to remain in the tangent space of the as-
sociated material boundary. A hierarchy of particle systems then samples each
type of generically occurring material junction such that each junction is rep-
resented in the final mesh. That is, in 3D the 0-cells (points) are sampled first,
followed by the 1-cells (curves), and concluding with the 2-cells (surfaces). Fi-
nally, a simple labeling algorithm extracts the multimaterial surface meshes as
a subset of a Delaunay tetrahedralization of the samples, as described below.

To represent the interface between sets of materials, we define a cell indi-
cator function that identifies points in V where a set of IO functions evaluate
to zero, such as the material interface between materials 1 and 2 shown as
the red dashed line in Figure 1. For a set of materials M (where 2 ≤ |M | ≤ 4
generically in 3D), we have

JM =
∑
i∈M

f̃2
i , (2)

and the zero set of this function is the cell defined by the interface of the
materials M .

We use the particle system framework of Meyer et. al [5, 6] for placing
points along each material junction. This is an iterative algorithm that relaxes
the particle positions, prior to a triangulation or meshing, in order to minimize
an energy function that favors equal distributions of points or particles. This
framework uses a sizing field that informs particles of how far they should
be from their neighbors. We set this sizing field to be proportional to the
local feature size (LFS) [2], which is the distance to the nearest point on the
medial axis. In this way, the sizes of triangles on the surface meshes will
be proportional to the sizes of the tetrahedra that will be needed to fill the
adjacent volumes. We generate a sizing field volume, at the same resolution as
the input data, for a multimaterial dataset, by first computing an approximate
medial axis of each IO function. We then store at each grid point in the sizing
field volume the minimum LFS for the set evaluated at the grid point location.
We smooth this field using a gradient-limiting PDE proposed by Persson [7].

For the tetrahedral meshing we use the open-source software package Tet-
gen1. We run Tetgen in a constrained-Delaunay mode so that it adds points
to the volume interior but does not add points to the surface. This Delau-
nay tetrahedralization (DT) uses the constrained DT method proposed in [9].
The Tetgen software includes a Delauney refinement approach [8] for ensur-
ing mesh quality, as measured by edge-radius ratios, which does not, unfortu-

1http://tetgen.berlios.de
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nately, penalize slivers. Tetgen does include a sliver removal step, consisting
of edge-flips and peeling away of slivers near the boundary, which is only
moderately effective.

3 Case Studies

In this section we present a small set of case studies that demonstrates the
use of this meshing strategy for indicator functions derived from smoothed
label maps of segmented, 3D, MRI images. The three data sets are from two
pediatric patients suffering from neurological symptoms (e.g. seizures), ages
12 and 15, and a single normal volunteer, age 28, which we call cases 1, 2,
and 3, respectively. The segmentations come from a semiautomated tissue
classification algorithm followed by a manual inspection and hand editing of
mislabeled pixels.

(a) (b) (c)

Fig. 2: (a) A particle distribution for Case 2 shows the adaptivity of the particles for thin regions
of the skin/skull. (b) The tetrahedral mesh for Case 2. (c) The tetrahedral mesh for cortex and
CSF of Case 2b, showing higher resolution.

Cases 1 2 2b (high res) 3

Num tris 265,989 450,945 3,510,322 321,532

Num tets 1,067,541 1,765,216 15,561,759 1,190,125

Tris RR avg(min) 0.89(0.031) 0.89(1.8× 10−4) 0.93(2.6× 10−4) 0.89(7.6× 10−5)

Tets RR avg(min) 0.61(0.013) 0.61(1.0× 10−5) 0.64(2.0× 10−5) 0.62(5.1× 10−5)

Each material is extracted into a binary volume, and a distance transform
is constructed to the interfaces for that material, and the surface is smoothed
with a tightening of radius 0.5, and approximate medial axes of each material
are constructed by detecting coincidences of foot points on a grid with the
same resolution as the original image. The feature size volume resulting from
the distance to this medial axis is gradient limited (smoothed to enforce max-
imum on gradient values [7]) to a value of 0.5 (unitless), and then multiplied
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by a value ε, which controls the resolution of the final mesh, is 2.5, except
Case 2b, which is the high-resolution version of Case 2, with ε = 1.0. Figure 2
shows surface and tetrahedral meshes that result from the proposed, particle-
based multimaterial meshing method. Table 3 shows quantitative analyses of
the triangles and tetrahedra for the three cases.

The results of this method are quite promising. The triangle mesh quality
is excellent, especially given the adaptivity and high geometric accuracy ex-
hibited by the method. The tetrahedral quality, as measured by radius ratio
(which is indicative of the conditioning of our stiffness matrix in the result-
ing linear system), is not as good, but acceptable for simulations. The worst
tetrahedra are slivers, which are an expected outcome of the use of Tetgen
for the final volumetric step. Particularly important is that the system used
one set of parameters for all three cases and required no manual intervention
after the initial tuning of parameters. Future work will focus on the computa-
tion time, which is 8-12 hours for each of these datasets, and is mostly spent
of preprocessing and distributing particles, and the tetrahedralization, which
would benefit from one of the variety of method that explicitly reduces slivers.
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