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Summary. This paper presents a new sphere packing algorithm for generating gran-
ular structures in either two or three dimensions. Such a structure is often modeled by
a parallelepiped containing spherical balls in three dimensions or by a rectangle filled
with disks in two dimensions. The grains (spherical balls or disks) are separated by
interfaces with specific thicknesses, called grain boundaries, and their size correspond
to a size distribution experimentally obtained. The geometrical modeling of such a
structure, which consists in determining the repartition of the set of disjoint grains ac-
cording to the above specifications, can then be considered as the classic sphere packing
problem. The proposed method is a constructive algorithm based on an advancing-front
approach, which is well known in a different context, namely mesh generation. Since
the use of the advancing-front approach leads to empty areas near front collisions, a
point relocation algorithm, using weighted Delaunay triangulation, is then introduced
to balance the local density on the whole structure. Moreover, we propose a method
to transform spherical balls (disks) into polyhedral (polygonal) cells similar to the real
grain shape. Numerical 2D and 3D examples are provided to illustrate the capability
and the efficiency of our approach. The algorithms and techniques presented here can
find applications to generate aggregates in all fields concerned by the granular struc-
tures such as metallurgy, ceramics, soil science, cements, biomechanics, etc.

Keywords: sphere packing, advancing-front approach, granular, nanostructures,
Laguerre diagram, quality meshes.

1 Introduction

The geometrical modeling of granular structures represents a key step in the sim-
ulations and studies of their behavior (mechanical, electrical, thermal, ...). This
modeling is often based on experimental data provided by microscopic analysis
in the form of a parallelepipedic (rectangular) sample and the distribution of the
grain sizes within the considered structure. The physical results of simulations



2 A. Benabbou et al.

on these structures, by the molecular dynamics models or the finite element
method or other methods of resolution, strongly depend on the geometric mod-
els provided. Hence, the geometrical modeling of these structures is a crucial
task requiring special attention. Usually, a sample of a granular structure is
modeled by a parallelepiped (rectangle) containing grains modeled by spherical
balls (disks). Beyond the large simplifications in the geometrical calculations,
this modeling provides an acceptable model in many cases where the comput-
ing with the real grain geometries (complex shapes) is very difficult to achieve
[1]. Using this approximation, the geometrical modeling of granular structures
is then very similar to the classic sphere (circle) packing which consists in fill-
ing a domain with spheres (circles) whose radii follow a size distribution. In
our concern, we are particularly interested in the modeling and the meshing of
nanomaterials considered as granular structures. This is due to their consider-
able scientific and industrial potentialities. Indeed, it is experimentally proved
that the physical properties of nanomaterials are very different, and often better,
than those of ordinary materials. This quality improvement of materials is due to
changes of their structures on small scales, in other words to their nanostructur-
ing. The structure of an ordinary material is constituted by a multitude of small
polyhedral volumes called grains whose size usually ranges from 2 to 20 microm-
eters, separated by grain boundaries with specific thicknesses. Compared to the
configuration of an ordinary material, the grain size in a nanomaterial is 1000
times smaller and the proportion of grain boundaries is more important. These
two features, the grain size and the proportion of grain boundaries, are mostly
responsible for changes in the material behavior when its structure changes from
the micrometer to the nanometer scale [2, 3].

In our concern, the nanostructures studied are issued from the SMAT (Surface
Mechanical Attrition Treatment) process [2], considered as granular structures.

2 Sphere Packing and Granular Structure Modeling

2.1 Sphere Packing

The term of sphere (circle) packing is generally used to evoke the mathemati-
cal study of the arrangements of non-overlapping spheres (circles) which fill a
given domain. A typical sphere packing problem is to determine the repartition
of the particles (spheres or circles) which maximizes the density in the domain.
Indeed, the density is the proportion of space filled by the particles having this
repartition. This density depends on the particle size distribution, the way these
particles are packed and the volume of the domain to fill. In practice, to de-
termine the efficiency of a filling algorithm to generate structures with high
densities, we consider it in the particular case where the particles have an iden-
tical size and where the domain has a sufficiently large volume. Indeed, in this
particular case, the density of the generated structure can be compared with

π√
18
� 0.74048, the density of the cubic close packing arrangement in the three-

dimensional Euclidean space (Kepler conjecture), and π√
12
� 0.9069, the density
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of the hexagonal packing arrangement in the two-dimensional Euclidean space.
Note that the maximal density value in 3D concerns regular arrangements only.
For irregular arrangements in 3D (which is usually the case in the sphere pack-
ing algorithms), the highest density (in the particular case where the particles
have the same size) is generally about 0.64, which corresponds to the jammed
configuration.

Several approaches have been proposed to fill a domain with particles in two
and three dimensions. These methods can generally be classified into two major
families: dynamic techniques and constructive techniques. The dynamic methods
are based on the motion and/or the resizing of the particles. In these techniques,
two approaches are essentially used. A purely geometric approach, where cal-
culations are based only on the particles positions and sizes [4, 5, 6, 7], and a
second approach in which physical properties are introduced allowing each par-
ticle to find an equilibrium position depending on its interactions with the other
particles [8, 9, 10, 11]. Usually, the dynamic methods are very costly in terms
of computing time, because the position and/or the size of each particle are/is
modified during the whole filling process. The second family of methods is the
constructive techniques, in which calculations are purely geometric: The posi-
tion and often the size of each particle are kept throughout the filling process.
In this kind of techniques, we can distinguish the methods where the filling in a
given step depends on the situation of the system in the previous steps (like the
advancing-front approach) [12, 1, 13, 14, 15], and the other pseudo-constructive
methods where the repartition of the particles is randomly generated [16, 17, 18]
or based on a pre-built triangulation [19] for example. In many contexts, the
constructive techniques are considered as more advantageous than the dynamic
ones.

2.2 Granular Structure Case

A granular domain, in particular a nanostructure, can be described by a par-
allelepiped (rectangle) containing spherical balls (disks) whose sizes are defined
by a given distribution. The spherical balls (disks) represent the grains and the
spaces between them the grain boundaries. The geometrical modeling of these
structures can be considered as an application of the sphere (circle) packing
when spheres (circles) are modeling grains. In addition to the conformity with
grain size distribution, in the nanostructure case, the grains must be separated
by grain boundaries with specific thicknesses and the generated aggregate must
be irregular (no periodicity).

In terms of algorithmic aspects, further constraints must be considered. In
fact, the algorithm for generating models of granular structures must also be
fast and robust, especially in the three dimensions case.

Modeling grains by spherical balls (disks) obviously creates empty areas in the
structure, a fortiori if the filling method is an advancing-front type. Since these
empty areas, as well as their non homogeneous repartition, do not exist in the real
structure, fatal errors may occur during the physical simulations. Thus, in most
cases, an optimization algorithm, to equally distribute these empty areas on the
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whole structure, must be applied after the filling process. The resulting structure
may be transformed, using the weighted Delaunay triangulation techniques, into
an aggregate of grains in the form of Laguerre cells closer to reality.

3 Geometrical Modeling Scheme

3.1 Filling Algorithm (Sphere Packing Algorithm)

The algorithm we propose to generate granular structures, which is a new sphere
packing algorithm, is a constructive method based on an advancing-front ap-
proach. The term ”constructive” means that the construction at a given step
depends and uses the result of the previous steps, and that particles keep their
size and position during the filling process. The advancing-front approach used in
our algorithm is a new variant of a classical approach in the context of meshing.
Indeed, the idea of the advancing-front method is to mesh a domain by an iter-
ative inwards spreading of a front initialized on its boundary until its complete
recovery [20, 21]. The front is a set of elements (segments in 2D or triangles in
3D) connecting the vertices of the mesh. The advancing-front approach consists
in using the front elements (a previous construction) to create and insert the new
points in the mesh. At each step, an element of the front is selected to propose
the position of the new point according to a given criterion. If the new point is
valid, then the selected front element is deactivated and new front elements are
created, connecting this new point to the points of the deactivated front element
and possibly to other points of the mesh. A new point is said valid (and then
inserted in the mesh) if it satisfies the specified criterion and if the possible cre-
ated front elements do not intersect the current front elements. In the event that
one or more points of the current mesh better fit the specified criterion using the
selected front element (compared to the new point), then the best of these points
is chosen and connected to the points of the selected front element. The conver-
gence of the advancing-front method strongly depends on how the elements are
selected from the front, the identification of the optimal points and the valida-
tion of the created front elements. The advancing-front method remains highly
empirical, unlike Delaunay-type methods for example [22, 23], which are based
on mathematical formulations. Thus, the advancing-front methods are often in-
tuitive and their convergence, especially in the 3D case, cannot be guaranteed by
a rigorous formalism. The use of the advancing-front approach, in our context,
requires to introduce some new concepts in order to ensure its convergence.

In the analogy between this meshing advancing-front approach and our sphere
packing algorithm, a node of the mesh becomes a particle in our geometrical mod-
eling. The sizes of these particles are defined using a given grain size distribution.
In our case, a front element is a virtual triangle (resp. segment) connecting the
centers of 3 spherical balls (resp. 2 disks). A spherical ball (resp. disk) is the
association of a center position and a radius defined according to the specified
size distribution. The location of each spherical ball (resp. disk) is determined,
using an element of the front, to maximize the local density with the particles
(spherical balls or disks) constituting this front element. This position is valid if
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this particle does not overlap any of the existent particles and if it is completely
contained in the domain. A similar sphere packing algorithm have been proposed
by many authors including Yamakawa et al. [24], the proposed method defines
the metric using a sphere (bubble) packing possibly overlapping approach. Our
algorithm can be summarized by the following scheme:

1. Create an initial front
2. Do while the front still contains active elements

a) Generate a random radius according to the grain size distribution
b) Determine the level l of the front (= the first active element level),
c) Do the following for the front of level l

i. Select an active element if its level le is less than or equal to l
ii. Place the new particle Pnew using the selected front element es

iii. Control the validity of Pnew

iv. If Pnew is valid then
• Deactivate es

• Connect Pnew to es particles 1 and go to (a)
v. If the position of Pnew is not valid and all the active elements with a level

≤ l have been tested to place Pnew without success then
• Deactivate the first active element ef in the front
• Determine the existent particle maximizing the local density with ef

particles
• Add possible new elements to the front 2 and go to (b)

d) End do
3. End while

The first step of our algorithm is to create an initial front by connecting the
particles which are placed on the interior side of the domain boundary. Then the
filling is made by an inwards spreading of the front. In figure 1, an illustration
of a filling example in 2D is shown. Figure 2 shows a filling example using our
algorithm in 3D by illustrating the increasing particle level towards the domain
center (each color corresponds to a level in figure 2).

The convergence of the new variant of the advancing-front method is assumed
by the front level concept. Indeed, the level of a front is defined by the level of
its first active element. A front element is said active if it has not been deleted
(deactivated) from the front, either because it has been used to insert a new
particle or because it has been the first active element of a front in the case
where no element of this front could insert the new particle. The level of an
element is defined by the sum of the levels of its particles (spherical balls or
disks). The particle level ranges from 0 (the level of the initial front particles)
to a level n corresponding to the level of the last front particles. The level of
1 This connection will create new front elements (two in 2D and three in 3D) with a

level ≥ le.
2 For each set s containing d − 1 particles of ef , (d is the space dimension), do: if the

determined particle is not connected to the particles of s, then connect it if the level
of the resulting new front element is greater than l in the 3D case (this is necessary
for the convergence of the method). In the 2D case, the new front element is created
even if its level is less than or equal to l.
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Fig. 1. A 2D illustration of a filling example using our algorithm

a new particle is a function of the levels of the particles of the front element
used to insert this new particle. Indeed, the level lnew of the new particle Pnew

is calculated by:

lnew = min
i

(li) + max(1,max
i

(li)−min
i

(li)) (1)

where li are the levels of the particles of the front element used to insert the new
particle. For the convergence of the method, the following two conditions must
be satisfied: (a) a new particle level is equal or greater than to the minimum of
the levels of the particles of the front element used to insert this new particle,
(b) the filling using the elements of a front with a level l is initiated only when
the fronts with levels less than l are completely saturated. The detection and
analysis of conflicts (intersections) between the particles constitutes a crucial
task which generally takes the half of the computing time of the whole filling
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Fig. 2. Illustration of a filling example in 3D

process. To make this task faster, this detection is localized using a grid. In
addition to the speed of the method, the use of this grid makes our algorithm
linear. For more details of this algorithm see [1, 26, 27].

3.2 The Algorithm Efficiency

In this section, we give some criteria to characterize the sphere packing algo-
rithm. In addition to the computing time and the density of the generated
structure, another criterion is introduced. Indeed, this criterion characterizes the
elements of the front by giving their quality. The quality qe of a front element
(P1, P2, P3) (respectively (P1, P2) in the 2D case) is given by:

qe =
δ12 + δ23 + δ31

3
(respectively, qe = δ12) (2)

with δij = d(Pi, Pj) − Ri − Rj, where d(Pi, Pj) denotes the Euclidean distance
between the centers of the particles Pi and Pj with radii Ri and Rj respec-
tively. The efficiency Q of the algorithm is presented by an histogram giving
the frequency corresponding to each quality interval. Indeed, we define the min-
imum quality qmin, the maximum quality qmax and a quality step defined by
qs = qmax−qmin

10 for example. The frequency fi corresponding to the ith quality
interval [qmin + (i − 1)qs, qmin + iqs[ is ni

ne
, where ni is the number of front el-

ements whose quality is belonging to the quality interval i, and ne is the total
number of the front elements. It is said that a filling has a good quality if the
histogram, representing Q, is a Gaussian centered in qmin.
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3.3 Application

In this section, we consider a nanostructure of pure iron [25]. The domain to fill
is a parallelepiped with dimensions 240×300×240 nm (a square with dimensions
240× 300 nm in the 2D case), the grain size distribution has radii ranging from
2 to 8 nm as shown in table 1, and the grain boundary thickness is a function of
the grain radius given by Gb(R) = 2/R. In the filling process, the radius of each
grain will be calculated as R + Gb(R), where R is a radius randomly chosen in
the grain size distribution (for more details see [1, 26, 27]).

Table 1. The grain size distribution of the pure iron nanostructured

radii (nm) frequency (%)

[2 - 2.5[ 15.8

[2.5 - 3[ 21

[3 - 3.5[ 20.2

[3.5 - 4[ 16.7

[4.5 - 5[ 6.8

[5 - 5.5[ 4

[5.5 - 6[ 3

[6 - 6.5[ 0.8

[6.5 - 7[ 0.7

[7 - 7.5[ 0.6

[7.5 - 8[ 0.4

In these conditions, using a machine with a 1.4 GHz processor, our algorithm
generates a structure containing 33,738 spherical balls (respectively 1,330 disks
in 2D) with a density of 0.494 (0.80) and a computing time less than 3 s (0.02 s).
We can note that the filling is quite fast and that the density (in the 2D case)
is quite satisfactory. The obtained density in the 3D case cannot be compared
to a theoretical value because the distribution contains different grain sizes. To
characterize our algorithm concerning the densities that can be obtained in the
3D case, we apply it in the particular case of a fixed radius (4 nm), keeping the
same domain size and the same grain boundary expression. Indeed, the idea is to
compare the density of the generated structure with the value 0.64 corresponding
to the highest possible density in a irregular assembly of constant size particles.
In this particular case, the generated structure contains 39,061 spherical balls
with a density of about 0.606. This density is much better than the value 0.494
previously obtained with the specified grain size distribution.

The generated structures in 2D and 3D are illustrated by figure 3. We can
observe that there are many empty areas in these structures (more visible in
the 2D case). As mentioned above, this is due to the modeling of the grains by
spherical balls (disks) and to the advancing-front method intrinsic characteristic
of generating empty areas when two fronts are meeting. In addition to these
factors, the constraints of generating random irregular structures (no periodicity)
and the conformity with the grain size distribution, in our case, accentuate these
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Fig. 3. Illustrations in 2D and 3D of the pure iron nanostructured model

Fig. 4. The quality histogram for the cases 2D (left) and 3D (right)

empty areas. Since these empty areas, introduced by the filling algorithm, are
residual, i.e. they do not physically exist in the real structure, then they must
be equally distributed on the whole structure. This is the main purpose of the
next section.

The filling quality histograms (of both 2D and 3D cases) for the pure iron
example are shown in figure 4. We can observe that the filling quality in the
2D case is a Gaussian more pronounced (almost a Dirac) than in the 3D case.
Indeed, the filling quality in the 3D case is calculated, on each triangle (a front
element), by the average edges (of this triangle) quality, which does not show
the gap between the qualities of these edges as in the 2D case.

4 Optimization of the Generated Structure and Cell
Construction

The advancing-front method usually leads to an heterogeneity of the local density
in the structure (some regions are denser than others, see figure 3). This feature
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can have a direct impact on the results of the physical simulations, particulary in
the nanomaterials case. Indeed, in a nanostructure, an empty area is considered
as an additional grain boundary. However, the proportion and the repartition
of grain boundaries in such a structure are the major features of its behavior
(obstacles to dislocations propagation for example [3]). Hence, a point relocation
algorithm is necessary to equally distribute these additional empty areas on the
whole structure, and then to reduce as much as possible their impact on the
physical simulations.

The main idea of the point relocation algorithm that we propose is the fol-
lowing principle: ”in order to equally distribute the empty areas on the whole
structure, one just has to equally distribute them locally around each particle”.
Thus, we need to know the local configuration around each point (particle cen-
ter), i.e. the positions and radii of its nearest particles. For this purpose, we
use the weighted Delaunay triangulation (dual of Laguerre diagram) built on
the point cloud constituted by the particle centers (where the weights are the
radii of these particles) and the points of the domain boundary discretization
(considered as particles with radius zero). The domain boundary discretization
must be as fine as possible so that all the Laguerre diagram cells (dual of this
triangulation) are completely contained in the domain.

4.1 Domain Boundary Discretization

Several approaches can be used to obtain the discretization of the domain bound-
ary. As explained before, this discretization must allow all the Laguerre diagram
vertices to be completely contained in the domain, but it must also be as least
costly as possible (minimum number of points). To obtain this discretization,
we are proceeding in an iterative scheme. At a first time, the weighted Delau-
nay triangulation, using the set of points constituted by the particle centers and
the 8 points of the parallelepiped (4 points of the rectangle) representing the
domain, is built. Then, for each tetrahedron (triangle) whose vertices are includ-
ing at least one of the particle centers, we check if the center of the weighted
”circumscribed” sphere (disk) is outside (or on) the domain boundary. If it is
the case (outside or on the domain boundary), the centers of these particles
are orthogonally projected onto the domain boundary side where the center of
this ”circumscribed” sphere (disk) is outside (or on it). These projected points
are then added to the point cloud and a new weighted Delaunay triangulation
is built. These second and third steps iterate until all the Laguerre diagram
vertices (the tetrahedra (triangles) ”circumscribed” spheres (disks) centers) are
completely contained in the domain (including if they are on the domain bound-
ary). In the 3D case, from two points associated with the same particle center
(projection on two perpendicular planes), a third point (corresponding to the
orthogonal projection of these two points on the segment, intersection of these
two planes) is added to the point cloud. In figure 5, an example of the weighted
Delaunay triangulation and its dual (Laguerre diagram) of a point cloud in 2D
is given.
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Fig. 5. The weighted Delaunay triangulation and its dual Laguerre diagram (red color)
of a point cloud in 2D

4.2 The Point Relocation Algorithm

The algorithm we propose here to balance the density on the whole structure
is an algorithm of point relocation under constraints. Indeed, the optimization
produced by this algorithm must not lead to intersections between the particles,
and thereby preserves the validity of the generated structure. The idea of this
algorithm is to use the weighted Delaunay triangulation, as described above, to
move locally each particle by considering its nearest neighbors (its topological
ball). Indeed, each particle center is repositioned using the front defined by all
the sides of its ball boundary. Let Fi (respectively Si) be the ith face or triangle
(segment) of the front defined by the sides of the point P ball boundary, we can
assume that there is a unique position Pi of P calculated using Fi (Si). This point
relocation method is to move, step by step, the point P towards the barycenter
P ∗ of the points Pi. At each step, the validity of the point P (no intersection
with the other particles, and the particle centered on P is completely contained
in the domain) is checked. The general scheme of our point relocation algorithm
can be described by the few following lines:

• Do while there are relocated points
– For each point P (particle center)

· Define the ball of P using the weighted Delaunay triangulation
· Calculate the positions Pi associated with the faces Fi (segments Si) of the

front defined by the sides of P ball boundary
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· Calculate the barycenter P ∗ of the points Pi

· Move the point P , step by step, towards P ∗ (do α = 0.3 to 0.05 by − 0.05)
· Pα = (1 − α)P + αP ∗

· Control the validity of Pα

· If the point Pα is valid then the position of the point P is replaced by
Pα, exit from the loop on α

· End of the loop on α
– End of the loop on the points P
– Reconstruct the weighted Delaunay triangulation

• End while

One may speculate about the use of this new point relocation algorithm,
whereas other algorithms exist, especially the smoothing algorithm, usually used
to smooth the edge lengthes in a mesh. Indeed, we have tested two variants
of the smoothing algorithm in our context. The first variant is the classical
smoothing scheme, which leads to intersections between the particles (and then
do not preserve the validity of the generated structure). In the second variant,
where the constraint of no overlapping between the particles is introduced, the
optimization is very weak and the generated structure keeps a big heterogeneity
in the local density.

4.3 Characterization of the Point Relocation Algorithm

In this section, we introduce a criterion to characterize the effectiveness of the
point relocation algorithm. This criterion supposes that the weighted Delau-
nay triangulation WDT, based on the point cloud constituted by the generated
particle centers and the points of the domain boundary discretization, is given.
Indeed, with each point P of the WDT (except the centers of the border particles
and the points of the domain boundary discretization) is associated a function
F (P ) defined by:

F (P ) = max
j

(δj)−min
j

(δj) (3)

with δj = d(P, Pj) − w − wj , where d(P, Pj) is the Euclidean distance between
point P and point Pj (one of the points of the topological ball of point P given
by the WDT ), w if the weight of point P defined by w = R+ gb(R), where R is
the radius of the particle centered on P and gb(R) is the grain boundary around
this particle, and wj is the weight (in the same manner as w) of point Pj . Note
that in our case, as shown in figure 6, we have necessarily δj ≥ 0.

By minimizing the function F (P ), the maximum and the minimum of δj tend
to an average value δmoy and then the optimization is realized. To present the
results of the application of this criterion, we draw the graph of the function F
between Fmin (the minimum of F (P )) and Fmax (the maximum of F (P )) by a
frequency histogram in 10 intervals:

[Fmin + i
Fmax − Fmin

10
, Fmin + (i + 1)

Fmax − Fmin

10
[, for i=0,...,9
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Fig. 6. The quantities δj are presented by solid lines for the 2D case (left) and by
green lines for the case 3D (right)

4.4 Construction of Cells

The generated particles with spherical (circular) shape can be transformed, us-
ing the dual of the weighted Delaunay triangulation obtained after the point
relocation procedure, into cells more similar to the grain shape observed in re-
ality. This transformation procedure is optional, depending on the grain shape
required by the user. To construct the cells representing the grains, we consider
the dual of the weighted Delaunay triangulation (Laguerre diagram) obtained
after the structure have been optimized (concerning the repartition of empty
areas). As shown in figure 5, the cells entirely contain the particles, which is a
principal feature of the duality between the weighted Delaunay triangulation and
the Laguerre diagram. In our case, the weight of each particle, in the weighted
Delaunay triangulation, is w = R+gb(R), meaning that the grain boundaries are
included in the weights of the particles. To separate the grain boundaries, these
cells must be isotropically shrunk. Thus, from the vertices oi of a cell and point
P center of its correspondent particle, we define the vertices õi of the shrunk cell
by:

õi = oi + (1− R

w
)−−→oiP (4)

5 Numerical Applications

In this section, we consider two numerical examples in both 2D and 3D cases.
The first example is a model where particles have the same radius, whereas in
the second one, the particles have different radii. The machine used in the two
examples has a Pentium M processor with 1.4 GHz.

5.1 Example 1

The 2D model consists in a domain with dimensions 100× 100 nm and particles
of radius 0.9 nm with a constant grain boundary of 0.1 nm. In the 3D model, the
particles radius and the grain boundary are the same as in the 2D model and
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Table 2. Modeling results in 2D and 3D cases

Results 2D model 3D model

Nb particles 2,789 17,787

Density 0.88 0.60

Time(s) 0.03 1

Fig. 7. The quality histograms for the cases 2D (left) and 3D (right)

Fig. 8. The generated structure in the 2D model, before (left) and after (right) the
application of the optimization algorithm

the domain is with dimensions 50 × 50× 50 nm. The results of the geometrical
modeling are given in table 2.

We can observe that the filling is quite fast and gives satisfactory densities.
The filling qualities, in both 2D and 3D are illustrated in figure 7. In figure 8 we
illustrate the generated structure in the 2D model before and after the applica-
tion of the point relocation algorithm. The histogram of function F , giving the
repartition of the empty areas on the structure, before and after the application
of the optimization algorithm is given in figure 9. We can observe that the two
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Fig. 9. The function F , in the 2D model, before (left) and after (right) the application
of the optimization algorithm

histograms are quite similar: this is because, before the application of this algo-
rithm, the function F (P ) was optimal (near 0) for most of points P (as we can
see it in figure 8), and because for some points, the constraint of no intersection
between the particles leads to a locked state.

5.2 Example 2

The 2D model consists in a domain with dimensions 200×200 nm and a uniform
grain size distribution with radii in the interval [0.8 nm, 2.8 nm] and a constant
grain boundary of 0.2 nm. In the 3D model, the grain size distribution and the
grain boundary are the same as in the 2D model and the domain has dimensions
50× 50× 50 nm. The results of the modeling are given in table 3.

Table 3. Modeling results in 2D and 3D cases

Results 2D model 3D model

Nb particles 2324 1482

Density 0.81 0.51

Time(s) 0.02 0.05

In Figure 10, the structures with cells and particles in both 2D and 3D are pre-
sented. Note that each cell entirely contains a particle, and thus the volume (area)
of the cell is always greater than that of its correspondent particle. Indeed, in the
filling process, the thickness of grain boundaries is included in the radii of the parti-
cles, and despite of this, empty areas (intrinsic to the advancing-frontmethod) still
exist in the structure. These empty areas, which have no physical sense as nonexis-
tent in the real structure (model obtained experimentally), are equally distributed
on the whole structure leading to two kinds ofmodels: either the model with spheri-
cal (circular) grains where the grain sizes are maintained and the thickness of grain
boundaries is slightly increased, or the model with cells where the grain sizes are
slightly increased and the thickness of grain boundaries is kept.
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Fig. 10. Illustrations in 2D and 3D of the structures with cells and particles

6 Conclusions and Outlook

In this paper we have considered the problem of granular structure geomet-
rical modeling under constraints in both two and three dimensions. We have
considered this modeling as the classic sphere (circle) packing problem, and in-
troduced a new method based on an advancing-front approach generally used in
the meshing context.

Applying this new method in many cases, especially for nanostructures, we
have shown that it can generate structures with a large number of grains (over
30,000) in a short computing time (about 2 s) with a satisfactory density and
an ensured convergence.

The advancing-front approach used often generates heterogeneities in the
repartition of empty areas in the structure. Thus, we have also proposed an
optimization algorithm for equally distributing these areas on the whole struc-
ture. The proposed method is based on techniques of point relocation under
constraints.

Finally, we have introduced a simple method to transform the structure with
spherical (circular) grains into an assembly of cells closer to the grain shape ob-
served in reality. This method is based on the weighted Delaunay triangulation,
built on the point cloud constituted by particle centers and the points of the
domain boundary discretization, by considering its dual Laguerre diagram.

To ensure the convergence in the 3D case, some faces (front elements) have
been neglected in the filling process. An improvement in the algorithm on this
point can be investigated, which may increase the density. Also, this improve-
ment can be achieved by considering a densification procedure by a compromise
between the density and the conformity with the grain size distribution.

In the point relocation algorithm, the optimization is based on the minimiza-
tion of a functional calculated, for each particle, using the length of the empty
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areas (introduced by the advancing-front method) along some directions. An-
other approach is to consider this empty space in all directions by calculating
the functional using the volume (the area) of this space around each particle.
This method is more difficult to implement and more costly in terms of comput-
ing time, but it may give better results in the repartition of the empty areas on
the structure.

This geometrical modeling of granular structures (nanostructures in particu-
lar) is a pre-step of their simulation by the finite element method. Another key
task, which constitutes one of our principal activities, is the generation of quality
meshes of these structures (in 2D and 3D) required by this simulation.
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Summary. A completely well-centered tetrahedral mesh is a triangulation of a three dimensional
domain in which every tetrahedron and every triangle contains its circumcenter in its interior.
Such meshes have applications in scientific computing and other fields. We show how to tri-
angulate simple domains using completely well-centered tetrahedra. The domains we consider
here are space, infinite slab, infinite rectangular prism, cube, and regular tetrahedron. We also
demonstrate single tetrahedra with various combinations of the properties of dihedral acuteness,
2-well-centeredness, and 3-well-centeredness.

1 Introduction

In this paper we demonstrate well-centered triangulation of simple domains in R
3. A

well-centered simplex is one for which the circumcenter lies in the interior of the sim-
plex (8). This definition is further refined to that of a k-well-centered simplex which is
one whose k-dimensional faces have the well-centeredness property. An n-dimensional
simplex which is k-well-centered for all 1 ≤ k ≤ n is called completely well-centered
(15). These properties extend to simplicial complexes, i.e. to meshes. Thus a mesh can
be completely well-centered or k-well-centered if all its simplices have that property.
For triangles, being well-centered is the same as being acute-angled. But a tetrahedron
can be dihedral acute without being 3-well-centered as we show by example in Sect. 2.
We also note that while every well-centered triangulation is Delaunay, the converse is
not true.

In (14) we described an optimization-based approach to transform a given planar
triangle mesh into a well-centered one by moving the internal vertices while keeping the
boundary vertices fixed. In (15) we generalized this approach to arbitrary dimensions
and in addition to developing some theoretical properties of our method showed some
complex examples of our method at work in the plane and some simple examples in
R

3. In this paper the domains we consider are space, slabs, infinite rectangular prisms,
cubes and tetrahedra.

Well-centered triangulations find applications in some areas of scientific computing
and other fields. Their limited use so far may be partly because until recently there
were no methods known for constructing such meshes. One motivation for constructing
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well-centered meshes comes from Discrete Exterior Calculus, which is a framework
for constructing numerical methods for partial differential equations (4, 8). The avail-
ability of well-centered meshes permits one to discretize an important operator called
the Hodge star as a diagonal matrix, leading to efficiencies in numerical solution pro-
cedures. Other potential applications are the covolume method (10, 11), space-time
meshing (13), and computations of geodesic paths on manifolds (9).

2 Well-Centeredness and Dihedral Acuteness for a Single
Tetrahedron

An equatorial ball of a simplex is a ball for which the circumsphere of the simplex is an
equator. Stated more precisely, if σk is a k-dimensional simplex, then the equatorial ball
of σk is a (k + 1)-dimensional ball whose center is c(σk), the circumcenter of σk, and
whose radius is R(σk), the circumradius of σk. In (15) we showed that a simplex σn is
n-well-centered if and only if for each vertex v in σn, v lies outside the equatorial ball of
the facet τn−1

v opposite v. Figure 1 illustrates this characterization of well-centeredness;
the vertex v at the top of the tetrahedron in Fig. 1 lies outside of the equatorial ball of
the facet opposite v.

Fig. 1. One characterization of well-centeredness is that for each vertex v, the vertex lies outside
of the equatorial ball of the facet opposite v. The larger sphere shown here is the circumsphere
of the tetrahedron and the smaller sphere is the boundary of the equatorial ball of the bottom
triangle. The top vertex of the tetrahedron is outside the equatorial ball.

We now have a definition of k-well-centeredness and an alternate characterization
of well-centeredness, but these provide limited intuition for what it means to be well-
centered. In this section we discuss a variety of tetrahedra, showing that in R

3, a simplex
that is 2-well-centered may or may not be 3-well-centered, and vice versa. We also
discuss how being dihedral acute relates to being well-centered.

Figures 2 through 7 are pictures of six different tetrahedra that illustrate the possible
combinations of the qualities 2-well-centered, 3-well-centered, and dihedral acute. Each
picture shows a tetrahedron inside of its circumsphere. The center of each circumsphere
is marked by a small, unlabeled axes indicator. In each case, the circumcenter of the
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tetrahedron lies at the origin, and the circumradius is 1. The coordinates given are exact,
and the quality statistics are rounded to the nearest value of the precision shown.

The quality statistics displayed include the minimum and maximum face angles and
dihedral angles of the tetrahedron. These familiar quality measures need no further
explanation, and it is easy to determine from them whether a tetrahedron is 2-well-
centered (having all face angles acute) or dihedral acute. The R/� statistic shows the
ratio of the circumradius R to the shortest edge of the tetrahedron, which has length �.
The range of R/� is [

√
3/8,∞], with

√
3/8 ≈ 0.612. A single tetrahedron has a par-

ticular R/� ratio, so the minimum R/� equals the maximum R/� in each of Figs. 2–7.
Later, however, we will show similar statistics for tetrahedral meshes, and it is conve-
nient to use the same format to summarize mesh quality in both cases. The R/� ratio
is a familiar measurement of the quality of a tetrahedron, especially in the context of
Delaunay refinement.

The quality statistic h/R is less familiar. The R in this ratio is the circumradius. The
h stands for height. For a given facet of the tetrahedron, h measures the signed height of
the circumcenter of the tetrahedron above the plane containing that facet. The direction
above the facet means the direction towards the remaining vertex of the tetrahedron,
and h is positive when the circumcenter lies above the facet. In (15) the quantity h/R
and its relationship to well-centeredness in any dimension is discussed at more length.
For our purposes it should suffice to note that the range of h/R for tetrahedra is (−1, 1),
that a tetrahedron is 3-well-centered if and only if the minimum h/R is positive, and
that h/R = 1/3 relative to every facet of the regular tetrahedron.

The regular tetrahedron is completely well-centered and dihedral acute. Our first ex-
ample, shown in Fig. 2, is another tetrahedron that shares those properties with the reg-
ular tetrahedron. Not every completely well-centered tetrahedron is dihedral acute, and
the second example, shown in Fig. 3, is a tetrahedron that is completely well-centered
but not dihedral acute. Some sliver tetrahedra are completely well-centered and have
dihedral angles approaching 180°.

As one might expect, there are tetrahedra that have none of these nice properties.
The tetrahedron shown in Fig. 4 is an example of such a tetrahedron. Most polar caps
also have none of these nice properties. Some tetrahedra that are neither dihedral acute
nor 2-well-centered nor 3-well-centered have much worse quality than the example in
Fig. 4. This particular example is near the boundary dividing 3-well-centered tetrahedra
from tetrahedra that are not 3-well-centered.

The tetrahedra we have considered so far have been either completely well-centered
or neither 2-well-centered nor 3-well-centered. Our last three examples show that tetra-
hedra can be 2-well-centered without being 3-well-centered and vice-versa. The tetra-
hedron shown in Fig. 5 is 2-well-centered and dihedral acute, but not 3-well-centered.
The example tetrahedron shown in Fig. 6 is similar but has been modified to no longer
be dihedral acute. Our final example, shown in Fig. 7, is a tetrahedron that is 3-well-
centered, but is neither 2-well-centered nor dihedral acute.

Table 1 summarizes the six examples presented in this section, indicating whether
each example is 2-well-centered, 3-well-centered, and/or dihedral acute. Of the eight
possible binary sequences, the two missing examples are the sequences N,N, Y and
Y,N, Y , in which a tetrahedron would be dihedral acute but not 2-well-centered. These
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Vertex Coordinates
x y z

0.6 −0.64 −0.48

0.48 0.8 −0.36

−0.96 0 −0.28

0 0 1

Quality Statistics
Quantity Min Max

h/R 0.254 0.371

Face Angle 50.92° 67.08°
Dihedral Angle 58.76° 76.98°
R/� 0.690 0.690

Fig. 2. A tetrahedron that is completely well-centered and dihedral acute

Vertex Coordinates
x y z

0 0.96 −0.28

−0.744 −0.64 −0.192

0.856 −0.48 −0.192

−0.48 0.192 0.856

Quality Statistics
Quantity Min Max

h/R 0.224 0.427

Face Angle 46.26° 77.62°
Dihedral Angle 52.71° 94.15°
R/� 0.733 0.733

Fig. 3. A completely well-centered tetrahedron that is not dihedral acute

Vertex Coordinates
x y z

0.224 −0.768 −0.6

0.8 0 −0.6

0.224 0.768 −0.6

−0.28 0 0.96

Quality Statistics
Quantity Min Max

h/R −0.029 0.600

Face Angle 29.89° 106.26°
Dihedral Angle 35.42° 116.68°
R/� 1.042 1.042

Fig. 4. A tetrahedron that is not dihedral acute, 2-well-centered, or 3-well-centered
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Vertex Coordinates
x y z

0.36 −0.8 −0.48

0.768 0.28 −0.576

−0.6 0.64 −0.48

0.576 0.168 0.8

Quality Statistics
Quantity Min Max

h/R −0.109 0.562

Face Angle 41.71° 83.76°
Dihedral Angle 53.33° 85.72°
R/� 0.863 0.863

Fig. 5. A tetrahedron that is dihedral acute and 2-well-centered, but not 3-well-centered

Vertex Coordinates
x y z

−0.152 0.864 −0.48

−0.64 −0.6 −0.48

0.6 −0.64 −0.48

−0.192 −0.64 0.744

Quality Statistics
Quantity Min Max

h/R −0.024 0.630

Face Angle 42.08° 85.44°
Dihedral Angle 59.94° 91.20°
R/� 0.806 0.806

Fig. 6. A tetrahedron that is not dihedral acute or 3-well-centered, but is 2-well-centered

Vertex Coordinates
x y z

0 −0.6 −0.8

0.64 −0.024 −0.768

−0.64 −0.024 −0.768

0 0.352 0.936

Quality Statistics
Quantity Min Max

h/R 0.112 0.765

Face Angle 25.69° 95.94°
Dihedral Angle 40.33° 105.62°
R/� 1.161 1.161

Fig. 7. A tetrahedron that is not dihedral acute or 2-well-centered, but is 3-well-centered
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Table 1. A tetrahedron may have any of six different possible combinations of the qualities 2-
well-centered, 3-well-centered, and dihedral acute

Figure 3-WC 2-WC Acute
2 Y Y Y
3 Y Y N
4 N N N
5 N Y Y
6 N Y N
7 Y N N

examples are missing because they do not exist; every tetrahedron that is dihedral acute
is also 2-well-centered. Eppstein, Sullivan, and Üngör provide a proof of this in Lemma
2 of (6), which states, among other things, that “an acute tetrahedron has acute facets.”

3 Tiling Space, Slabs, and Infinite Rectangular Prisms with
Completely Well-Centered Tetrahedra

We have mentioned above that there are applications that could make good use of well-
centered triangulations and have considered examples of single well-centered tetrahe-
dra. In what follows, we give some examples of well-centered triangulations of simple
domains in dimension 3.

In (6), Eppstein, Sullivan, and Üngör show that one can tile space, R
3, and infi-

nite slabs, R
2 × [0, a], with dihedral acute tetrahedra. They also briefly discuss how

high-quality tilings of space have been used to design meshing algorithms. The acute
triangulations of space given in (6) all make use of copies of at least two different tetra-
hedra, and the authors suggest it is unlikely that there is a tiling of space with copies
of a single acute tetrahedron. Their acute triangulation of the slab appears to use copies
of seven distinct tetrahedra. The problem of triangulating an infinite rectangular prism,
R× [0, a]× [0, b], or a cube, [0, 1]3, with acute tetrahedra is still an open problem as far
as the authors know.

In contrast to the complexity of tiling space with acute tetrahedra, there are fairly
simple completely well-centered triangulations of space. Barnes and Sloane proved that
the optimal lattice for quantizing uniformly distributed data in R

3 is the body-centered
cubic (BCC) lattice (2). Since this is related to centroidal Voronoi tesselations (CVTs)
(5), and CVTs have been used for high-quality meshing of 3-dimensional domains (see
(1)), it is not surprising that a Delaunay triangulation of the vertices of the BCC lattice
gives rise to a high quality triangulation of space. The triangulation consists of congru-
ent copies of a single completely well-centered tetrahedron, shown in Fig. 8. The tiling
is one of four spatial tilings discovered by Sommerville (6, 12). The other three tilings
Sommerville found are neither 3-well-centered nor 2-well-centered, though one of them
has a maximum face angle of 90° and is dihedral nonobtuse. It is interesting to note that
Fuchs algorithm for meshing spatial domains based on high-quality spatial tilings had
“good performance . . . when he used the second Sommerville construction,” S(6, 7)
which is the completely well-centered tetrahedron shown in Fig. 8.
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Vertex Coordinates
x y z

−1 −2 0

1 0 −2

−1 2 0

1 0 2

Quality Statistics
Quantity Min Max

h/R 0.316 0.316

Face Angle 54.74° 70.53°
Dihedral Angle 60.00° 90.00°
R/� 0.645 0.645

Fig. 8. The second Sommerville tetrahedron – a completely well-centered tetrahedron that tiles
space

Next we describe the space tiling that uses the Sommerville tetrahedron described
above. The view of the tetrahedron shown in Fig. 8 has an elevation angle between 10
and 11 degrees, so it is not difficult to identify the horizontal edge and the vertical edge
of the tetrahedron. The horizontal edge connects a pair of vertices from one of the cubic
lattices, and the vertical edge connects a pair of vertices from the other cubic lattice. It
is natural to think of this spatial tiling in terms of the interleaved cubic lattices, but we
can also look at the tiling from a different perspective. Consider the tilted plane P that
contains the bottom face of the tetrahedron shown in Fig. 8. Consider a single cube of
one of the cubic lattices. The plane P is the one defined by two opposing parallel edges
of the cube. At the center of the cube there is a vertex from the other cube lattice; this
vertex also lies in P . By making translated copies of the vertices in P we can obtain all
of the vertices of the BCC lattice. Each vertex in P has six adjacent vertices in P and
four adjacent vertices in each of the plane above and below P . There are two types of
tetrahedra in the tiling, but both types are copies of the same tetrahedron in this case.
The first type is the convex hull of three vertices in a copy of P and one vertex from the
plane above or below that copy of P . The second type of tetrahedron is the convex hull
of an edge in a copy of P and a corresponding edge from the plane above or below that
copy of P .

From this understanding of the structure of the BCC-based spatial tiling, we can
generalize to an entire family of triangulations of space using copies of two different
tetrahedra. We consider first the set of vertices {(i, 0, 0) : i ∈ Z}. We will make trans-
lated copies of this line in one direction to make a plane P . To do this we choose a
parameter a > 0 and make infinitely many copies of each vertex translating by the vec-
tor (1/2, a, 0). Lastly we choose a parameter b > 0 and make translated copies of the
plane P using the translation vector (1/2, 0, b). Thus our set of vertices is

{(i + j/2 + k/2, aj, bk) : i, j, k ∈ Z},
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Fig. 9. Starting with a set of vertices equally spaced along a line, we make translated copies of
the line in a plane and triangulate the plane with each vertex having six neighbors

Fig. 10. We make translated copies of the plane into space and form tetrahedra by connecting
vertices of adjacent planes as shown

i.e., the lattice Λ = {
∑3

i=1 ciui : ci ∈ Z} with basis vectors

u1 = (1, 0, 0), u2 = (1/2, a, 0), and u3 = (1/2, 0, b).

To turn this into a triangulation of space, we start by triangulating each copy of the
plane P as shown in Fig. 9. Each vertex v in a copy of P is connected to the six vertices
which lie at positions v ± (1, 0, 0), v ± (1/2, a, 0), and v ± (1/2,−a, 0). This yields
the standard tiling of the plane with equilateral triangles if a =

√
3/2. Now for each

triangle in a copy of P there is exactly one edge – the edge in the direction (1, 0, 0) – for
which a vertex lies directly above and directly below the midpoint of that edge. The first
type of tetrahedron, then, is the convex hull of a triangle T in P and the vertex directly
above or below the midpoint of one of the edges of T . If we add all possible tetrahedra
of the first type, the gaps that remain are all tetrahedra of the second type. This second
type of tetrahedron is the convex hull of an edge in P in the direction ±(1/2, a, 0) and
the edge in the direction±(1/2,−a, 0) whose midpoint lies directly above or below the
midpoint of the given edge. Figure 10 shows three copies of the plane and highlights
three of the tetrahedra that appear in the spatial tiling. The two tetrahedra on the left
side of Fig. 10 are both copies of the first type of tetrahedron. The other tetrahedron
is of the second type. For the BCC-based spatial triangulation, in which both types of
tetrahedra are the same, the parameters are a = b =

√
2/2.

This family of triangulations of space is interesting for at least two reasons. First,
the triangulation is completely well-centered if and only if both a > 1/2 and b > 1/2.
Second, the family provides an elegant solution to the problems of tiling an infinite
slab in R

3 and tiling infinite rectangular prisms in R
3. To tile the slab, one uses a

finite number of translates of plane P . We see that any slab can be triangulated using
copies of a single tetrahedron; for the parameters a = b =

√
2/2, the two types of

tetrahedra are the same, and we can scale the result as needed to get a slab of the desired
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thickness. Triangulating rectangular prisms is also easy; it suffices to use a finite number
of translates both of the initial line and of the resulting infinite strip. Again, this can be
done using copies of a single tetrahedron, provided that the ratio of side lengths of the
rectangle is a rational number. If the ratio of side lengths is p/q, one can use parameters
a = b =

√
2/2 and take p copies of the initial line with q copies of the infinite strip. The

result has the correct ratio of side lengths and can be scaled to get the desired rectangle.

4 Meshing the Cube With Well-Centered Tetrahedra

Meshing the cube with well-centered tetrahedra is significantly more difficult than
meshing an infinite square prism, but it can be done. In this section we discuss sev-
eral well-centered meshes of the cube that we constructed. In each case, the mesh was
built by first designing the mesh connectivity, then moving the internal vertices using
the optimization algorithm described in (15).

The first completely well-centered mesh of the cube that we discovered has 224
tetrahedra. We do not discuss the construction of this mesh in detail here, but it is
worth mentioning the mesh because it has higher quality than the other well-centered
meshes of the cube we will discuss. The quality statistics for the mesh are shown in the
columns to the left in Table 2. The faces of this triangulation of the cube match up with
each other, so it is relatively easy to make a well-centered mesh of any figure that can
be tiled with unit cubes. One can use a copy of this well-centered mesh of the cube in
each cube tile, using rotations and reflections as needed to make all the faces match.

Cassidy and Lord showed that the smallest acute triangulation of the square con-
sists of eight triangles (3). Knowing that a completely well-centered mesh of the cube
exists, it is natural to ask the analogous question for the cube. What is the smallest
well-centered mesh of the cube? One can ask this question for the three different types
of well-centered tetrahedral meshes – 2-well-centered, 3-well-centered, and completely
well-centered. It is also conceivable that the well-centered mesh of the cube with the
fewest tetrahedra is different from the mesh of the cube with the fewest vertices or
edges, but we restrict our attention to the smallest well-centered mesh in the sense of
fewest tetrahedra.

The answer to the question is not known for any of the three types of well-centered
triangulations, but we can give some upper and lower bounds. The best known upper
bound for 2-well-centered and completely well-centered triangulations of the cube is
a completely well-centered mesh of the cube with 194 tetrahedra. Figure 11 shows
a picture of this mesh. The quality statistics for the mesh are recorded in the middle
columns of Table 2.

It is possible to improve the quality slightly by optimization of the location of the
surface vertices, but for the version of the mesh shown in Fig. 11, the surface triangu-
lation has some desirable symmetries, with every surface vertex at a cube corner, at the
midpoint of an edge of the cube, or on a diagonal of a face of the cube. All of the faces
match each other up to rotation and reflection, so this triangulation of the cube can also
be used to create a well-centered mesh of any figure that can be tiled with unit cubes.
Although the surface triangulation of this mesh is combinatorially the same as the tri-
angulation with 224 tetrahedra, the vertices on the surfaces are not in the same location,
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Fig. 11. A completely well-centered mesh of the cube with 194 tetrahedra

so it is not trivial to mix these two triangulations in meshing a cube-tiled shape. It is
worth noting that the vertices of the surface triangulation that lie on the cube diagonals
do not have coordinates of 1/3 or 2/3. Instead the coordinates are 0.35 or 0.65 for the
vertices adjacent to an edge through the center of the cube face, and the coordinates are
0.295 or 0.705 for vertices not adjacent to such an edge.

Figure 11 is designed to make it possible to discern the structure of this triangulation
of the cube. In the bottom right we see a triangulation of a region that fits into the corner
of the cube and extends along the cube surface to diagonals of three of the faces of the
cube. The triangulation basically has two layers of tetrahedra. The first layer is shown
at bottom left. It consists of six tetrahedra that are incident to the corner of the cube.
The two-layer triangulation is imprecisely replicated in four different corners of the
cube. The thicker diagonal lines in the picture at top left help show which cube corners
contain this type of triangulation. To complete the triangulation of the cube, a vertex at
the center of the cube is added to the triangulations of the cube corners. The picture at
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Table 2. The quality of our meshes of the cube decreases with the number of tetrahedra in the
mesh of the cube

Cube Mesh Quality Statistics

Quantity
224 Tets 194 Tets 146 Tets

Min Max Min Max Min Max
h/R 0.041 0.850 0.005 0.790 0.016 0.854

Face Angle 21.01° 87.49° 26.93° 89.61° 17.09° 112.60°
Dihedral Angle 24.91° 105.61° 28.26° 126.64° 10.73° 163.17°
R/� 0.618 1.569 0.612 1.134 0.711 1.835

top right of Fig. 11 shows all the interior vertices of the cube, combining the vertex at
the center of the cube with one tetrahedron from each triangulation of a cube corner.
The Delaunay triangulation defines the connectivity table, since any 3-well-centered
triangulation is Delaunay.

This mesh establishes upper bounds for the 2-well-centered and completely well-
centered cases. There is an even smaller triangulation of the cube that is known to be
3-well-centered. We do not describe it here except to say that the mesh consists of 146
tetrahedra and has a surface triangulation with fewer triangles than the two previously
mentioned triangulations of the cube. The quality of that 3-well-centered mesh of the
cube is shown in the rightmost columns of Table 2.

The upper bounds for this problem are simple to present, since they consist of con-
structive examples. The analytical lower bounds are rather more complicated to explain,
and we discuss them here only briefly. One can show that in a 3-well-centered triangu-
lation of the cube, no face of the cube is triangulated with two right triangles meeting
along the hypotenuse (16). Thus each face of the cube must contain at least five ver-
tices and at least three tetrahedral facets. Since there are six cube faces, this leads to a
count of 18 tetrahedra, one adjacent to each facet. Some of these tetrahedra may have
been counted twice, though, since a single tetrahedron may have a facet in each of
two different cube faces. It can be shown that no tetrahedron having a facet in each of
three different cube faces is a 3-well-centered tetrahedron (16). Thus no tetrahedron is
triple-counted. A lower bound of 9 tetrahedra follows. It is possible to prove that any
triangulation of the cube with all vertices lying on the edges of the cube is not 3-well-
centered, but it is not immediately clear whether this can be used to improve the lower
bound.

The lower bound for 2-well-centered and completely well-centered triangulations of
the cube is slightly better. In this case, each face of the cube must be triangulated with
an acute triangulation, so each cube face contains at least 8 tetrahedral facets. This gives
a count of 48 tetrahedra, and once again we cannot have counted any tetrahedron three
times (16). (For the 2-well-centered case this is not exactly the same reason as the 3-
well-centered case.) A lower bound of 24 tetrahedra follows. This lower bound can be
improved a little by paying attention to which triangular facets can and cannot lead to
double-counted tetrahedra, and a lower bound of 30 tetrahedra can be obtained.

A careful analysis along these lines might improve the lower bound even more, since
there is no way to conformally triangulate all the surfaces of the cube with an 8-triangle
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acute triangulation of each face. In any case, the authors suspect that the actual answer to
these questions is close to 100 tetrahedra, if not greater, so the lower bounds mentioned
here should be considered preliminary.

5 Some Subdivisions of Tetrahedra into Well-Centered Tetrahedra

Having seen that the cube can be subdivided into well-centered tetrahedra, one might
also ask whether a tetrahedron can be subdivided into well-centered tetrahedra. Subdi-
visions of tetrahedra into well-centered tetrahedra could be used to refine an existing
mesh. Subdividing a tetrahedron that tiles space into well-centered tetrahedra would
provide new well-centered meshes of space. In general, well-centered subdivisions of
tetrahedra might be used to design high-quality meshing algorithms.

One might suppose that subdividing the regular tetrahedron into smaller well-
centered tetrahedra is relatively simple, but the problem is not so easy as it might seem.
In two dimensions, the Loop subdivision, which refines a triangle by connecting the
midpoints of each edge of the triangle, produces four smaller triangles. Each of these
triangles is similar to the original triangle, so the Loop subdivision of an acute trian-
gle is an acute triangulation of the triangle. In three dimensions, however, there is no
obvious analog of the Loop subdivision.

Connecting the midpoints of the edges of a tetrahedron cuts out four corner tetrahedra
that are similar to the original tetrahedron. The shape that remains in the center after
removing these four tetrahedra is an octahedron. In the case of the regular tetrahedron,
it is a regular octahedron, and it can be subdivided into four tetrahedra by adding an
edge between opposite vertices of the octahedron. The result is not well-centered; the
center of the octahedron is the circumcenter of all four tetrahedra, so the tetrahedra are
not 3-well-centered. In addition, the facets incident to the new edge are right triangles,
so the tetrahedra are not 2-well-centered.

We can turn this subdivision of the regular tetrahedron into a well-centered subdi-
vision, however. By sliding some of the new vertices along the edges of the regular

Quality Statistics
Quantity Min Max

h/R 0.0345 0.712

Face Angle 38.87° 86.76°
Dihedral Angle 38.44° 121.37°
R/� 0.702 0.934

Fig. 12. A simple subdivision of the regular tetrahedron into eight completely well-centered
tetrahedra
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Quality Statistics
Quantity Min Max

h/R 0.0448 0.584

Face Angle 39.63° 87.43°
Dihedral Angle 46.72° 105.95°
R/� 0.777 0.826

Fig. 13. Another simple subdividision of the regular tetrahedron into eight completely well-
centered tetrahedra

tetrahedron, moving them away from the edge midpoints, we can make the four center
tetrahedra well-centered without degrading the four corner tetrahedra to the point of not
being well-centered. Figures 12 and 13 illustrate two different successful ways we can
slide the vertices along edges of the tetrahedra. In both cases, the midpoint vertices that
are adjacent to the central edge remain stationary, to keep the central edge as short as
possible. In Fig. 12, the four free midpoints all slide towards the same edge of the regu-
lar tetrahedron. In Fig. 13, the free midpoints slide along a directed four-cycle through
the vertices of the regular tetrahedron.

There are also more complicated ways to divide the regular tetrahedron into smaller
well-centered tetrahedra. Figure 14 shows the basic structure of a subdivision of the
regular tetrahedron into 49 tetrahedra. A smaller regular tetrahedron is placed in
the center of the large tetrahedron with the same orientation as the original. Each face of
the smaller tetrahedron is connected to the center of a face of the larger tetrahedron. At
each corner of the large tetrahedron, a small regular tetrahedron is cut off of the corner,
and the resulting face is connected to a vertex of the central regular tetrahedron. After
filling in a few more tetrahedral faces, six more edges need to be added to subdivide oc-
tahedral gaps into tetrahedra. The mesh shown in Fig. 15 is the completely well-centered
mesh that results from optimizing the mesh shown in Fig. 14. This subdivision of the
regular tetrahedron is interesting partly because all of the surface triangulations match
and have three-fold radial symmetry. It is also possible that this type of subdivision will
be easier to use in mesh refinement than the other two subdivisions.

It is not clear whether these constructions can be extended in some way to create
a well-centered subdivision of any well-centered tetrahedron. The constructions can-
not be extended to create well-centered subdivisions of all tetrahedra, since both con-
structions cut off the corners of the tetrahedron to create smaller tetrahedra that are
nearly similar to the original tetrahedron. In particular, the cube corner tetrahedron,
i.e., some scaled, rotated, translated version of the tetrahedron with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (0, 0, 1), cannot be subdivided into well-centered tetrahedra in
this fashion; one can show that no tetrahedron with three mutually orthogonal faces is
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Fig. 14. A subdivision of the regular tetrahedron that can be made completely well-centered
through optimization

3-well-centered (16). Subdividing the cube corner tetrahedron is particularly interest-
ing, though, because it provides some guidance regarding what is needed to mesh a
cube or, for that matter, any object having three mutually orthogonal faces that meet at
a point.

In fact, the smallest known subdivision of the cube into well-centered tetrahedra is
based on a subdivision of the cube corner into well-centered tetrahedra. The picture in
the bottom right corner of Fig. 11 shows a triangulation of a region that fits into the
corner of a cube. The three visible interior vertices in Fig. 11 are not coplanar with the
cube diagonals, but they are nearly so, and there is a completely well-centered mesh
of the cube corner that is combinatorially the same as that mesh. We actually obtained
the mesh of the cube corner tetrahedron first, and the well-centered mesh of the cube in
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Quality Statistics
Quantity Min Max

h/R 0.0146 0.845

Face Angle 23.36° 89.07°
Dihedral Angle 29.93° 107.73°
R/� 0.612 1.305

Fig. 15. The completely well-centered subdivision of the regular tetrahedron that results from
optimizing the mesh shown in Fig. 14

Fig. 11 was obtained by replicating the cube corner mesh as described earlier, adding
a vertex at the cube center, computing the Delaunay triangulation, and optimizing with
the software discussed in (15).

6 Conclusions and Questions

We have discussed some of the properties of well-centered tetrahedra and seen that it
is possible to triangulate a variety of basic three-dimensional shapes with completely
well-centered tetrahedra. The triangulations discussed suggest that it might soon be
practical to mesh simple domains in R

3 with well-centered tetrahedra. They also show
that there are a rich variety of well-centered tetrahedra.

The authors hope that it will be possible to build robust software for meshing
three-dimensional domains with this variety of well-centered tetrahedra, but there is
still significant work to be done before that goal can be reached. Part of this work is to
determine what properties the neighborhood of a vertex in a 3-dimensional triangula-
tion must have in order to permit a well-centered triangulation. The question is partially
answered in (16), but a complete answer is lacking. The ability to subdivide any tetra-
hedron (or even just any well-centered tetrahedon) into smaller well-centered tetrahedra
would also be a significant advance toward this goal.

This work also raises some questions that are of more theoretical interest, though not
without practical application. It would be interesting to construct the smallest possible
well-centered mesh of the cube. How might one improve the lower bounds on the num-
ber of tetrahedra needed in a well-centered mesh of the cube? Also it is still an open
question whether there are other tetrahedra for which copies of a single tetrahedron
meet face to face and fill space. Could there be other well-centered tetrahedra that tile
space? Are there other families of high-quality tetrahedra that tile space?
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3D Delaunay Refinement of Sharp Domains

without a Local Feature Size Oracle

Alexander Rand and Noel Walkington

Carnegie Mellon University

Summary. A practical incremental refinement algorithm for computing a quality,
conforming Delaunay mesh of an arbitrary 3D piecewise linear complex is given. The
algorithm allows small input angles and does not require the local feature size of the in-
put to be computed before performing the refinement. Small input angles are protected
with a new type of collar which is simpler to implement and analyze than previous ap-
proaches. The algorithm has been implemented and several computational examples
are given.

1 Introduction

Ruppert’s algorithm [9] is an elegant method for computing a quality conforming
Delaunay mesh of a two-dimensional piecewise linear complex (PLC) which con-
tain no acute angles. Based on Ruppert’s original techniques of corner lopping
and concentric shell splitting, the algorithm has been rigorously extended to 2D
PLCs containing sharp input angles. Ruppert’s algorithm has also been extended
to handle three-dimensional PLCs without acute input angles [4]. Handling sharp
angles in 3D leads to a variety of issues not seen in 2D. Subsequent algorithms
have been complicated (in some cases to the point of prohibiting implementa-
tion) and lacked certain desirable properties seen in the original method.

Early algorithms for computing conforming Delaunay tetrahedralizations
(without considering radius-edge quality) in 3D [6, 3] involved computing lo-
cal feature size on all segments of the input through a brute force search before
inserting Steiner points. Several extensions of these methods to the problem of
quality mesh generation [2, 1] have also required the computation of local feature
size as a preprocess. An algorithm of Pav and Walkington [7] gives an alterna-
tive view: Delaunay refinement should be considered an algorithm for computing
local feature size and thus local feature size should not be a necessary input for
the algorithm. They gave a 3D Delaunay refinement algorithm for which all
steps require only “local” information about the mesh in the Delaunay tetrehe-
dralization. Still, this algorithm is not local in the same way as Ruppert’s algo-
rithm: steps in the algorithm require searching the Delaunay triangulation over
a prescribed distance rather than only querying the immediate Delaunay neigh-
bors. This issue of finding a local algorithm for computing constrained Delaunay
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tetrahedralizations has been resolved [12, 11], but has not been addressed in the
case of (usual) Delaunay tetrahedralization.

We present a Delaunay refinement algorithm for general PLCs which attempts
to preserve as many features of Ruppert’s algorithm as possible. The algorithm
does not require local feature size information to be precomputed. Each opera-
tion of the algorithm is local to the current Delaunay tetrahedralization in the
sense that encroachment can be determined considering only a point’s immedi-
ate Delaunay neighbors. The result of the algorithm is a conforming Delaunay
tetrahedralization consisting of tetrahedra with bounded radius-edge ratio away
from sharp input angles. The strategy for protecting sharp angles is designed
for simplicity both in implementation and analysis. The authors are unaware
of any algorithm for quality, conforming Delaunay refinement in 3D which has
been implemented. Existing software packages which handle small input angles
are based on constrained Delaunay tetrahedralization [12, 11] and weighted De-
launay tetrehedralization [1].

To highlight the differences between the algorithm and other extensions of
Ruppert’s algorithm to three dimensions, an analogous two dimensional version
is developed and analyzed. In both cases, a Delaunay refinement algorithm is
used to prove estimates on the local feature size of the mesh at input points (in
2D) or on input segments (in 3D). These are the reverse inequalities of those
usually seen in the analysis of Delaunay refinement algorithms; while typically
local feature size is shown to be a lower bound for the distance between points
in the mesh, we show that local feature size bounds this distance (in the form
of segment lengths in 3D) from above. With these estimates, a “collar” can be
inserted near these sharp angles which ensures that the resulting mesh conforms
to the input at termination. An example of the collar used to protect sharp input
features can be seen in Figure 6 in Section 4.

In Section 2, we define the problem and a number of feature size functions
used in the analysis. Sections 3 and 4 outline the algorithms in two and three di-
mensions, respectively, and justify termination and correctness. Several resulting
meshes from the 3D implementation are given in Section 5.

2 Problem Description and Notation

We describe algorithms for meshing a general PLC given by sets of input points
and input segments in 2D, C = (P ,S), or sets of input points, input segments
and input faces in 3D, C = (P ,S,F). In 2D, a PLC C′ = (P ′,S′) is a refinement
of the PLC (P ,S) if P ′ ⊂ P and each segment in S is the union of segments
in S′. In 3D, a PLC (P ′,S′,F ′) refining (P ,S,F) must satisfy the additional
condition that each face in F must be the union of faces in F ′.

An important parameter to the algorithm is a raduis-edge ratio threshold, κ,
which must be greater than 2. The algorithm eliminates all tetrahedra which
have radius-edge ratio greater than κ except for some which are near the sharp
angles in the input.
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The algorithms described involve incrementally refining the input PLC until
the Delaunay triangulation/tetrahedralization of the point set P ′ conforms to
the input PLC and satisfies the radius-edge quality criteria. Throughout this
refinement, it is necessary to identify some important simplices based on their
relation to the input complex.

Definition 1. Consider a refinement (P ′,S′,F ′) of an input PLC (P ,S,F).

• An end segment is a segment in S′ for which at least one endpoint is an
input point in P.

• An end facet is a facet in F ′ for which at least one vertex lies on an input
segment in S.

The smallest angle in the input PLC will be denoted by α. In 2D, this is the
smallest angle between adjacent input segments. In 3D, this is the smallest angle
between any pair of adjacent input features: faces or segments. Let Cd,α denote
the set of d-dimensional PLCs for which no two features meet at an angle of less
than α.

An appropriate notion of feature size is essential to the analysis of Delaunay
refinement algorithms. The standard definition of local feature size is given below
as well as another sizing function (mesh feature size defined below) which is used
throughout the arguments.

Definition 2. Let C be a PLC.

• The i-local feature size at point x with respect to C, lfsi(x, C), is the radius
of the smallest circle centered at x which touches two disjoint features of C
of dimension no greater than i.

• The i-mesh feature size at point x with respect to C, mfsi(x, C), is the
radius of the smallest circle centered at x which touches two features of C of
dimension no greater than i.

• The current feature size with respect to C′, N(x, C′) := lfs0(x, C′), is the
distance from x to its second nearest neighbor in P ′.

Each of these feature size functions is Lipschitz (with constant 1). For a fixed
PLC, local and current feature size each have a strictly positive minimum value
while mesh feature size can equal zero.

If the argument supplied to any of the above feature size functions is a set of
points, rather than a point, then the result is defined to the be infimum of the
function over the set. The dimension argument will be omitted when considering
the d−1 dimensional feature sizes. For instance lfsi(s, C) := infx∈s lfsi(x, C) and,
in 3D, lfs(x, C) := lfs2(x, C).

The distinction in notation between local/mesh feature size and current fea-
ture size is deliberate: these functions will be used differently.

Convention: Throughout the analysis, local/mesh feature size will always be
evaluated with respect to the input PLC, while current feature size will always
involve the current refined PLC. By adhering to this usage, the PLC argument
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q

lfs(q)

lfs0(q)
mfs(q)

N(q)

Fig. 1. Example of sizing functions in Definition 2 for a 2D PLC. The black points
represent input points while the white points represent points added by the algorithm.

can be omitted. See Figure 1 for an example the different feature size functions
for a simple PLC.

Finally, much of the analysis involves giving identical estimates for the local
feature size of end segments and the mesh feature size of non-end segments. It
is useful to refer to these two cases with the same notation.

Definition 3. The i-feature size of segment s is defined as follows.

fsi(s) =

{
lfsi(s) if s is an end segment,
mfsi(s) if s is a non-end segment

Given a segment or triangle s in C′, point x is called an i-feature size witness
for s if x is contained in a feature of C of dimension at most i which is disjoint
from s. For segment or triangle s in C′, point x is called a local feature size
witness for s if x is contained in a feature of C which is disjoint from another
feature of C containing s.

This definition of feature size is similar to the local gap size used by Chen and
Poon [2]. The notion of i-feature size witness is used by recognizing that if x is
an i-feature size witness of segment s then

fsi(s) ≤ dist(x, s).

3 Delaunay Refinement Algorithm in 2D

The following algorithm can be used to mesh any 2D PLC and extends many of
the properties of Ruppert’s Delaunay refinement algorithm for PLCs in C2,90.
Several effective approaches to protecting acute angles from cascading encroach-
ment sequences have already been developed for this problem [9, 10, 5, 8].
However, we present a different corner-lopping algorithm which mirrors the 3D
algorithm given in Section 4. In what follows, small angles are protected by split-
ting all acutely adjacent segments at an equal distance. Then, these segments are
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protected by rejecting any circumcenters proposed for insertion which encroach
the diametral disk of an end segment. This algorithm differs from previous ver-
sions as we compute an acceptable length for the protected end segments in the
output mesh before refining any triangles for quality.

Algorithm Overview

The algorithm consists of the following steps.

• (Step 0) Compute the Delaunay triangulation of the input point set.
• (Step 1a) Estimate local feature size at all input points.
• (Step 1b) Protect small input angles with a “collar”.
• (Step 2) Perform standard Delaunay refinement away from the collar.

Step 0 is a standard procedure and common in many Deluanay refinement
algorithms. Steps 1a and 2 are Delaunay refinement algorithms. Step 1b involves
a single pass over the set of input points to insert points. Properties of the mesh
generated by this algorithm are summarized in two theorems.

Theorem 1 (Termination/Grading). The algorithm terminates. Moreover,
there exists cα > 0 such that for each point p added by the algorithm,

N(p) ≥ cαlfs(p)

Verifying Theorem 1 holds for each step in the algorithm uses the standard
arguments; the insertion radius of each point is inductively bounded below by
feature size.

Ruppert’s analysis of the standard Delaunay refinement algorithm for non-
acute domains showed that this condition is sufficient to ensure a size-competitive
output mesh. In our case, cα = O( 1

sin α ) and thus, this condition does not guar-
antee a competitive output size over the class of all 2D PLCs but does ensure
that the output is size competitive on C2,α for any fixed α.

When considering the standard Delaunay refinement algorithm for non-acute
domains, termination implies that the output conforms to the input PLC and
that no poor quality triangles remain. A guarantee of this type requires more
attention when dealing with acute angles.

Theorem 2 (Conformity/Quality). At termination, the resulting Deluanay
triangulation conforms to the input PLC. Moreover, any remaining poor quality
triangles are near the collar region.

Ensuring that the conformity/quality theorem holds requires a series of lemmas
related to each step. With the lemmas, the notion that a triangle is near the
collar will be made precise.

Step 1a

This step is a Delaunay refinement algorithm. Segments are queued to be split
based on the following encroachment criteria and no triangles are split for quality
during this step.
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• (Segment Encroachment) Segment s is encroached if it has an endpoint q
with a Delaunay neighbor p which lies in the diametral disk of s and either p
is a feature size witness for s or s is an end segment and is more than twice
as long as its shortest adjacent end segment.

This is the usual definition of encroachment with one modification: an end
segment cannot be encroached by a point on a sufficiently long adjacent end
segment. This ensures that adjacent end segments do not alternately encroach
each other and prevent termination of the algorithm. Thus, this definition of
encroachment is strictly weaker than the standard diametral disk notion, yet
shares the property that encroachment of a segment can be checked by only
considering the Delaunay neighbors of its endpoints.

The triangulation resulting from this step does not necessarily conform to
the input PLC and may contain poor quality elements. However, using this
triangulation, it is possible to bound the local feature size at input points in
terms of a local quantity (in the Delaunay triangulation): the distance from the
input point to its nearest neighbor.

Lemma 1. After Step 1a terminates, the following inequality holds for all input
points q0 ∈ P.

N(q0) ≤
√

2lfs(q0).

This inequality is in the opposite direction of those in the standard analysis
of Delaunay refinement algorithms and Theorem 1. Rather than guaranteeing
points are far enough apart, it ensures that the distance from each input point
to its nearest neighbor is not much greater than the local feature size.

While the constant in Theorem 1 depends on α and can be large, the constant
in Lemma 1 is sharp and independent of α. This estimate gives an appropriate
length at which segments can be split to protect acutely adjacent segments.

While the bound in Lemma 1 can be shown for any point in the mesh, q ∈ P ′,
the statement is deliberately only made for input points. In order to protect
sharp angles, it is necessary to estimate the feature size on all d− 2 dimensional
input features. The same principle will be applied in the 3D version.

Step 1b

End segments are split in this step to form a “collar” around each input point
which ensures end segments conform to the input, even near skinny input angles.
For each input point q0, all segments containing q0 are split at a distance of N(q0)

3
away from q0.

Any point added during this step will be called a collar point. All end seg-
ments are considered to be collar simplices. (This distinction is not particularly
useful in the 2D algorithm but it will be necessary to consider the analogous sim-
plices in the 3D version.) The collar region is defined to be the set of collar
simplices.
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q0

N(q0)

Fig. 2. Adjacent segments are split at equal length in Step 1b

Lemma 2. Following Step 1b, the following properties hold.

• The diametral disk of each collar simplex contains no points of P ′.
• The diametral disk of each collar simplex does not intersect any non-collar

segment.

Lemma 1 is used to show that the ball of radius N(q0)
3 centered at q0 does

not intersect any segments which are disjoint from q0. The results of Lemma 2
will ensure that these segments will not need to be split again in the following
Delaunay refinement step.

Step 2

With the collar in place, it is now safe to perform a slightly modified version
of Ruppert’s algorithm. In this step, segments are queued for conformity based
on the standard diametral disk encroachment criteria, and triangles are queued
based on the radius edge-quality criteria. As the input may contain small angles,
an additional rule is needed to ensure the algorithm terminates despite some poor
quality triangles near these small input angles. When processing poor quality
triangles from the queue, the following policy is considered before inserting the
circumcenter.

• Let c be a circumcenter proposed for insertion to split a poor quality triangle.
If c lies in the diametral disk of a collar simplex, reject c.

Lemma 3. No point is inserted in the diametral disk of a collar segment.

With this lemma, standard techniques can be used to verify Theorem 1 and
Theorem 2. Any remaining poor quality triangles must have circumcenters which
lie in the diametral disk of some collar simplex (i.e. end segment). This makes
precise what it means in Theorem 2 for a triangle to be “near the collar.”

4 Delaunay Refinement Algorithm in 3D

A similar approach to that given in 2D can be applied to 3D PLCs. It is important
to note that input points in the two dimensional problem play the role of segments
in the 3D case. In 2D, we used the distance to the nearest neighbor to estimate
the local feature size at an input point, while, in 3D, each segment’s length will
be used to estimate its feature size.
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Algorithm Overview

The first steps of the algorithm provide an estimate of the feature size on each
segment of the input. Then a collar is inserted around the 1-skeleton to ensure
the mesh conforms to the input near skinny input angles. Finally, the usual
Delaunay refinement algorithm is performed with a rejection policy to ensure
both that the algorithm terminates and that the resulting mesh conforms to the
input PLC.

• (Step 0) Compute the Delaunay triangulation of the set of input points.
• (Step 1a) Protect small angles between segments by splitting based on 0-local

feature size.
• (Step 1b) Estimate the 1-feature size on all segments.
• (Step 2a) Split segments to improve the 1-feature size estimate.
• (Step 2b) Estimate the local feature size on all segments.
• (Step 2c) Protect the 1-skeleton with a collar.
• (Step 3) Perform standard Delaunay refinement away from the collar.

Steps 1a, 2a, and 2c occur in one pass over the mesh: they loop through all the
segments and add an appropriate number of points for each segment. Steps 1b,
2b and 3 are Delaunay refinement algorithms. Each of these steps has its own
notion of encroachment by which simplices are queued and split according to
some priority. Only in Step 3 are tetrahedra split based on radius-edge quality.
Figure 9 in Section 5 shows a face of an example mesh produced at each step of
the algorithm.

The output guarantees of the algorithm are split into two theorems.

Theorem 3 (Termination/Grading). The algorithm terminates. Moreover,
there exists cα > 0 such that for any point p in the output mesh,

N(p) ≥ cαlfs(p).

This theorem is shown via induction using similar techniques to algorithms for
large angle input. In the case of inputs with small angles, the next theorem is
also essential.

Theorem 4 (Conformity/Quality). The resulting mesh is a conforming De-
launay refinement of the input PLC. Moreover, all resulting tetrahedra with
radius-edge ratio greater than κ are near the collar region.

Throughout the refinement, independent Delaunay meshes for each of the in-
put features (segments and faces) are maintained in additional to the complete
tetrahedralization. (This also occurs in 2D case, but the meshes of segments are
simple and no hierarchy needs to be considered.) To ensure correctness of the
algorithm, simplex splits and point insertions must be processed following a par-
tial order given in [4]. Segments and triangles in the refinement refer to simplices
in the separate meshes of the input features. However, when discussing Delaunay
neighbors of the endpoint of a segment or vertex of a triangle, we are referring
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to the neighbors in the 3D mesh. To ensure that this makes sense, we further
restrict the required partial order to always handle forced point insertions before
handling simplex splits. For example, if a segment is split, then its midpoint is
immediately inserted into all meshes containing the segment before another sim-
plex is split in any mesh. This ensures that for any point in a lower dimensional
mesh, its Delaunay neighbors in the 3D mesh can still be considered.

In order to prove Theorem 4, conditions on the mesh following each step are
shown.

Step 1a

Once the Delaunay triangulation of the point set has been computed, each seg-
ment is split at one-third the distance from an input point to its nearest neighbor.
This is a typical “grooming” step in two dimensional algorithms [5]. This ensures
that each end segment in the mesh conforms to the input.

Step 1b

This is the first Delaunay refinement step. In this case, segments are queued
based on the following encroachment criteria.

• (Segment Encroachment) Segment s is encroached if it has an endpoint q
with a Delaunay neighbor p such that p is a 1-feature size witness for s and
|p− q| < |s|.

• (End Segment Balance) Non-end segment sn is encroached if it is adjacent
to an end segment se and |se| < |sn|.

The encroachment criteria only depend on the Delaunay neighbors of the
endpoints of the segment in question in the current Delaunay triangulation.

Fig. 3. (Left) Encroachment region for a segment in Ruppert’s algorithm. (Right) En-
croachment region for a segment in Step 1b.

Also, observe that the end segment balance criterion is necessary in order to
ensure that the feature size bound in the next lemma holds. This ensures that
a long non-end segment segment will be split even if a nearby feature is hidden
from the non-end segment by an input point. See Figure 4.
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s q

fs1(s)

q0

Fig. 4. End segment balance is essential. Without this, segment s may be much longer
than the local feature size on the segment.

Both Segments Queued

Possible Refinement

Not Delaunay Neighbors

Fails Lemma

Fig. 5. Poor refinement order can lead to a failure of Lemma 4

Lemma 4. After Step 1b, for any segment s in the mesh, |s| ≤
√

2 fs1(s).

Ideally, this lemma would follow from the algorithm without further restriction.
However, for the algorithm as specified this may not be true! Consider a situation
as seen in Figure 5. If the algorithm always processes segments on the left first,
once the segment on the right splits for the first time, it may no longer have a
1-feature size witness which is on its Delaunay cavity. At this point, though, the
segment will not have been split enough to satisfy Lemma 4.

To prevent this issue we prioritize the queue of segments to be split according
to the following rule.

• Segments are prioritized by length. Longer segments are always split first.

We choose this ordering to get a sharp constant in the lemma. This can be seen
from the following example. Consider the segment between (−1, 0, 0) and (1, 0, 0)
and the segment between (0,−1,

√
2) and (0, 1,

√
2). Each segment has length

two and the distance between the two segments is
√

2. The distance between any
pair of endpoints is 2, and thus neither segment is encroached according to this
step of the algorithm. The following proposition shows that this example gives
the nearest two segments which are not encroached.

Proposition 1. Let s and s̄ be segments in R
3. If |s| ≥ |s̄| and dist(s, s̄) < |s|√

2
,

then there are endpoints q and q̄ of s and s̄, respectively, such that |q − q̄| < |s|.

Step 2a

The constant in the bound of Step 1b is not strong enough for the upcoming
argument in Step 2b. Thus, in this step, all segments are split into fourths, giving
the needed bound.
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Lemma 5. Following Step 2a, for any segment in the mesh,

|s| ≤ 1
2
√

2
lfs1(s).

The estimate |s| ≤ 1
2
√

2
fs1(s) does not hold after this step. This is due to the

fact that when an end segment is split, the resulting non-end segment can have
a 1-mesh feature size which is much smaller than its 1-local feature size.

Step 2b

This step is similar to Step 1b with an additional encroachment rule for triangles
in the current Delaunay triangulation of the faces. Segments and faces are queued
for encroachment according to the following rules.

• (Segment Encroachment) Segment s is encroached if it has an endpoint q
with a Delaunay neighbor p such that p is a 1-feature size witness for s or a
local feature size witness for s and |p− q| < |s|.

• (End Segment Balance) Non-end segment sn is encroached if it is adjacent
to an end segment se and |se| < |sn|.

• (Face Encroachment) A triangle t is encroached if it has a vertex q with
Delaunay neighbor p such that p is not in the face containing q and |p− q| <
2rt. (The circumradius of t is denoted rt.)

Without a rejection policy, the above encroachment rules can (and do) lead
to non-termination. This can occur when two acutely adjacent faces alternately
cause each other to split. This is prevented by the following rule.

• Suppose a circumcenter of a triangle, ct, is proposed for insertion into a face
F and has a prospective Delaunay neighbor, p, which is the end point of a
segment, s, contained in F , and |ct − p| < |s|. Then ct is not inserted into
the mesh.

As in Step 1b, an ordering of the queue is necessary to get the proper bounds
on segment lengths. The queue priority is as follows.

1. Triangles.
2. Segments by length. Longer segments are split first.

Using this algorithm, it is now possible to extend the result in Lemma 4 to
include a bound based on local feature size.

Lemma 6. After Step 2b, for any segment s in the mesh, |s| ≤ 5
3 lfs(s) and

|s| ≤
√

2fs1(s).

Step 2c

Lemma 6 allows for the insertion of points to form a collar region around the
segments in each face. This will ensure both that the mesh conforms to the input
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Fig. 6. Collar simplices in a face

near skinny angles and that Ruppert’s algorithm will terminate when applied
away from these regions.

The collar ensures conformity near the boundary by placing points in each
face based only on the segments on the boundary of the face. This ensures that
end triangles in adjacent faces “line up” so they do not encroach each other.

In order to prevent the collar from tangling, we need a slightly stronger bound
on the feature size of segments: |s| < fs1(s). This can be attained by splitting all
non-end segments, as all end segments satisfy this bound following Step 2a.

The collar is formed by inserting points according to the following rules.

• If s and s′ are adjacent non-end segments containing point q, then a point
p is inserted at distance max(|s|,|s′|)

2 from q, in the direction into the face
perpendicular to s.

• If s is an end segment and s′ is an adjacent non-end segment, both containing
q, then insert p at the intersection of the line parallel to s in the face at
distance |s′|

2 away from s and on the circle of radius |s| around the input
point on s.

• Given any input point q0 in the face, insert a point p in the face such that the
circle of radius N(q0) around q0 has no arcs of angle greater than 90 degrees.

Let each point added during this step be called a collar point. For each
segment, let the segment between the two collar points corresponding to the
end points of the segment be called a collar segment. Similarly, the segments
which connect collar points on the disk in a face around an input point are also
considered collar segments. Collar simplices are both subsegments of input
segments and triangles which are between a segment or input point and its
associated collar segment. While some collar segments may be split in Step 3
of the algorithm, the collar region never changes. This is analogous to the 2D
version: once adjacent end segments are split at an equal distance, they are never
split again. See Figure 6 for an example of the points added to a face to form
the collar.

Lemma 7. After Step 2c, the following properties hold.

• All adjacent collar segments meet at non-acute angles.
• In each face, the diametral disk of each collar segment contains no points of

P ′.
• The circumball of any collar simplex contains no points of P ′.
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• The circumball of any collar simplex does not intersect any disjoint faces or
segments.

Each of the above properties is important. Since the circumball of each collar
simplex is empty, this ensures that the collar simplices conform to the input.
Collar segments meeting non-acutely ensures that the complement of the collar
region in each face is well-suited for Ruppert’s algorithm. The final property is a
result of the feature size bounds in the Step 2b, and is needed to guarantee that
subsequent points inserted in the mesh for conformity will not encroach disjoint
collar simplices.

Step 3

In the final step, the volume mesh is refined based on both quality and con-
formity criteria using Ruppert’s algorithm. Similar to the non-acute case, any
maximum radius-edge threshold κ > 2 can be selected for determining poor
quality tetrahedra. As seen in the 2D case, a rejection policy must be followed
to ensure that adjacent faces do not lead to cascading encroachment.

• Let c be a circumcenter proposed for insertion to split a skinny tetrahedron.
If c lies in the circumball of a collar simplex, reject c.

During the algorithm, it is important to ensure that the properties of the
collar in Lemma 7 continue to hold while allowing refinement of the non-collar
region of each face to create a conforming mesh. As in 2D, the “collar region”
does not change, however the set of collar simplices does change. This occurs
when the standard Delaunay refinement algorithm seeks to insert a point in a
face that encroaches upon a collar segment. Instead of adding this encroaching
point, this collar segment is split. This new point is considered a collar point and
the collar segment is broken into two new collar segments. The collar region has
not changed but there are new collar simplices. This new point may encroach
upon the circumball of another collar element in an adjacent face. In this face,
the collar segment associated with this encroached circumball is also split so that
the collar simplices on adjacent faces again “line up.”

Proposition 2. Let A be the set of vertices on the boundary of some face F and
let A′ be a set of points inside F . Suppose that for each boundary segment of F
there is a circle through the end points of the segment which does not contain
any points of A ∪A′ in its interior. Then the Delaunay triangulation of A ∪A′

conforms to F . Moreover, for any Delaunay triangle t in the interior of F , the
circumcenter of t either lies inside F or inside the empty disk associated with a
boundary segment.

A face with the collar simplices removed satisfies the hypothesis of the lemma
(as the circumdisk of each collar segment is empty). This ensures that whenever
a circumcenter of a triangle in a face is proposed for insertion, it either lies in
the face or encroaches a collar segment. Thus whenever a triangle is processed
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to be split, some action is taken and encroached faces are never forgotten. At
termination, all faces must conform to the input.

Another proposition used in this step comes from [4].

Proposition 3. [4, Lemma 4.5] Let T be the Delaunay triangulation of a planar
face F such that the circumball of each bounding segment is empty. Let B1 be
the union of the circumballs of all bounding segments of F and B2 be the union
of the circumballs of all triangles in F .

Let p ∈ F \ B1. If T ′ is the Delaunay triangulation of the face resulting from
the addition of p, define B′

1 and B′
2 to be the union of the circumballs of bounding

segments and triangles, respectively. Then,

B′
1 ∪ B′

2 ⊂ B1 ∪ B2

During this step of the algorithm, when a circumcenter is inserted it does not
encroach any collar simplices. The above proposition ensures that as the collar
is split the new collar simplices are not encroached by previously added circum-
centers. Observe that once the collar is added the circumball of each segment
always remains empty. Thus the conditions of Proposition 3 hold for every face
in the mesh.

Lemma 8. Whenever the queue of collar segments to be split is empty, the fol-
lowing properties hold.

• The circumball of any collar element contains no points in P ′.
• Adjacent collar segments meet at non-acute angles.
• In each face, the protecting disk of each collar segment contains no points in

P ′.

In the final property, the term protecting disk is used, rather than diametral
disk. For the initial collar segments this protecting disk is the diametral disk.
When a collar segment is split, the protecting disk for a new collar segment
is the smallest disk containing the new collar segments and contained in the
old protecting disk. This disk is not the diametral disk when collar segments
corresponding to input points are split. In this case, the split point is added on
the circle around the associated input point, and the diametral disks of the new
collar segments are not contained in the old protecting disk. See Figure 7.

Fig. 7. A collar segment associated with an input point is split. When a proposed point
(denotd by the empty dot) encroaches a collar segment, the segment is split by adding
the midpoint of the arc of a circle around the input point. The new collar segments are
protected with disks which are contained in the old protecting disk.
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Also, Lemma 8 only applies when the queue of collar segments to be split is
empty. Collar segments can be queued when a collar point on an adjacent face
encroaches some collar simplex. When this occurs, the circumball of some collar
simplices are not empty. However, once all collar segments have been split on
adjacent faces, the circumball of each collar simplex is empty and thus the collar
simplices conform to the input.

5 Implementation Details and Examples

When implementing the algorithm, several minor enhancements have been made
which greatly reduce the output mesh size. Since the collar is needed to protect
sharp input angles, it only needs to be inserted near segments and input points
which violate the standard requirements for the termination of Ruppert’s algo-
rithm. (Any acute angle between adjacent faces is protected with a collar. For
angles involving segments, this bound can be weakened as stated in [4].) In some
examples, this greatly reduces the number of points which must be added to the
mesh in Step 2c and thus the size of the final result.

Fig. 8. Initial PLC input and final refined mesh for the pyramid example

Fig. 9. Refinement of the base of the pyramid after each step, showing the mesh of
the face after Steps 0, 1a, 1b, 2a, 2b, 2c, 3
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Fig. 10. Initial PLC input and final refined mesh for the wheel example. The base
face is not connected to the other faces.

Fig. 11. One spoke in the wheel example is shown following Step 1b (left), Step 2b (cen-
ter), and Step 3 (right). The center of the wheel is at the bottom of the face and the
disjoint, nearby plane is very close to the right side of the face.

Fig. 12. Base plane in the wheel example is shown following Step 2b (left) and
Step 3 (right)

Next, instead of adding the collar to the mesh produced by Step 2b, it is
instead added to a blank copy of the input PLC. Since the encroachment property
in Step 2b is stronger than that in Step 3, this often results in a mesh which is
less refined on the faces than the mesh produced in Step 2b. This is especially
effective when using a large radius-edge threshold.

Finally, while the Lemma 5 requires each segment in the mesh to be divided in
to fourths, the implementation has been seen to terminate when splitting only in
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Fig. 13. A PLC with many small angles

Table 1. Number of vertices in the mesh following each step. Following Step 0, the
mesh contains the 1556 input points plus 26 points for the initial bounding box. Step 3
was performed with several maximum radius-edge parameters and the final mesh size
is given for each of these cases with the parameter in parentheses.

Step 0 1a 1b 2a 2b 2c 3 (2) 3 (4) 3 (8)
Vertices 1,582 5,850 13,590 26,628 105,781 13,695 76,522 54,392 46,776

half. We continue to seek a example causing non-termination or stronger proof
which justifies this practical modification.

The first example is a mesh of a pyramid with a square base. The angles
between the base face and each of the side faces is less than 90◦, so each of the
edges around the base is protected with a collar. See Figures 8 and 9.

Another example involves a “wheel” of twenty rectangular faces which meet
at a single segment. This wheel of faces lies very close to an additional disjoint
face. In this example, the collar is only added around the segment in the center
of the wheel. Away from this center segment all of the faces and segments meet
at non-acute angles and do not need to be protected. See Figures 10, 11, and 12.

In the final example, depicted in Figure 13, 100 “wheel” complexes similar
to the previous example are meshed together. Each wheel contains in this com-
plex contains between 3 and 16 spokes. The input contains 1556 vertices, 2134
segments and 678 faces. Table 1 contains a list of mesh sizes after each step of
the algorithm. Note that the final mesh is substantially smaller than the mesh
created in Step 2b. Removing unneeded points before the encroachment criteria
is relaxed in Step 3 greatly reduces the output size.
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Summary. The application we target in this paper is the registration of pre-operative
Magnetic Resonance Imaging with the scans acquired intra-operatively during image-
guided neurosurgery. The objective of this application is improved tracking of tumor
boundaries and surrounding brain structures during open skull tumor resection. We
focus on a validated, physics-based non-rigid registration approach, which has been
used in clinical studies for the last three years. This approach requires tetrahedral
tessellation of the brain volume for biomechanical model construction. The analysis
of the requirements and available methods to construct such a discretization is the
objective of our paper.

The paper presents a number of practical contributions. First, we survey the pro-
posed approaches to tetrahedral mesh generation from medical image data. Second, we
analyze the application-specific requirements to mesh generation. Third, we describe
an end-to-end procedure of tetrahedral meshing for this application using off-the-shelf
non-commercial software. Finally, we compare the performance of the considered mesh
generation tools in the application context using generic and application-specific quan-
titative measures.

1 Introduction

Mesh generation for medical imaging applications has been attracting a lot of
attention in the mesh generation community. Finite Element Method (FEM) is
essential in modeling tissue deformation for these applications, therefore neces-
sitating research and development of new mesh generation methods and tools.
The existing imaging modalities, such as Magnetic Resonance Imaging (MRI),
provide only limited knowledge about the internal organs. The lack of precise
geometric models and the need to construct volume tessellations from the im-
age data is a very practical limitation, which complicates the use of existing
off-the-shelf meshing tools. Application-specific requirements make the problem
even more challenging. In practice, there is no single widely accepted method to
address the mesh generation needs of all applications.

In this paper we focus on tetrahedral mesh generation for physics-based Non-
Rigid Registration (NRR) of brain MRI during Image-Guided Neurosurgery
(IGNS). Specifically, we focus on the NRR approach developed by Clatz et al. [1],
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and subsequently validated in the clinical setting by Archip et al. [2]. The method
has been studied at Brigham and Women’s Hospital (Harvard Medical School,
Boston) for the last three years.

The main goal in neurosurgery is maximum removal of the tumor tissue with
the minimum damage to the healthy brain structures. It is very difficult to iden-
tify boundaries of certain tumors, e.g., gliomas, with the naked eye. Instead,
pre-operative imaging is typically used to precisely locate the tumor, and the
neighboring life-critical structures. Brain shift is often unavoidable during the
tumor resection, making the pre-operative images invalid. Intra-operative im-
ages acquired periodically during the tumor resection have lower quality, and
usually cannot substitute the pre-operative data. NRR is used to align the pre-
operative MRI with the intra-operative scans. The specific NRR method we
study uses a patient-specific bio-mechanical model to facilitate the brain shift
estimation. Tetrahedral tessellation of the brain volume (more specifically, skull
Intra-Cranial Cavity (ICC)) is essential for this application.

Our paper is the continuation of an earlier study [3]. We consider the com-
plete process of mesh generation from the segmented image, and discuss specific
application requirements derived from the established registration method. Our
contributions are the summary of the state of the art methods for constructing
tetrahedral meshes from images, and a practical evaluation of the existing off-
the-shelf meshing tools. Our evaluation is based on the number of qualitative
and quantitative metrics, which allow to compare the studied methods in the
context of the FEM computations that facilitate IGNS.

2 Physics-Based Non-rigid Registration of Brain MRI

2.1 Formulation

The objective of image registration is to determine the transformation that aligns
features in one (floating) image with the features in another (target) image. Im-
age registration is a fundamental problem in medical image processing. The
reader is referred to the survey by Hill et al. [4] for a thorough review on this
topic. Non-rigid image registration is used when the imaged structure is subject
to a non-affine transformation. Image registration methods are usually tailored
to a specific clinical application. The clinical application we target is IGNS fa-
cilitated by a physics-based NRR approach.

The NRR method in [1] consists of the following steps. First, a sparse set of
mathematical landmarks, which we call registration points , is identified within
the pre-operative image of the brain volume. Once the intra-operative image is
available, the time-critical part of the computation is initiated. The deformation
is estimated at each registration point using block matching between the pre- and
intra-operative images (in the context of registration, these are the floating and
target images, respectively). Block matching results inherently contain incorrect
matches (outliers). Because of outliers, the deformation field cannot be derived
by interpolating displacements at the registration points. Mechanical energy of
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the deforming mesh is used to regularize the displacements, i.e., smooth the
impact of outliers on the solution:

W = (HU−D)TS(HU−D) + UT KU.

Here U is the vector of displacements at the mesh nodes, K is the stiffness
matrix [5], H is the interpolation matrix from the tetrahedra vertices to the
registration points inside a tetrahedron, D is the vector of displacements recov-
ered at the registration points, and S is the block-diagonal positive semi-definite
matrix which captures confidence in the corresponding entry of D [1].

The outliers are found by iteratively comparing the displacements at the reg-
istration points with those interpolated from the mesh vertices, and discarding
the matches with the largest error magnitude. The displacements at the mesh
vertices are estimated using the following formulation:

F0 = 0, Ui = [HTSiH + K]−1[HTSiD + Fi−1], Fi = KUi. (1)

During each iteration, the registration points are ordered by the absolute value
of the error ‖Di−HUi‖ weighted by the 3× 3 image structure tensor Ti at the
registration point. The weight is used because block matching can only recover
displacements in the directions orthogonal to the edges in the image [1]. Outlier
registration points are selected as a pre-defined, e.g., 5%, number of registration
points with the largest error magnitude.

2.2 Finite Element Mesh Generation

Tetrahedral mesh has a dual role in the formulation. First, it is used to find the
stiffness matrix in the mechanical energy component. Second, it allows to regu-
larize, or smooth, the displacements recovered by block matching locally within
the mesh vertex neighborhood. The displacement recovered at each of the reg-
istration points within the mesh vertex cell complex affects the displacement at
the corresponding mesh vertex. Therefore, it is important to maintain the em-
pirically obtained ratio between the number of mesh vertices and the number of
registration points under 0.1 (at least 10 registration points per mesh vertex) [1].
Ideally, this ratio should be maintained within each mesh vertex cell complex.
We define the cell complex as a set of mesh tetrahedra incident on a mesh k-
cell, e.g., mesh vertex is a 0-cell, and mesh edge 1-cell. The matrix HTSH has
a non-zero 3 × 3 entry for each mesh vertex and edge with the cell complexes
containing registration points. The corresponding sub-matrices can be expressed
as the sum over the registration points in a cell. For example, the diagonal 3× 3
sub-matrix that corresponds to the mesh vertex vi can be calculated as the
following summation over the registration points in the cell complex S of vi:

[HTSH]i =
∑

∀T ∈S(vi)

∑
∀k∈T

hT
vi

(k)2
tr(K)
np

c(k)T(k). (2)

Here, hT
vi

(k) is the barycentric coordinate of the kth registration point with
respect to vi in the containing tetrahedron T , n is the number of mesh vertices,
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p is the number of the registration points, c(k) is the correlation coefficient from
block matching, and T(k) is the image structure tensor at k.

The result of non-rigid registration is a deformation field, which defines de-
formation vector at each point in the image. That vector is computed by inter-
polating the displacements at the mesh vertices after the last iteration [5]:

∀x ∈ T : u(x) =
3∑

j=0

hT
vj

(x)u(vi). (3)

Note that the iterative procedure in Equation 1 requires solving the linear
system of equations at each iteration within the time-critical part of the com-
putation. The size of this system depends on the number of degrees of freedom
in the mesh model. Therefore, it is important to minimize the size of the mesh
as much as possible without sacrificing the accuracy of the solution.

2.3 Application-Specific Requirements to Mesh Generation

Based on the registration formulation, we can derive the following application-
specific requirements to mesh generation:

R1 Equi-distribution of the registration points w.r.t. mesh vertex cells: small
number of registration points (e.g., less than 10, but greater than 0) within
the vertex cell complex makes the formulation more sensitive to outliers and
introduces additional displacement error [1].

R2 Minimization of the approximation error at registration points : error of the
displacements recovered at registration points can be reduced locally by
using smaller mesh elements [6].

R3 Prevention of tetrahedron inversion during mesh deformation : while the in-
terpolation error shown in Equation 3 does not depend on the tetrahedron
shape, inversion or collapse of a tetrahedron will result in an unrealistic de-
formation field, e.g., points inside the different tetrahedra can map to the
same image location. We can attempt to remedy this problem by adjusting
element size locally according to the expected deformation.

Adaptive refinement of the mesh following the simulation, if necessary, is
outside the scope of this paper.

3 Image-to-Mesh Conversion

3.1 Formulation and Generic Requirements to Mesh Generation

Following the notation of Hill et al. [4], we define the image domain Ω as the
overlap between the bounded continuous set Ω̃ (image field of view) and the
infinite discrete sampling grid Γς , characterized by the anisotropic sample spac-
ing ς = (ςx, ςy, ςz), Ω = Ω̃ ∩ Γς . Voxel is an orthogonal parallelepiped-shaped
volume element centered at the sampling grid point. Its dimensions are defined
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by the grid spacing ς. For the considered application, image A is a mapping
of points in the image domain R

3 to R, A : x ∈ Ω �→ A(x). In this paper we
are mostly concerned with the medical applications that provide a segmentation
of the object of interest. The output of segmentation is a binary image, i.e.,
A(x) ∈ {0, 1}, with the subset {x ∈ Ω|A(x) = 1} corresponding to the voxels
located inside the object. Let Σ be the surface that separates zero and non-zero
voxels of this binary image. The surface Σ is defined implicitly, as we only know
whether a given voxel is inside or outside the object.

The objective of mesh generation for FEM computations from the binary
image data is to construct a conforming tetrahedral mesh M = (V , T ), which
satisfies the following generic requirements :

R4 The mesh boundary (triangulation) should be close to Σ.
R5 Mesh size should be minimized to reduce the computational costs.
R6 Mesh elements should not have small angles [6].

These generic requirements have been in the focus of the mesh generation com-
munity for decades. The application-specific requirements are usually addressed
by constructing a customized mesh sizing function, or developing customized
mesh generation methods. In this paper we explore the first approach. There-
fore, the ability to accept a user-defined sizing function is an essential feature
for a mesh generation method to be considered for our application.

3.2 Related Work

An intrinsic difficulty of generating meshes from the binary image data is the
processing and recovery of the object geometry. General-purpose mesh gener-
ators (for solid and geometric modeling applications) expect that the object
boundary is parametrized, i.e., it is defined by means of constructive solid ge-
ometry primitives, or explicitly (e.g., through the boundary discretization, as
a collection of patches). Therefore, in order to convert the binary image into
a tetrahedral mesh, one can either (1) recover the parametrized object surface
followed by a conventional mesh generation technique, or (2) use a mesh genera-
tion method, which operates directly on the binary image. The reader is referred
to the survey by Owen [7] for a discussion of the classical approaches to vol-
ume meshing. Next, we overview some of the methods designed to construct
tetrahedral discretizations directly from the image data.

A step which precedes geometry processing is segmentation of the structure of
interest from the multivalued image. Segmentation is a fundamental problem in
medical image processing [8], and is outside the scope of this paper. We assume
that the segmented ICC is provided by the application.

The objective of the surface recovery step is to construct an explicit represen-
tation of Σ. The methods which recover piecewise-linear surface approximation
and provide surface triangulation are most practical, as this is the input most
mesh generation methods expect. It is desired for the triangulated surface (1) to
have the same topology as Σ, (2) to be sufficiently close to Σ, and (3) to have
guaranteed quality of the triangles in the surface discretization, as defined by
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Fig. 1. A hierarchy of the studied approaches to mesh generation

the triangle aspect ratio, while (4) minimizing the number of triangles. The first
two requirements are important for the accurate representation of the object,
while the other two are essential in order to satisfy the generic requirements to
volume mesh generation.

A straightforward approach to recover iso-surface is by means of the Marching
Cubes (MC) algorithm [9]. However, the original version of this algorithm may
produce a triangulation with topological problems. Another practical problem
is the inability of the MC algorithm to generate adaptive surface triangulations.
The surface produced by MC has “jagged” artifacts because of voxel sampling,
which may create subsequent problems with the simulation [10]. Surface mesh
simplification, or remeshing, is often a necessary post-processing step when MC
is used [11, 12].

Parametrized surface representation can be recovered by more advanced tech-
niques, which provide theoretical guarantees about the recovered surface. Since
the seminal work of Amenta and Bern [13], a number of algorithms have been
proposed [14, 15, 16]. These methods differ in their performance, robustness to
noise and theoretical guarantees.

A number of approaches to volume mesh construction were suggested, that
are capable to operate on image date directly. We separate such methods into
the following two categories.

The methods from the first category do not require segmentation and cre-
ate meshes from the multi-value image data [17, 18]. The assumption is usually
made that the pixels which correspond to the same tissue have similar intensity,
and the object boundary can be defined by some isosurface value. Therefore,
these methods attempt to minimize the error of approximating this isosurface,
while maintaining good quality of the mesh tetrahedra. Such approach to mesh
generation is very practical for volume rendering and certain FEM applications.
However, brain segmentation is one of the very challenging problems in im-
age segmentation, which cannot be solved by thresholding only [19, 8]. Direct
isosurface-based meshing of the brain volume from the multivalued image may
lead to large errors in the surface recovery.

The second category of the image-based mesh generation methods operate on
binary images, produced by specialized image segmentation algorithms. Among
the methods in this category we separate four groups.
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The methods in the first group attempt to recover the surface of the object
at the level of voxel resolution [20, 21, 22]. Therefore, we call those techniques
voxel-based meshing. The sizes of surface triangles in the meshes constructed
using this approach are comparable with the size of voxels, i.e., the surface
triangulation is not adaptive. The use of such techniques is problematic for our
application, because the control over the element size is limited due to the fixed
high resolution of the surface discretization.

A large number of methods that are based on space-tree decompositions have
been proposed recently for meshing binary images. Conceptually, this approach
has a long history in classical mesh generation. Yerry and Shephard [23] were
some of the first to present an octree-based approach to 3-d mesh generation.
Mitchell and Vavasis [24] describe a quadtree-based algorithm with theoretical
bounds on the mesh size. These ideas have been adopted to construct tetrahedral
meshes from binary images [25, 26, 27]. Such methods recover the surface by
finding the points of intersection of the adaptive space-tree with the surface
of the object defined as a binary image. Mesh quality near the surface can be
compromised, as the newly inserted mesh nodes can be arbitrarily close to the
existing nodes. Mesh optimization [28] is commonly used as a post-processing
step. In practice, the methods from this group are well-suited for meshing binary
images, and were shown to be quite effective for a number of medical applications.
Some of these methods were designed and evaluated on the segmented brain MRI
data [25, 26, 27], which is the geometry used in our application. However, the
control over the customized element sizing is usually very limited, and has not
been evaluated previously.

The methods based on surface matching use a template volume mesh, which
is warped to match the surface of the modeled object [29]. While the advantages
of this approach are good surface fidelity, control over the mesh size and high
speed, the quality of the elements undergoing deformation during warping can
be compromised. Mesh optimization is a commonly used post-processing step
for the methods in this group. This concept is most suitable for meshing objects
that have very similar geometries. The geometry of ICC is quite similar between
different subjects. However, the mesh element sizing depends on criteria R1-3,
which are case-specific. Therefore, it is not feasible to construct a single template
mesh for our application to satisfy case-dependent distributions.

Representation of the object as a binary image conveniently lends itself to
the construction of an implicit function describing the object surface. Implicit
function is a mapping φ : R

3 �→ R, and the object surface is defined as the kth
level set of this function, φ(x) = k. An approximation of the implicit function
representing the object surface can be easily obtained by computing the distance
transform on the binary image [27], and using the zero level set as a surface
definition. A number of volume mesh generation methods have been introduced
recently to mesh implicitly defined surfaces [30, 31].

Overall, we observe that a great variety of methods for tetrahedral meshing
of binary images have been developed. Most of these methods were proposed
and evaluated in the context of their fitness to a specific application. Little or no
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attention is usually paid to the comparison of the newly proposed techniques with
the existing methods, and few implementations are available to conduct such
an evaluation by external groups. Also, most of the effort is usually directed to
developing a method that delivers good practical results, and not on establishing
theoretical guarantees about the produced meshes. The lack of such guarantees
makes it even more difficult to select the most appropriate algorithm from the
range of seemingly similar methods.

With the specific application we target, our goal is first to derive the pre-
cise requirements to mesh generation. These requirements can then be used to
customize and evaluate readily available, established methods to address the
problem of mesh generation for the NRR application. The results of such evalu-
ation can be used next to identify problems within the existing approaches and
justify the development of new mesh generation methods for this application.
However, before such necessity is justified, we believe the possibility of using
existing off-the-shelf tools must be carefully examined.

4 Methodology

4.1 Mesh Generation Tools

We evaluate three conceptually different approaches to constructing tetrahedral
meshes from binary images. Common to all these methods is their ability to
adjust the mesh element size locally according to the value of sizing function, or
local refinement rules.

Tetgen is an implementation of the Delaunay mesh generation and refinement
algorithm by Si [32]. This method is accompanied by the proof of termination
and bounds on the circumradius to shortest edge ratio. The implementation
has a number of very practical features: it accepts user-defined sizing function,
the exterior boundaries are refined simultaneously with the volume and “... are
never over-refined” [32]. The size of the mesh can be controlled by the alpha
parameters, which are not part of the basic Delaunay refinement [32]. We used
Tetgen version 1.4.2. The implementation works with the input surface defined
as a piecewise linear complex (PLC).

NETGEN is an advancing front mesh generator developed by Shöberl [33].
We used version 4.5rc2 of the code. The implementation can be used to construct
both surface triangulations of the parametrized surfaces, and adaptive volume
tetrahedralizations. It gives the user some control over the mesh grading, its im-
plementation is accompanied by a GUI environment, and the acceptable inputs
include triangulated surface of the domain.

RGM is a space-tree based mesher we presented earlier [27] that works di-
rectly on binary image data. Our implementation is based on the algorithm of
Molino et al. [30], which builds a mesh from the implicit definition of the do-
main. RGM is designed to work directly with the binary image, and we use the
Mesquite [34] mesh optimization library to improve the mesh quality following
the surface recovery. We used slightly modified version compared to the code
available online. Specifically, we use Mesquite instead of GRUMMP for mesh
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optimization, and implement a custom subdivision rule, as described in the next
section.

Both Tetgen and NETGEN require parametrized surface representation. We
use implicit surface meshing method by Boissonnat and Oudot [16] implemented
in the Surface mesh generation package of CGAL [35]. The implementation gen-
erates adaptive triangular surface directly from the binary image. The guarantees
of approximation accuracy and surface quality are provided. All the interaction
with the image data is done via the Insight Toolkit (ITK) [36]1.

4.2 Adaptive Mesh Generation

A sizing function H(p) > 0 specifies the desired length of edges at point p [32]. It
can be defined analytically, or, more often, its values are prescribed at the vertices
of a background mesh. The value of sizing at the non-vertex locations can then be
derived by interpolation. Both Tetgen and NETGEN accept background mesh
to control local mesh size. We use the sizing function defined at the vertices
of a background mesh to address the application-specific requirements to mesh
generation.

We use the same CGAL-recovered surface mesh for both background mesh
and the mesh used in FEM calculations. The background mesh is built using
Tetgen, with the small uniform bound on the tetrahedron volume. The sizing
value at each mesh vertex was initialized with the distance to the kth registration
point closest to it, to reflect the density of the registration point distribution.
The idea here is that the shape of a perfect mesh vertex cell complex is close to
a ball with the radius prescribed by the background mesh. We use CGAL [35]
k-neighbor search to find the k closest registration points and the distance to
the furthest point for each background mesh vertex. The process of background
mesh initialization is parametrized by the number of closest registration points
k. Our goal was to have around 30 registration points in the cell complex of
each vertex. However, based on the experimental results, the mean value in
distribution of the registration points both for Tetgen and NETGEN was not
approaching the desired bound when we set k = 30. Experimentally, we arrived
at a result that the best distribution is obtained by using larger values for k (we
used k = 100), and adjusting the Tetgen mesh by reducing the alpha parameters
of the implementation, see [32]. The NETGEN mesh was constructed using the
same background mesh, but the sizing values were scaled down by constant to
have similar number of nodes compared to the adaptive Tetgen mesh.

The sizing of the adaptive mesh constructed with RGM was controlled by a
custom subdivision function. This function is called for each tetrahedron during
the refinement at each mesh resolution, and returns true if the tetrahedron
1 Off-the-shelf software tools we used (links valid as of July 15, 2008): Tetgen:
http://tetgen.berlios.de/, NETGEN : http://www.hpfem.jku.at/netgen/,
RGM : http://www.na-mic.org/svn/NAMICSandBox/trunk/
TetrahedralMeshGeneration/, CGAL: http://cgal.org/, ITK: http://itk.org/,
VTK: http://vtk.org/, Paraview: http://paraview.org.
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requires subdivision. We calculate the number of registration points inside the
cells of the four tetrahedron vertices. The tetrahedron is refined if the number
of the registration points in each vertex cell exceeds parameter n. We used two
subdivision resolutions in all cases. The process of adaptive mesh construction
with RGM is parametrized by the value of constant n, and the spacing of the
initial lattice, see [27]. These parameters were experimentally chosen so that
the size of the adaptive mesh (the number of mesh vertices) is approximately
the same as the size of the adaptive Tetgen mesh.

4.3 Evaluation

We compare two sets of meshes constructed with each of the evaluated methods,
i.e., with and without using custom mesh sizing. The meshes are used to register
real MRI subject to synthetic deformations. We use synthetically deformed im-
ages, because the true deformation field (the ground truth deformation) cannot
be recovered in the real IGNS cases, and the registration accuracy cannot be
evaluated at an arbitrary image location. The ability to assess the registration
error is essential for our evaluation. We provide the details on the generation of
the synthetic deformation field in [37].

We try to create meshes with the similar number of vertices within each
group (uniform and adaptive), and compare them using a set of quantitative
metrics. There are two groups of metrics we use. The first group includes the
mesh properties, which can be directly optimized during the process of mesh
construction. These include element shape and surface approximation accuracy.
We assess the element shape by the minimum dihedral angle for each tetrahedron
of the mesh. Surface approximation accuracy is evaluated as the percentage of
the registration points covered by the mesh, which is a practical measure for the
NRR application.

The second group includes quantitative metrics, which cannot be directly
optimized by the existing mesh generation methods. Let D̄i be the ground truth
displacement at the registration point i, which aligns given point in the floating
image with the corresponding point in the target image. This value is known
to us, because the true deformation field is synthetic. We define the following
application-specific quantitative metrics:

1. Approximation error at a registration point is defined as ‖Di −HUi‖. We
assess the accuracy of approximation by the percentage of the registration
points, where the magnitude of this error exceeds 1.0. We call those registra-
tion points “error points”, while reporting results (errors below this threshold
are in the sub-voxel range).

2. Outlier detection sensitivity, defined as the ratio of the true outliers within
the discarded registration points to the total number of the discarded reg-
istration points. The true outlier is defined as a registration point, where
‖TiDi − D̄i‖ > 1.0.
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3. RMS of the absolute error at the registration points, absolute error being
defined as ‖HUi − D̄i‖.

4. Distribution of the registration points with respect to mesh vertices.

Note that the goal of the study was not to tune the NRR parameters to get
the optimal registration results. We attempt to perform a controlled study of
the impact of mesh generation on the NRR performance, while keeping fixed the
other parameters that can influence registration accuracy.

5 Results

We constructed synthetic deformation fields and performed NRR on the MRI
scans 1 through 3 in the set of 18 images available from the Internet Brain Seg-
mentation Repository (IBSR)2. The synthetic deformations were generated with
20 “knots” in the deformation grid on average [37]. The deformation magnitude
at each “knot” was under 5% of the brain size to maintain the validity of the
linear elastic physical model [5, 1].

The parameters used for CGAL surface mesh generation [35] were: angular
bound 30◦, surface radius and distance bounds 10.0, surface precision bound
0.001. Each method was used to construct two meshes for each registration case.
The prescribed element size was uniform throughout the volume of the first
mesh. The second mesh was constructed to adapt the element size according
to the sizing function designed in Section 4.2. We adjusted the implementation-
specific parameters to have the uniform and adaptive meshes with approximately
1.5k and 6k vertices, respectively.

Figure 2 shows cross-sections of the adaptive meshes. The adaptive meshes
generated with NETGEN have a layer of relatively large elements near the
surface of the mesh. This is explained by the nature of the Advancing Front
algorithm, which does not insert new points on the triangulated surface. We
explored the option to use the CGAL triangulation as the support surface, and
instructed NETGEN to construct a new triangulation to respect the prescribed
element sizing. However, the re-triangulated surfaces contained small triangles,
which did not obey the prescribed edge sizing.

None of the meshes contained sliver elements. We observed, that the minimum
dihedral angle was the largest, 14◦, in the NETGEN -generated meshes. The
values of this metric for Tetgen and RGM were 8◦ and 5◦ respectively.

The synthetic registration cases differ in the number of registration points,
and in the number of true outliers. Moreover, because of the differences in mesh
surfaces recovered by CGAL and RGM respectively, different percentage of those
points are located inside the mesh domain, as summarized in Table 1. This is an
important observation, because the percentage of outliers impacts the registra-
tion error, which is also used in the evaluation. Also, due to the lower precision
2 The MR brain data sets were provided by the Center for Morphometric Analysis at

Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/.
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Fig. 2. Left to right: selected registration points, and adaptive tetrahedral mesh cuts
(same slice) generated with Tetgen, NETGEN , and RGM . Tetrahedra are colored
according to their volume, from blue (smallest) to red (largest).

Table 1. Registration points, true outliers, and their coverage by the mesh surfaces

case id reg. points outliers,% reg. points inside,% outliers inside,%
CGAL RGM CGAL RGM

IBSR01 56447 7.8% 95.6% 91.1% 6.9% 5.5%
IBSR02 57526 16.2% 94.9% 90.8% 14.3% 12.4%
IBSR03 46525 18.8% 95.3% 90.5% 16.0% 13.1%

Table 2. Min/average/max of registration points per mesh vertex cell complex

case id uniform-graded meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM

IBSR01 0/135/460 0/137/715 0/130/390 0/36/111 0/36/432 0/33/277
IBSR02 0/131/479 0/136/667 0/124/374 0/35/118 0/35/444 0/30/168
IBSR03 0/127/408 0/126/611 0/121/345 0/27/87 0/27/320 0/28/254

of surface approximation by RGM , about 4% fewer registration points and 1%
to 3% fewer outliers are located within the RGM -generated meshes. The dis-
tribution of outliers is non-uniform, and many of them are located close to the
surface.

Based on the results presented in Table 2 and Figure 3, the use of custom mesh
sizing can significantly improve the distribution of registration points compared
to uniform-sized meshes. In conjunction with the sizing function, Tetgen achieves
the best distribution results overall. Although the average values for the distri-
butions are similar for all meshes, Tetgen meshes have lower maximum values
and better distribution: the distribution curve approaches normal distribution
with the mean close to the desired number (k = 30). The advantage of Tetgen
over NETGEN is that mesh points can be inserted at arbitrary locations on
the surface during refinement. RGM is limited even more than NETGEN , as



Tetrahedral Mesh Generation for Non-rigid Registration of Brain MRI 67

0 100 200 300 400 500 600 700
mesh vertices

0

10

20

30

40

50

60

70

80

90

100

110

120
re

gi
st

ra
tio

n 
po

in
ts

 p
er

 m
es

h 
ve

rt
ex Tetgen

NETGEN
RGM

0 50 100 150 200 250 300 350 400
mesh vertices

0

100

200

300

400

500

600

700

800

900

re
gi

st
ra

tio
n 

po
in

ts
 p

er
 m

es
h 

ve
rt

ex Tetgen
NETGEN
RGM

Fig. 3. Distribution of the number of registration points per mesh vertex: uniform-
graded meshes (left) and adaptive refined meshes (right); IBSR01

Table 3. Application-specific metrics for the evaluated meshes

case id metric uniform size meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM

IBSR01 mesh points 1617 1596 1607 6044 6020 6209
error points 2.4% 2.6% 1.9% 1.6% 1.8% 1.1%
sensitivity 53.5% 52.6% 43.8% 52.3% 52.5% 42.8%
RMS error 1.60 1.62 1.61 1.69 1.65 1.60

IBSR02 mesh points 1682 1617 1696 6166 6255 6993
error points 6.7% 7.1% 5.9% 4.9% 5.8% 4.3%
sensitivity 64.7% 64.4% 59.4% 63% 64.7% 60.5%
RMS error 1.98 1.92 1.82 2.55 2.27 2.23

IBSR03 mesh points 1410 1413 1404 6631 6503 6033
error points 7.7% 8.1% 6.3% 4.8% 6.4% 4.5%
sensitivity 72.9% 71.2% 65.7% 70.7% 74.6% 69.3%
RMS error 2.61 2.53 2.25 3.52 3.08 3.05

new points can be inserted only at the periodic predefined locations, based on
the initial lattice structure. Nevertheless, the distributions in RGM meshes are
consistently better compared with NETGEN . This might be caused by large
elements near the surface of the NETGEN meshes.

Note that empty vertex cells do not pose a problem. The corresponding mesh
nodes will move following the neighboring vertices during registration. Problems
can be caused by few registration points (the contribution of outliers is not
smoothed by the correctly recovered displacements), or by very large number of
registration points in the cell (increased approximation error).

The non-rigid registration was performed with the default parameters sug-
gested by Clatz et al. [1]. The quantitative metrics that are not directly optimized
by mesh generation are summarized in Table 3. The approximation accuracy is
consistently improved for all mesh generation methods when the refined meshes
are used. However, this is the only metric that is clearly connected with the size
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Fig. 4. Left: Image voxels with the largest values of the error with respect to ground
truth. Center: mesh elements with the minimum eigenvalue of the dilation matrix
below 0.1. Right: inverted mesh elements after NRR. IBSR02, Tetgen adaptive mesh,
wireframe shows the undeformed mesh.

of the elements of the mesh. We do not observe improvement in either outlier
detection sensitivity or RMS of the registration error. On the contrary, RMS
error is increasing in the refined meshes. We suggest that there are two major
reasons why this may be the case.

First, the adaptively refined meshes are more susceptible to the element inver-
sion during NRR. The areas of the high error in the deformation field recovered
by NRR are spatially co-located with the areas of the mesh, where tetrahedra
invert or become highly skewed. We use the tetrahedron measure proposed by
Baker [38] and identify highly skewed mesh elements by the minimum eigenvalue
of the element dilation matrix. Figure 4 shows spatial correlation of the loca-
tions of skewed and inverted elements with the areas of image with the largest
registration error.

Second, refined meshes decrease the error of approximating displacements re-
covered by block matching both at the outlier and non-outlier registration points.
Ideally, the mesh should be constructed in such a way that in each mesh vertex
cell the number of outliers is less than the number of correct displacements. In
general outliers are distributed non-uniformly. As we decrease the size of the
mesh elements, it becomes more likely that the registration points inside some
cells will be dominated by the outliers, causing higher error with respect to the
true deformation.

We tried to resolve the first problem by modifying the sizing function to re-
flect the deformation magnitude averaged over the k closest registration points.
The parameters for CGAL surface mesh recovery were chosen according to the
maximum of the averaged deformation magnitude near the object surface. None
of the evaluated meshers was able to follow the prescribed sizing distribution
closely. Both Tetgen and NETGEN created large tetrahedra near the mesh sur-
face. We cannot attempt to improve the fitness of the mesh to the sizing function
by reducing the default values of the alpha parameters, as we have done for the
meshes evaluated previously. The alpha parameters control the bound on the
shortest edge length at a mesh point, see Lemma 1 by Si [32]. Their reduction
introduces small volume elements. The construction of meshes that adapt to the
degree of deformation requires further study.
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6 Discussion

In this section we summarize our quantitative and qualitative analysis for each
of the six major requirements identified for the NRR application.

R1: Equi-distribution of the registration points. We were not able to achieve equi-
distribution, which may be an NP-hard problem. However, in all cases, the use of
custom sizing function significantly improved that distribution. The mean values
for the number of registration points were close for all meshes. In all test cases,
meshes constructed with Tetgen had lower values of the maximum number of
registration points and better distribution overall.

R2: Reduction of the approximation error at registration points. In the general
case, approximation error can be reduced by refining the mesh. This is observed
in Table 3 when comparing uniform and adaptive meshes. Further refinement
is problematic, as it would violate the requirement R1. When comparing the
meshes with respect to the number of error points, we observe that this number
is consistently lower for Tetgen vs. NETGEN . Because Tetgen better follows the
values of sizing, it creates smaller elements in the areas with high registration
point density. Therefore, the approximation error will also be reduced for the
points in those areas. RGM has consistently the lowest number of error points.
This can be explained, because there are fewer registration points located inside
the mesh, while the mesh sizes are comparable with the Tetgen and NETGEN
counterpart meshes.

R3: Prevention of tetrahedra inversion. Tetrahedra inversion can be prevented by
increasing the size of the mesh elements. This goes contrary to what is required
by the requirements R1 and R2. Moreover, it is not clear what should be the
optimum element size to avoid inversion. The balancing of this requirements
with R1 and R2 is the subject of future work.

R4: Object surface approximation accuracy. CGAL implicit surface recovery pro-
cedure was used to construct surface triangulations for Tetgen and NETGEN .
This allows to control over both the surface approximation accuracy and the
angles in surface triangulation. The distribution of registration points is highly
non-uniform, and is more dense in the areas of the prominent features of the
brain, cortex being one of those areas. Poor surface approximation accuracy
discards registration points located in the cortex area.

R5: Mesh size optimality. The number of vertices in the meshes we constructed
were adjusted using the custom parameters for mesh generation in each par-
ticular case. However, given the similar number of mesh vertices, the evaluated
meshes perform differently with respect to the quantitative metrics we compared.
An important practical concern is the ability to control the total size of the mesh.
Based on our experience, Tetgen is the most flexible in this respect. In order to
control the size of the mesh with NETGEN , the sizing values at the background
mesh vertices should be scaled. Moreover, the size of the elements near the
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surface is very hard to control. The size of the RGM mesh can be changed by
varying the size of the initial lattice, and by parametrizing the refinement rules,
which is not straightforward in practice (e.g., changing the number of the maxi-
mum registration points for the tetrahedron vertex cells, which can only be done
in integer increments).

R6: Control over minimum dihedral angle. Based on our experimental data,
the meshes produced by all three methods are very similar when judged by
the distribution of minimum dihedral angle. NETGEN produces meshes with
the relatively largest values of the minimum dihedral angle. However, all of the
compared meshes had minimum angle larger than 5◦, which is an acceptable
value for the stiffness matrix calculations.

In summary, we were able to address all of the application-specific require-
ments except R3 using the off-the-shelf mesh generation tools. Custom sizing
function was essential to meet requirements R1 and R2. Among the evaluated
meshing tools, the Delaunay-based approach provides best theoretical guaran-
tees, best practical results, and is the most flexible in the mesh size control. At
the same time, the RMS error values, which are the metrics of the most practical
relevance, are very similar for all the evaluated methods.

The open questions related to this study are the following: (1) construction of
the sizing function, which balances the conflicting requirements, and gives the
ability to assign weights according to their importance; (2) improved fitness of
the generated meshes to the desired mesh sizing, and studying the guarantees
of such fitness; (3) further evaluation of the impact of the mesh on the error of
registration with respect to the ground truth.
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Summary. This paper presents an algorithm that utilizes a quadtree to construct a strictly convex
quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller
than 18.43◦(= arctan( 1

3 )). This is the first known result, to the best of our knowledge, on
quadrilateral mesh generation with a provable guarantee on the minimum angle.

1 Introduction

The generation of quadrilateral meshes with provable guarantees on mesh quality poses
several interesting open questions. While theoretical properties of triangle meshes are
well understood [4, 8, 9, 7, 11, 12, 15, 14], much less is known about algorithms for
provably good quadrilateral meshes. Analysts, however, prefer quadrilateral and hex-
ahedral meshes for better solution quality in numerous applications [1, 2, 6, 10, 16].
This is because they have better convergence properties, and hence lower approxima-
tion errors, in finite element methods for solutions to systems of partial differential
equations. Quadrilateral meshes also offer lower mesh complexity, and better direction-
ality control for anisotropic meshing. For stable analytical results, however, it is critical
to construct meshes with certain quality guarantees. Specifically, algorithms that con-
struct well-shaped elements by providing bounds on minimum and maximum angles
have much practical value. Techniques such as paving [5] work well in practice, but do
not give provable angle guarantees. Circle-packing techniques have been used to con-
struct quadrangulations with no angles larger than 120◦ for polygon interiors [3], but
with no bound on smallest angle. An algorithm to construct linear-sized strictly convex
quadrilateral meshes for arbitrary planar straight line graphs is given in [13].

Our contribution. In this paper, we present a new algorithm to generate quadrilateral
meshes for simple polygonal regions, possibly with holes, with a provable guarantee
on the minimum angle. We use quadtrees to show that no newly created angle in the
quadrilateral mesh is smaller than 18.43◦. The quadrilaterals are strictly convex, i.e.,
the maximum angle is strictly less than 180◦. This is the first known quadrilateral mesh
generation algorithm with a provable bound on the minimum angle. (Quadtrees have
been used to give triangular meshes without small angles for point sets and polygons

� Research partially supported by NSF Grant 0204293.



74 F.B. Atalay, S. Ramaswami, and D. Xu

in 2D [4], and octrees have been utilized to construct tetrahedral meshes with bounded
aspect-ratio elements for polyhedra [12].)

In Section 2, we use quadtrees to construct a quadrilateral mesh for a point set in
which the minimum angle is bounded below by 45◦ − arctan(1

3 ) = 26.57◦. We then
describe in Section 3 an algorithm that adapts the guaranteed-quality mesh of polygon
vertices to polygon edges to construct a quadrilateral mesh for the interior of a simple
polygon (possibly with holes) in which new angles (angles other than those determined
by the input) are bounded below by arctan(1

3 ) = 18.43◦.
Throughout this paper, we use the shorter terms “quadrangulate” and “quadrangu-

lation” instead of “quadrilateralize” and “quadrilateralization”. We also sometimes use
the word “quad” for quadrilateral. Steiner points are additional points, other than those
provided by the input, inserted during the mesh generation process.

2 Point Set Mesh with Bounded Minimum Angle

We first describe an algorithm to construct a quadrilateral mesh with a minimum angle
bound of 26.57◦ for a given point set X .

2.1 Construction of the Quadtree

Given a point set X , we construct a quadtree for X with the following separation and
balancing conditions. These conditions are similar to those in [4], but adapted to partic-
ular requirements for quadrilateral (rather than triangle) meshing.

A. Split a cell C (with side length l) containing at least one point if it is crowded. A
cell is crowded if one or more of the following conditions hold:
1. it contains more than one point from X .
2. one of the extended neighbors is split (an extended neighbor is a cell of same

size sharing either a side or corner of C).
3. it contains a point with a nearest neighbor less than 2

√
2l units away.

B. When a crowded cell C is split, split those extended neighbors of C that share an
edge or corner with a child of C containing an original point in X .

C. The final quadtree is balanced so that the edge lengths of two adjacent cells differ at
most by a factor of 2 (neighbors of C with side length l have length l/2 or 2l).

Observe that in a quadtree with the above separation and bal-
ancing conditions, a cell containing a point from X is guaranteed
to be surrounded by 8 empty cells of the same size. We refine the
quadtree decomposition further to do the following: Split each of
these eight empty quadtree cells into 2 × 2 cells and rebalance the
quadtree. This converts the original 3 × 3 grid around every point
p ∈ X into a 6 × 6 grid. Furthermore, now p lies at the center of a 5 × 5 equal-sized
grid (outlined in bold in figure), and is surrounded by twenty-four empty quadtree cells
of the same size. There are two reasons for this refinement step:

1. The final step of our algorithm to construct a quadrilateral mesh for X consists of
warping a Steiner point in the mesh to an original point p ∈ X (Section 2.4). This
step is simplified considerably due to the refinement.
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2. The algorithm to construct a quadrilateral mesh for non-acute polygons (Sec-
tion 3.1) uses the 5× 5 grid to mesh the region around polygon vertices.

We construct a quadrilateral mesh with bounded minimum angle for X by placing
Steiner points in the interior of the quadtree cells. The placement of the Steiner points
is determined by identifying and applying templates to the quadtree decomposition. A
leaf of the quadtree is an unsplit cell and we refer to these as 1-cells in our discussion.
A template is applied to each internal node of the quadtree.

2.2 The Templates

A template is labeled by the number of children of a quadtree node that are 1-cells.
Hence we have 6 template configurations, for nodes with zero (T (0)), one (T (1)), two,
three (T (3)) or four (T (4)) 1-cell children. Nodes with two 1-cell children have two
layouts, T (2a) and T (2b).

Templates at the deepest level of subdivision. The templates at the deepest level of
subdivision are shown in Fig. 1. Note that, all other possible configurations are sym-
metric to the depicted ones. In order to quadrangulate a template, first, a Steiner point is
placed at the center of each quadtree cell. These points are denoted with full circles. We
then place extra Steiner points, which are denoted by empty circles in the figure, for one
of two reasons: (i) In T (1), the top-left extra point and in T (2b) the middle extra point
are added to be able to quadrangulate properly within the template. (ii) The remaining
extra points are added in the 1-cells, halfway on the diagonal between the center Steiner
point and the outer cell corner. The reason for adding the second type of Steiner points
is that after an internal node is quadrangulated, it will provide a polygonal chain with an
even number of points (we will call them even-connector chains) to which its neighbors
can connect.

T
(0)

T
(1)

T
(2a)

T
(2b)

T
(3)

T
(4)

Fig. 1. Templates at the deepest level of the subdivision

General Templates. Our recursive algorithm applies templates to all internal nodes
starting with the deepest ones. We generalize the templates to apply to an arbitrar-
ily deep internal node as shown in Fig. 2. In general, when a template is applied to
an internal node, its children which are not 1-cells have already had templates ap-
plied to them. Each such child has been quadrangulated internally and provides even-
connector chains on all four sides. The corresponding endpoints of two neighboring
chains are then connected to construct a polygon with guaranteed even number of
vertices which can therefore be quadrangulated. We name this process “stitching”,
illustrated by the cross-hatched regions in Fig. 2. The processed internal nodes are
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even−connector
2−connector

quadrangulated cell

stitched region
deleted vertex

(a) T (0)

(b) T (1) (c) T (2a) (d) T (2b)

(e) T (3)

(f) T (4)

Fig. 2. General templates at arbitrary level of subdivision

depicted as blackboxes with even-connector chains at each side. Note that the place-
ment of a chain’s endpoint does not necessarily correspond to the exact location of
the endpoint within the actual cell, due to the existence of type (ii) Steiner points.

C0C1

C2 C3

Ci
ri

ti

li

bi

Labeling the chains. Children quadrants of a cell are labeled C0,
C1, C2, and C3 in counterclockwise order starting from the north-
east quadrant. The four chains surrounding a processed quadrantCi

are labeled li, ri, ti and bi (see figure).

2.3 The Algorithm

The recursive procedure applyTemplate that applies a template to an internal node is
presented in the code block given in Fig. 3. It is initially called with the root node of
the quadtree. Note that the algorithm is presented only with respect to the depicted
configurations of the templates. Symmetric configurations are handled similarly.

Stitching Chains. Procedure stitchChains connects the four endpoints of two neigh-
boring even-connector chains and quadrangulates the resulting polygon. Note that such
a polygon is guaranteed to have an even number of vertices on the boundary. The algo-
rithm is illustrated in Fig 4. Procedure stitchChains is only called if the current template
is of type T (0), T (1) or T (2a). The action of this procedure is also illustrated by the
crosshatched areas in Fig. 2(a), (b) and (c).

The quadrangulation process divides the chains into half chains, each of which spans
the corresponding edge of a child quadrant. These half chains are then recursively
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applyTemplate(QuadtreeNode N)
templateType ← whichTemplate(N)
for Ci ∈ children(N)

if Ci is not a 1-cell
(li, ri, ti, bi) ← applyTemplate(Ci)

else
construct (li, ri, ti, bi) for Ci.

switch (templateType)
case T (0):

stitchChains(l0, r1), stitchChains(b1, t2)
stitchChains(r2, l3), stitchChains(t3, b0)

case T (1):
stitchChains(l0, r1), stitchChains(b1, t2)
Place Steiner points and quadrangulate per Fig. 2(b).

case T (2a):
stitchChains(r2, l3)
Place Steiner points and quadrangulate per Fig. 2(c).

case T (2b):
Place Steiner points and quadrangulate per Fig. 2(d).

case T (3):
Place Steiner points and quadrangulate per Fig. 2(e).

case T (4):
Place Steiner points and quadrangulate per Fig. 2(f).

return (l1 + l2, r0 + r3, t1 + t0, b2 + b3)

Fig. 3. applyTemplate quadrangulates node N

stitchChains(Chain ch1, Chain ch2)
switch (length(ch1), length(ch2))

case (2 − 2), (2 − 4), (4 − 2):
Apply appropriate base case from Fig. 5.
case (2 − 6), (2 − 8)):
Apply appropriate base case from Fig. 6.
default:

(f1, s1) ← getHalfChains(ch1)
(f2, s2) ← getHalfChains(ch2)
stitchChains(f1, f2)
stitchChains(s1, s2)

Fig. 4. stitchChains stitches two even-
connector chains, one from each of the two
neighbor cells sharing an edge

(7)(1) (3)(2) (4) (5) (6)

Fig. 5. Stitching 2-2 and 2-4 or 4-2 connector chains

(3)(2)(1)

Fig. 6. Stitching 2-6 and 2-8 connector chains

stitched. Although the even-connector chains can be arbitrarily long, at the base case
there are only four types of chains: chains with 2, 4, 6 or 8 connectors. Figs. 5-6 illus-
trate how the base-case chains are stitched (the stitching edges are dotted). Symmetric
cases are not listed in the illustrations.
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2.4 Angle Bounds

Minimum Angle. We analyze the minimum angle bound in each of applyTemplate,
the base case of stitchChains, and the recursive step of stitchChains.

General templates: By construction, the minimum angle appears in templates T (1) and
T (2b) and equals 45◦ − arctan(1

3 ) = 26.57◦ (illustrated in Fig. 7).

45◦ − arctan(1
3) = 26.57◦

arctan(1
3) = 18.43◦

arctan(1
4) = 14.036◦

28.072◦

Fig. 7. Minimum angle bounds

Stitching base case: The base cases of stitch-
ing generate the same minimum angle of 45◦ −
arctan(1

3 ) = 26.57◦ which can be found in in
Fig. 5-(5).

Stitching merging step: After the corresponding
half-chains are stitched in the recursive step of
stitchChains, a middle quad is formed by the four
end points of the stitched half-chains. This middle
quad gives a minimum angle of 2× arctan(1

4 ) =
28.07◦. See Fig. 7. Recall that these four points
are by construction on the two diagonals that cross
at the center of four quadtree quadrants. Furthermore, they are either at the center of the
quadtree quadrant, or halfway down the diagonal from the center. The worst-case con-
figuration is illustrated in Fig. 7. This results from connecting any Fig. 5-(5) connector
chain with an inverted version of itself.

Degenerate quads. In the stitching cases illustrated by Fig. 5-(7), Fig. 6-(1), Fig. 6-
(2) as well as template T (2a) (Fig. 1), there are degenerate quads with two edges on
a straight line. In all cases, the 180◦ vertex is connected to a third vertex on the other
side of the degenerate quad, by construction. This allows perturbation of the degenerate
vertex along the third edge, which reduces the 180◦ angle and increases the other two,
thus eliminating the degenerate quad.

Maximum Angle. The quadrilaterals generated by our algorithms (including the one
in Section 3) are strictly convex; i.e., the maximum angle is bounded away from 180◦.
The perturbation used to handle degenerate quads (above) implies the maximum angle
is less than (180− ε) for some ε > 0. We conjecture the value of ε can be bounded from
below, but do not explicitly address that question in this paper.

Warp

p

≥ 53.14◦

Warping to Original Points. After the con-
struction of the quadrilateral mesh using quadtree
cell centers and extra points as Steiner points,
we warp certain mesh vertices to the original
points from the input point set X . Recall that the
quadtree splitting rules of Section 2.1 ensure that
the quadtree cell containing an original point p ∈ X is surrounded by twenty-four
empty quadtree cells of the same size. Moreover, the eight empty cells immediately
surrounding p do not contain any extra points. Therefore, the warping step simply con-
sists of translating the Steiner point in p’s cell to p, along with all the incident edges.
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The worst-case minimum angle arising from these nine cells after the warping step is
2× 26.57 = 53.14◦. In summary, we have shown the following result:

Theorem 1. Given a quadtree decomposition with N quadtree cells satisfying the point
set separation conditions for a point set X , applyTemplate constructs a mesh for X
with at most 3N quadrilaterals in which every angle is at least 26.57 degrees.

Observe that the value of N in the above theorem depends on the geometry of the point
set as well as the size of the point set. Due to the point set separation conditions, which
are derived from [4] and as was shown there, the size of the quadtree decomposition
increases as the distance between the closest pair of points decreases.

3 Polygon Mesh with Bounded Minimum Angle

Given a simple polygon P , possibly with holes, with vertex set X , we give an algorithm
to construct a quadrilateral mesh for P and its interior in which no new angle is larger
than 18.43◦. The basic idea behind the algorithm is to first construct a guaranteed-
quality mesh for X as described in the previous section, and then adapt this mesh to
incorporate the edges of P . We use δP to refer to the polygon boundary, and P to refer
to the union of the boundary as well as interior.

We describe in Section 3.1 a provably good algorithm to construct a quadrilateral
mesh with bounded minimum angle for a simple polygon P in which all interior angles
are non-acute (i.e., greater than or equal to 90◦). In Section 3.2, we describe how to
handle acute angles.

3.1 Non-acute Simple Polygons

Let P be a non-acute polygon with vertex set X and edges oriented counter-clockwise
about the boundary. Let QT be a quadtree decomposition of X satisfying the point set
separation conditions of Section 2.1. Let Q be a quadrilateral mesh for X with mini-
mum angle 26.57◦, as guaranteed by Theorem 1. In this section, we describe a method
to adapt Q to δP to create a constrained quadrilateral mesh for P . In a constrained
quadrilateral mesh, we allow Steiner points to be inserted on δP as well, so that the
union of the finite elements of the mesh is equal to P .

We start by describing an algorithm to adapt Q to include a single edge of P . In
order to use this algorithm on all edges of P , QT must satisfy certain polygon edge
separation conditions, which are discussed towards the end of the section. We conclude
the section by describing how to construct the final constrained mesh for P by adapting
to the regions around the vertices.

Inserting an edge into Q

Consider an edge �e = (a, b) of P oriented from a to b, where a, b ∈ X . Assume that �e
makes an angle between−45◦ and 45◦ with the positive x axis (if not, orient the x axis
so that this is the case). We say that a point lies “above” �e if it lies in the open halfspace
to the left of the oriented line through �e . We use �e to define two chains of edges from
Q and QT , as described below:
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(i) �e intersects quadrilaterals of Q. Edges of these quadrilaterals are used to define a
chain of edges called the quadrangulation chain α associated with �e .

(ii) �e intersects quadtree cells of QT . The centers of these cells are used to define a
chain of edges called the quadtree chain β associated with �e .

Quadrangulation Chain. Let q1, q2, . . . , qk be the quadrilaterals of Q intersected
by �e in left to right order as traversed from a to b (since the quadrilaterals are con-
vex, each qi is unique). Let Ei be the edges of qi that lie entirely above �e . Ei may
have 0, 1, or 2 edges. If Ei has two edges, they are listed in clockwise order about
qi. Then the quadrangulation chain α is defined as α = E1 · E2 . . . · Ek, where ·
represents edge concatenation. See Fig. 8 for an example of a quadrangulation chain, in

a
q1

q2
q3

q4
q5

q6

α q8

q7

q9 q11

q10

b

Fig. 8. Quadrangulation chain α

which E1 has 1 edge, E2 has 2 edges, and E3

has 0 edges. Note that the same edge may repeat
twice in α (the repetitions always appear consec-
utively) and such an edge is incident to qi that has
|Ei| = 0. For example, the quadrangulation chain
in Fig. 8 has three repeating edges, which are in-
cident to the quadrilaterals q3, q5 and q10. If we
drop the repetitions from α, then α is a weakly
simple polygonal chain.

A vertex belongs to an edge if it is one of the
endpoints of the edge. We say that v ∈ α if v is a vertex of Q and belongs to one of
the edges of α. If we quadrangulate the region bounded by α and �e by adding Steiner
points either in the interior of the region or on �e itself, the resulting quadrangulation
is compatible with Q (since edges of α are edges in Q). However, in order to quad-
rangulate the region with the desired angle bounds, we need to know more about the
geometry of α. The quadtree chain, described below, allows us to establish the required
geometric properties for α.

Quadtree Chain. In the remainder of the paper, we use the same symbol to refer to
a quadtree cell as well as its center whenever the meaning is clear from the context.
Given a cell c, N(c),W (c), and E(c) denote, respectively, the set of north, west, and
east neighbor cells of c (note that each set has at most two elements in it because of the
balancing conditions for QT ).

Let C be the set of cell centers of quadtree cells in QT that are intersected by �e .
C does not include the starting or ending cells (i.e., the cells containing a and b, re-
spectively). Let θ be the angle (in degrees) that �e makes with the positive x axis. The
quadtree chain β is defined as follows:

1. If c ∈ C and c lies above �e , then c belongs to β.
2. If c ∈ C and c lies below �e , then N(c) ⊂ β. Note that the centers of cells in N(c)

must lie above �e under our assumption that −45 ≤ θ ≤ 45.
3. If c ∈ C, c lies below �e , and 0 ≤ θ ≤ 45 (resp., −45 ≤ θ < 0), then a cell center

in W (c) (resp., E(c)) belongs to β if it lies above �e .

Let {c1, c2, . . . , cm} be the cell centers in β in lexicographically sorted (by x, then
y) order. Recall that Q is constructed from the quadtree decomposition QT of X . The
overall approach to incorporating edge �e into Q is summarized below:
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(A) We first show that quadtree chain β is a subset of quadrangulation chain α.
(B) This fact allows us, in turn, to exploit the structure provided by QT and our al-

gorithm from Section 2 to identify a small number of possible ways in which two
consecutive points ci and ci+1 of β can be connected along the chain α. We use αi,
1 ≤ i ≤ m − 1, to refer to the subchain of α starting at ci and ending at ci+1. αi

may lie under −−−→cici+1. In this case, we choose instead a chain of edges in Q lying
above−−−→cici+1 in order to simplify the final quadrangulation step in part (C) below.

(C) Finally, we quadrangulate the region bounded by �e and α by breaking it into
smaller sub-regions defined by perpendicular projections from ci and ci+1 onto �e .
The case analysis form part (B) is then used to prove a minimum angle guarantee
of 18.43◦ for the quadrangulation of each subregion.

Lemmas 1-3 are required for steps (A)-(C) and stated here without proof.

Lemma 1. For 1 ≤ i ≤ m, ci ∈ α. That is, every cell center in the quadtree chain
belongs to the quadrangulation chain.

Lemma 2. For 1 ≤ i ≤ m− 1, ci and ci+1 are edge or corner neighbors in QT .

Lemma 3. Let vi be the vertical projection of ci on �e . For 1 ≤ i ≤ m, the segment civi

does not intersect α.

Lemmas 1 and 3 imply that the edge sequence (vi, ci) · αi · (ci+1, vi+1) · (vi+1, vi)
defines a simple polygon for all 1 ≤ i ≤ m − 1. Call this polygon Ai. We now use
Lemma 2 to prove that αi is composed of at most four edges. This is done via a case
analysis on the ways in which ci and ci+1 are connected in Q.

Lemma 4. The number of edges in αi is at most four.

Proof: We know from Lemma 2 that ci and ci+1 are either edge or corner neighbors in
QT . We consider each case separately. Our case analysis only depicts αi with two or
more edges (i.e., when ci and ci+1 are not directly connected). Let si, 1 ≤ i ≤ m refer
to the size of ci’s cell (by “size”, we mean “side length”).

Case 1: ci and ci+1 are edge neighbors. In this case, the connectivity between ci and
ci+1 in Q may come from either the application of a template (applyTemplate) at some
level of recursion, or the application of the stitching step (stitchChains) at some level
of recursion. We consider different possibilities based on the ratio si : si+1, which may
be 1 : 1, 1 : 2, or 2 : 1. Configurations for these cases are shown in Figs. 9, 10, and 11,
respectively. Each of these figures indicates the minimum internal angle in Ai along αi.
Note that each of them is well above 18.43◦. We depict only distinct αi that differ in
either the number of edges, or the angles at the vertices (that is, we do not show other,
symmetric configurations that lead to the same αi).

Case 2: ci and ci+1 are corner neighbors. In this case, the connectivity between ci

and ci+1 in Q may come from the application of applyTemplate, the application of
stitchChains, or through a center quad. The center quad is the quadrilateral formed at
the center, i.e. the meeting point of the four quadrants, after a general template (ref.
Fig. 3) is applied during the recursive step. Since ci and ci+1 are corner neighbors, the
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(i)

ci ci+1

75.96◦

ci ci+1

(ii)

ci

(iii)

ci+1

Fig. 9. Configurations for αi when si : si+1

is 1 : 1. (i) and (ii) come from stitching base
cases, and (iii) from stitching merge steps.

ci

(i)

ci+1 ci+1

ci

(ii) (iii)

ci

ci+1

45◦

Fig. 10. Configs. for αi when si : si+1

is 1 : 2. (i) and (ii) from applyTemplate
and stitching base cases. (iii) from stitch-
ing merge steps.

(iv)(iii)

(ii)

ci

ci+1ci+1

ci

(i)

63.43◦

Fig. 11. Configurations for αi when si : si+1 is 2 : 1. (i) and (ii) come from applyTemplate and
stitching base cases. (iii) and (iv) occur only in the stitching base cases.

ratio si : si+1 can be 1 : 1, 1 : 2, 2 : 1, 1 : 4, or 4 : 1. We consider the case of center
quads first, and then consider templates and stitchings.

Case 2.1: αi contains center quad edges. Let s be the size of the cell adjacent to ci as
well as ci+1 and lying above −−−→cici+1. Possible configurations for αi when si : s :
si+1 ≡ 1 : 1 : 1 are shown in Fig. 12. In 12(i), 12(iv), and 12(vi), the point in
the cell adjacent to ci and ci+1 may be either a cell center or an extra point of a
larger cell. When si : s : si+1 ≡ 1 : 2 : 1 or si : s : si+1 ≡ 1 : 1

2 : 1, possible
configurations of αi are shown in Figs. 13 and 14, respectively.

(i)

ci

ci+1

ci

(ii)

ci+1

ci

(iv)
ci

(iii)

ci+1ci+1

(vi)

ci

ci+1ci+1

(v)
ci 53.14◦

Fig. 12. si : s : si+1 ≡ 1 : 1 : 1

When si : s : si+1 ≡ 1 : 1 : 2, possible configurations of αi are shown in Fig. 15.
For the case when si : s : si+1 ≡ 2 : 1 : 1, the αi are obtained by reflections about
the line y = x of those in Case 2.1.4. Hence the minimum internal angle shown in
Fig. 15 holds here as well. Similarly, Fig. 16 depicts αi when si : s : si+1 ≡ 1 :
2 : 2 and the chains in this figure are reflections about the line y = x of possible αi

when si : s : si+1 ≡ 2 : 2 : 1
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ci

ci+1 ci+1

ci

ci+1

ci
28.08◦

Fig. 13. si : s : si+1 ≡ 1 : 2 : 1

ci

ci+1 ci+1

ci ci

ci+1

126.86◦

Fig. 14. si : s : si+1 ≡ 1 : 1
2 : 1

ci

ci+1 ci+1

ci ci

ci+1 ci+1

ci

ci+1

ci ci

ci+1

ci

ci+1

ci

ci+1

71.57◦

Fig. 15. si : s : si+1 ≡ 1 : 1 : 2

ci

ci+1 ci+1

ci

ci+1

ci

ci+1

ci
40.61◦

Fig. 16. si : s : si+1 ≡ 1 : 2 : 2

Finally, Fig. 17 shows possible configurations of αi when si : s : si+1 ≡ 1 : 2 :
4. For the case when si : s : si+1 ≡ 4 : 2 : 1, the αi are obtained by 180◦ rotations
of those in Fig. 17.
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ci+1

ci

ci+1

59.04◦

Fig. 17. si : s : si+1 ≡ 1 : 2 : 4

Case 2.2: αi constructed by application of applyTemplate or stitchChains. All new con-
figurations of αi that occur by a template application, or a stitching step at some
level of recursion are listed. By “new”, we mean configurations that do not appear
in Figs. 12-17. Note that when ci and ci+1 are connected via templates or stitch-
ings, si : si+1 is 1 : 1 (see Fig. 18), 1 : 2, (see Fig. 19) or 2 : 1 (reflections about
the line of y = x of the αi in Fig. 19), but not 1 : 4 or 4 : 1.

While Figs. 12-19 all depict ci and ci+1 in the southwest and northeast quadrants
respectively, note that each of the αi in these figures has a 90◦ rotational symmetry
corresponding to ci and ci+1 in the northwest and southeast quadrants, which does not
change the minimum internal angles indicated in those figures.

It follows from the above case analysis that αi has at most four edges.
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(i) (ii) (iii) (iv) (vi)
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Fig. 18. si : si+1 ≡ 1 : 1
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Fig. 19. si : si+1 ≡ 1 : 2

We now describe how to quadrangulate each polygonal region Ai = (vi, ci) · αi ·
(ci+1, vi+1) · (vi+1, vi) independently for 1 ≤ i ≤ m. Before doing this, we first
show that rather than using the vertical projections vi and vi+1, we may instead use
perpendicular projections of ci and ci+1 onto edge �e (Lemma 6). This allows us to
prove angle bounds for quadrangulating Ai that are independent of the angle that �e
makes with the horizontal (recall that this is between −45◦ and 45◦).

Lemma 5. Let δi be the signed angle (in degrees) between −−−→cici+1 and the positive x-
axis. Then abs(δi) ∈ {0, 18.43, 45, 71.57, 90}.

Proof: Since ci and ci+1 are both cell centers in QT , and we know from Lemma 2
that they are edge or corner neighbors, it follows that there are a constant number of
possibilities for δi: If ci and ci+1 are edge neighbors with si = si+1, then δi is either
0 or 90◦. If ci and ci+1 are edge neighbors with si �= si+1, then tan(δi) = 1

3 , i.e.,
abs(δi) = 18.43◦, or tan(δi) = 3, i.e., abs(δi) = 71.57◦. If ci and ci+1 are corner
neighbors, then abs(δi) = 45◦.

Let θ be the signed angle made by �e with the positive x-axis. The value of θ determines
the range of possibilities for δi. This is because of our definition of the quadtree chain,
which specifies that either cell ci (resp. ci+1) has center above �e and is intersected by
�e , or it is the north/west neighbor of a cell intersected by �e whose center lies below
�e . Table 1 summarizes the possible values of δi for given ranges of θ. This relationship
also allows us to prove Lemma 6, stated here without proof.

Lemma 6. Let pi be the perpendicular projection of ci on �e , and vi the vertical pro-
jection of ci on �e . Assume �e makes an angle between −45◦ and 45◦ with the positive
x axis. Then for all 1 ≤ i < m, ci+1 lies outside the triangle ∆(picivi).

We know from Lemma 3 that for all 1 ≤ i ≤ m, αi does not intersect civi or ci+1vi+1.
Furthermore, we know from the proof of Lemma 4 that αi lies above −−−→cici+1 (that is, it
does not intersect the region bounded by civivi+1ci+1). Therefore, Lemma 6 implies
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Table 1. Range of values for θ and δi

Range of θ Values of δi

18.43◦ ≤ θ < 45◦ −18.43◦ ≤ δi ≤ 90◦

0 < θ < 18.43◦ −45◦ ≤ δi < 90◦

−18.43◦ < θ ≤ 0 −71.57◦ ≤ δi ≤ 45◦

−45◦ < θ ≤ −18.43◦ −71.57◦ ≤ δi ≤ 18.43◦

(c) (d) (e)
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δi

ci
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ci

ci+1

Fig. 20. (a) min{φ1, κ1} ≥ 18.43◦. (b) min{φ1 +φ2, κ1 +κ2} ≥ 2×18.43◦. (c) Shaded angle
is 12.54◦. (d)-(e) Shaded angle is 14.04◦.

that αi does not intersect cipi or ci+1pi+1 either. We redefine polygon Ai to be (pi, ci) ·
αi · (ci+1, pi+1) · (pi+1, pi) (that is, it is defined by the perpendicular projections rather
than the vertical ones). Lemmas 7 and 8 establish bounds on some angles in Ai when
αi has one and two edges, respectively.

Lemma 7. Let φ1 = ∠picici+1 and κ1 = ∠cici+1pi+1. Then min{φ1, κ1} ≥ 18.43◦.

Proof: Refer to Fig. 20(a). Since φ1 = 90− θ + δi and κ1 = 90 + θ − δi (recall θ and
δi are signed angles), and the fact −71.57◦ ≤ (θ − δi) ≤ 71.57◦ (refer to Table 1), it
follows that φ1 ≥ 18.43◦ and κ1 ≥ 18.43◦.

Lemma 8. Suppose αi has two edges, civ and vci+1. Let φ1 = ∠picici+1, κ1 =
∠cici+1pi+1, φ2 = ∠ci+1civ, and κ2 = ∠cici+1v. Then (i) min{φ1, κ1} > 18.43◦

and (ii) min{φ1 + φ2, κ1 + κ2} ≥ 2× 18.43◦.

Proof: (i) From Lemma 7 we know that min{φ1, κ1} ≥ 18.43◦. To see that it must be
strictly greater, note that if min{φ1, κ1} = 18.43◦ then abs(θ − δi) = 71.57◦. From
Lemma 5 and Table 1, it can be seen that abs(θ − δi) = 71.57◦ when (a) θ = 18.43◦

and δi = 90◦, which is impossible because ci and ci+1 are directly connected whenever
δi = 90◦, or (b) θ = 0 and δi = 71.57◦, which is also impossible because θ must be
strictly greater than 0 whenever δi = 71.57◦.

(ii) Refer to Fig. 20. First observe that if min{φ2, κ2} ≥ 18.43◦, then part (i) implies
the claim. Hence assume that min{φ2, κ2} < 18.43◦. The only configurations of αi for
which min{φ2, κ2} < 18.43◦ are shown in Fig. 20(c)-(e). We use the angle dependency
in Table 1 to prove that these configurations imply min{φ1+φ2, κ1+κ2} ≥ 2×18.43◦.
Further details are omitted here.

Lemma 9. For 1 ≤ i ≤ m − 1, the simple polygon Ai = (pi, ci) · αi · (ci+1, pi+1) ·
(pi+1, pi) can be quadrangulated with at most five quadrilaterals with a minimum angle
of 18.43◦.
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Proof: Since αi has at most four edges (Lemma 4), we have four cases.

Case 1: αi has one edge. In this case, Ai is already a quadrilateral. The fact that all
angles of Ai are at least 18.43◦ follows from Lemma 7.

Case 2: αi has two edges. Let civ and vci+1 be the two edges of αi. Let φ1, κ1, φ2, and
κ2 be as in Fig. 20(b). Let γ = ∠civci+1. Observe that γ ≥ 26.57◦ because the
edges of αi come fromQ. We quadrangulate Ai according to the angles φ2 and κ2.
• If min{φ2, κ2} ≥ 18.43◦, place a Steiner point s on cici+1 and at the per-

pendicular projection p of s onto �e . Connect s to ci, ci+1, and p to obtain a
quadrangulation of Ai. Perturb s towards p to obtain strictly convex quadrilat-
erals. We know from Lemma 8(i) that there is always a small perturbation of
s that maintains all angles in the resulting quadrangulation at or above 18.43◦.
See Fig. 21(a).

�epi+1
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pi

(c)

v

κ2

p

ci

�epi+1

v
ci+1

κ2

p
(b)

pi
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�epi+1

ci+1
pi

(d) s

κ2

ci

κ2

ci+1

�epi+1

pi p
(a)

v

ci

s
v

φ2 φ2 φ2
φ2

Fig. 21. αi has two edges. (a) min{φ2, κ2} ≥ 18.43◦. (b) φ2 < 18.43◦ and κ2 ≥ 18.43◦. (c)
φ2 ≥ 18.43◦ and κ2 < 18.43◦. (d) φ2 < 18.43◦ and κ2 < 18.43◦.

• If min{φ2, κ2} < 18.43◦, the placement of Steiner points depends on which
of φ2 and κ2 are smaller than 18.43◦ (assume wlog that φ1 + φ2 ≤ κ1 + κ2).
If exactly one of φ2 or κ2 is less than 18.43◦, then Lemma 8 guarantees a
quadrangulation of Ai with the required angle bounds. We omit details and
refer to Fig. 21(b)-(c). If both φ2 and κ2 are less than 18.43◦, the only possible
configuration for αi is shown in Fig. 20(e). Observe that in this case, v can see
�e . Let s be the perpendicular projection of v onto �e , unless 0 < θ < −18.43◦,
in which case let s be the vertical projection of v onto �e . Connect v to s to
obtain a quadrangulation of Ai in which all angles satisfy the lower bound .

Case 3: αi has three edges. The method used to quadrangulateAi depends on the num-
ber of reflex internal vertices of αi, which is zero or one (note that since αi lies
above −−−→cici+1, it is not possible for both internal angles to be reflex):
• If the two internal angles along αi are both convex, draw an edge between ci

and ci+1, which quadrangulates Ai with two quadrilaterals. Some examples of
such αi can be seen in Fig. 10(iii) and 19(ii). In all such cases, Lemma 7
guarantees that all angles in the quad below −−−→cici+1 is at least 18.43◦. The quad
above−−−→cici+1 has a minimum angle of 26.57◦. See Fig. 22(a).

• If one of the internal angles along αi is reflex, ci and ci+1 must be corner neigh-
bors. Let r be the reflex vertex. r either lies on the segment cici+1 (Fig. 22(b)),
or belongs to the quadtree cell N(ci) adjacent to ci and ci+1 and lying above
−−−→cici+1 (Fig. 22(c)). Several examples of the former appear in Figs. 12-17. For
the latter, see Fig. 18(v)-(vi) and Fig. 19(iv). We can show that in both cases,
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Fig. 22. αi has three edges
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Fig. 23. αi has four edges

Ai can be decomposed into a quadrilateral and a pentagon that is further de-
composed into three quads with the required minimum angle bounds. Details
are omitted here.

Case 4: αi has four edges. αi is classified according to the three internal vertices:
• If the three internal vertices consist of two reflex vertices separated by a convex

vertex (e.g., Fig. 18(i)), the reflex vertices always lie on cici+1. Insert edges
from each reflex vertex to its perpendicular projection onto �e . This decom-
poses Ai into two quads and a pentagon. Lemmas 7 and 8 provide the required
minimum angle bounds. See Fig. 23(a).

• If the three internal vertices consist of two convex vertices separated by a reflex
vertex (Fig. 18(ii)), decompose Ai into four quads as shown in Fig. 23(b). Note
that this decomposition has the required minimum angle bounds regardless of
the value of θ.

This completes the proof that Ai can be quadrangulated with at most five quadrilaterals
with a minimum angle of 18.43◦.

Edge separation conditions for quadtree

Every edge �e of the polygon P defines a chain of edges given by ∪1≤i≤mαi. From this
chain, we obtain the polygons Ai, each of which is then quadrangulated as described
above. In order to conduct this process independently for every edge of the polygon, we
impose an edge separation condition on QT . The edge separation condition requires
that all quadrangulation chains ∪1≤i≤mαi defined by the edges of the polygon be dis-
joint from each other. Recall that these chains do not start in the cell containing the
segment endpoint, but rather in one adjacent to it. This allows quadrangulation chains
to be separated completely, except in the 5 × 5 grid of cells around each polygon ver-
tex. In the worst case, the edge separation condition requires that every cell intersected
by a polygon edge be surrounded by a 3 × 3 grid of empty cells, but in practice, this
requirement does not apply uniformly across the entire segment.

Connecting quadtree chains around polygon vertices

For every edge of the polygon P , the quadtree chain starts and ends at a cell center
within the 3 × 3 grid of quadtree cells that is guaranteed to exist around each of its
endpoints. Let v be a vertex of P and let e and f be the two oriented edges incident on
v (the interior of P lies to their left). Let u be the last quadtree chain vertex for edge e
and let w be the first quadtree chain vertex for edge f . Note that u and w are both cell
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centers in the 3×3 grid around v. Let ū and w̄ be the perpendicular projections of u and
w onto e and f , respectively. Let E be a sequence of edges connecting u to w in the 3×3
grid. The region around vertex v is meshed by quadrangulating the polygon Pv defined
by the edges vū, ūu, E,ww̄, w̄v. The method used to quadrangulate Pv depends on the
number of edges in E, which is between one and seven (inclusive). Refer to Fig. 24 for
an illustration of some cases. The underlying 3 × 3 grid is used to prove the following
lemma, stated here without proof.

Lemma 10. Pv can be decomposed into at most seven quadrilaterals with a minimum
angle of 18.43◦.

Figure 25 shows quadrangulation chains ∪1≤i≤mαi for some edges of a polygon (the
entire polygon is shown in Fig. 28). Quadtree chain vertices are highlighted.
Summary of algorithm. We summarize in Figure 26 the algorithm to quadrangulate
the interior of a non-acute simple polygon P of n edges e1, e2, . . . , en and vertices
v0, v1, . . . , vn−1, where ei = (vi−1, vi) (where vn = v0). The resulting quadrilaterals
have a minimum angle bound of 18.43◦.

Theorem 2. Given a quadtree decomposition with N quadtree cells satisfying the edge
separation condition for a simple polygon P , Quadrangulate(P, n) constructs a mesh
for P with at most 5N quadrilaterals in which every angle is at least 18.43◦.
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Fig. 24. Connecting at corners. Number of edges in E is (a) one, (b) two, (c)-(d) three or more.

Fig. 25. Quadrangulation chains

Quadrangulate(P, n):
QT ← Quadtree decomposition satisfying edge separation conditions

for vertices of P
Q ← Quadrangulation resulting from applyTemplate on QT .
for ei ∈ {e1, e2, . . . , en}

α(ei) ← Quadrangulation chain for ei

Q(ei) ← Quadrangulation of region bounded by ei and α(ei),
as given by Lemma 9.

Q(vi) ← Quadrangulation of corner polygon Pvi ,
as given by Lemma 10.

Q′ ←
S

1≤i≤nQ(ei) ∪
S

1≤i≤nQ(vi)

return Q′ ∪ ( Q ∩(P−Q′))

Fig. 26. Summary of algorithm
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3.2 General Simple Polygons

v

a θ
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v1
p′ p1

v′
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p2
p3

p
v3
v2

γ
γ
2

Fig. 27. Handling acute angles in P

Let P be a general simple polygon containing
acute angles. We first convert P into a polygon
that contains only obtuse angles by “cutting off”
the acute angle vertices. Let a be an acute angle
vertex of P . Let θ, 0 ≤ θ < 90, be the angle at
that vertex. Let v be a point on the angle bisector
of a, and let p and q be the perpendicular projec-
tions of v onto the two edges incident at a. v is
chosen so that the quadrangular region apvq does
not contain any other vertices of the polygon P . Cut all such regions apvq from P . Let
B be the polygon resulting from this procedure. Construct a quadrilateral mesh for B
using the algorithm in Section 3.1. Observe that now there might be Steiner points on
pv (e.g., v1, v2, v3 in Fig. 27) and vq. These are used to quadrangulate the region apvq
with the required angle bounds. We omit details and refer to Fig. 27 for an illustration
of the quadrangulation.

4 Conclusion

Sample meshes generated by our algorithm are shown in Figures 28 and 29. Ob-
serve that in these examples the ratio of the number of quadrilaterals to the number
of quadtree cells is less than one. The image on the right shows a zoomed-in portion of
the mesh on the left.

This paper presents the first known result on the generation of a quadrilateral mesh
for the interior of a simple polygon (possibly with holes) in which every new angle in

Fig. 28. Number of polygon edges: 19. Minimum mesh angle: 24.26◦. Number of quadtree cells:
1399. Number of mesh vertices: 989. Number of mesh faces (quads): 841.
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Fig. 29. Number of polygon edges: 33. Minimum mesh angle: 20.67◦. Number of quadtree cells:
2623. Number of mesh vertices: 2213. Number of mesh faces (quads): 1859.

the mesh is bounded from below. The main open question resulting from this work is
its extension to polygon interior as well as exterior. While our algorithm itself is appli-
cable to the interior or the exterior of the polygon, the difficulty of adapting it to both
lies in resolving mesh compatibility at the boundary without propagating the changes
throughout the mesh. We are currently investigating alternative strategies to mesh the
region bounded by quadtree chains on both sides of each polygon edge.

Acknowledgments. The authors would like to thank anonymous reviewers for helpful
comments that served to improve the presentation in the paper.
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Summary. A uniform finite element mesh rarely provides the best discretization of a domain to 
accommodate a solution with both optimal efficiency and minimal error.  Mesh adaptation can 
approach a more optimal solution by accommodating regions of the mesh with higher or lower 
element density. Extensive attention has been given to mesh adaptation in both computational 
mechanics and computer graphics to provide or improve methods for increasing the model 
resolution or solution accuracy.  The algorithm developed in this paper, entitled Automated 
Quadrilateral Coarsening by Ring Collapse (AQCRC), provides a unique solution to allow 
mesh coarsening of both structured and unstructured quadrilateral meshes. The algorithm is 
based on modification and removal operations utilizing the dual description of the quadrilateral 
mesh. The AQCRC algorithm iterates on five steps: 1) input of a coarsening region and a 
coarsening factor, 2) selection of coarsening rings, 3) mesh quality improvement, 4) removal of 
coarsening rings, and 5) mesh clean-up.  Examples are presented showing the application of the 
algorithm.  

1   Introduction 

Finite element analysis (FEA) continues to push the limits of computing power in 
terms of the size of models being analyzed. The computation time required even by 
the most powerful machines can be hours or days on complex problems, with compu-
tational time increasing proportional to the cube of the number of nodes in the finite 
element mesh [1].  However, the accuracy of the finite element analysis is also pro-
portional to the number of nodes in the mesh, increasing with finer resolution meshes.  
In many analysis situations, there may be specific areas in the mesh where accuracy, 
and thus mesh resolution, is more important than in other locations where lower reso-
lution may be tolerated.  For example, if a solution is shown to have high gradient in a 
particular location, the errors produced by a low density mesh may be significant and 
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Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000. 
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prevent proper engineering conclusions from the analysis process.  Therefore, adapt-
ing the mesh to allow higher nodal density in the areas of interest can be critical to ac-
curate analysis, while lower density in low gradient areas may allow for reductions in 
the solution time. If a uniform mesh is used, analysis time may be much greater than 
necessary while overall accuracy in the analysis may not improve significantly.  The 
competing objectives of accuracy and computation time have prompted investigation 
into the field of mesh adaptation for the purpose of optimizing meshes. 

Most research in mesh adaptation for computational mechanics centers on refine-
ment algorithms that increase element density locally [2].  A complementary algo-
rithm for decreasing local element density by removing elements (i.e., coarsening) 
could be a powerful companion tool to refinement algorithms, potentially allowing 
more flexible mesh adaptation.  Unfortunately, coarsening is an area of research 
which has received limited attention.  The algorithm presented in this paper, Auto-
mated Quadrilateral Coarsening by Ring Collapse (AQCRC), provides a fully auto-
mated conformal coarsening algorithm suitable for use with generalized unstructured 
quadrilateral finite element meshes.   

Tools for mesh manipulation by both refinement and coarsening operations in-
crease the ability to adapt a mesh.  For example given a uniform mesh, the mesh den-
sity in an area of interest may be increased by established refinement techniques [3] 
and decreased away from the areas of interest using the coarsening technique de-
scribed in this paper.  An initial analysis on a base mesh may be used to indicate loca-
tions where high density meshes and low density meshes are appropriate based on 
gradients of the initial solution.  Rather than remeshing the model, the base mesh may 
be modified using refinement and coarsening tools. This would allow increased reso-
lution and accuracy in the results while maintaining a similar computation time for the 
entire model.  Furthermore, a given model may require adaptation in different loca-
tions depending on different load cases, adaptation by both refinement and coarsening 
from a single base mesh may allow more efficient and robust generation of meshes 
appropriate for varied circumstances. 

This paper describes the development and implementation of the AQCRC algo-
rithm for use in quadrilateral finite element analysis.  The background of the problem 
and discusses the limitations of previously developed coarsening and simplification 
algorithms is presented first, followed by a description of the implementation of the 
algorithm.  A brief case study is then presented to show the merit of the algorithm 
and, finally, conclusions are drawn with recommendations of further research. 

2   Background 

Mesh adaptation is a field which has received extensive study among both computa-
tional mechanics and computer graphics researchers.  Generally these two fields have 
not collaborated due to the many additional restrictions that apply to computational 
mechanics but are not necessary in computer graphics.  The adaptation algorithms  
developed for computer graphics are, therefore, rarely suited to computational me-
chanics.  One example of these additional restrictions in computational mechanics in-
volves the requirement that a mesh must accurately represent the geometry of the 
model by insuring that the nodes representing a curve or surface of the model do not 
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move off the geometry, whereas in graphics a sufficiently low level of detail might 
justify combining surfaces and/or curves.  In the next section, we provide some back-
ground on efforts in mesh adaptation and give some additional motivation for our 
work. 

2.1   Triangle Mesh Simplification and Coarsening 

The use of triangular meshes in computer graphics and computational mechanics is 
common due to the relative simplicity of generating the meshes from these simplex 
elements.  Triangle meshing algorithms are well-established and on-going efforts in 
the research community continue to advance the quality of these meshes.   

One of the foremost algorithms of triangle mesh simplification was developed by 
Garland, et al. [4].  His approach is fast, reliable, and is also generally applicable to 
any polygon mesh.  The algorithm assumes that the mesh is composed entirely of tri-
angles or can be broken into a mesh entirely composed of triangles. It is designed to 
combine surfaces and curves that are indistinguishable when rendered at a low level 
of detail.  Hoppe, et al. [5], demonstrate mesh adaptation respecting geometric curves 
and surfaces in order to preserve sharp corners and edges in the mesh representation.   

A survey of triangle mesh coarsening algorithms is documented by Cignoni, et al. 
[6].  Cignoni et al. identify the following major simplification methodologies: copla-
nar facets merging, controlled vertex/edge/face decimation, retiling, energy function 
optimization, vertex clustering, wavelet based approaches, and simplification via in-
termediate hierarchical representation.  Additional reviews that compare smaller sets 
of algorithms are also found in [7, 8].   

While triangle meshes have widespread use, quadrilateral meshes are sometimes 
preferred in computational analysis due to beneficial mathematical properties of the 
quadrilateral element that result in reduced solution error with fewer elements than 
triangle meshes [1].  Unfortunately, despite the wide availability of triangle mesh ad-
aptation algorithms, most of the algorithms developed for triangle meshes cannot be 
adapted for use on quadrilateral meshes. 

2.2   Quadrilateral Mesh Simplification and Coarsening 

Various efforts have been made to develop all-quadrilateral coarsening algorithms; 
unfortunately, all of these algorithms have significant restrictions which prevent use 
with unstructured meshes.  Takeuchi, et al. [9], modified the approach developed by 
Garland, et al. [4], to simplify quadrilateral meshes; however, the process is designed 
for full-model simplification and may produce degenerate elements (i.e. quadrilaterals 
which are inverted or concave).  Cheng, et al., developed a method of coarsening a 
structured, all-quadrilateral mesh specifically for use on auto-body parts [10]; how-
ever, this method has not been adapted for use in unstructured meshes.  Kwak, et al., 
performs simplification using remeshing algorithms [11]; however, this global  
approach can be slow when only local adaptation is needed.  Choi describes an algo-
rithm which can be used to undo previous refinement on both quadrilateral and  
hexahedral meshes [12]; however, the reliance on knowledge of previous refinement 
restricts the algorithm from being used on a base mesh that has not been refined.  
Nikishkov developed a quadtree method for mesh adaptation that allows both  
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refinement and coarsening [13]; however, his method requires the use of special ele-
ments or else it produces non-conforming elements.  The left panel of Fig. 1 shows an 
initial uniform mesh with the region to be coarsened highlighted in grey.  The center 
panel shows the mesh once Nikishikov’s coarsening method has been applied. The 
nodes marked A, B, C, and D are locations where the mesh is not conforming. We 
note that conforming quadrilateral meshes, where the elements are simply connected 
and there are no gaps, are required by most FEA solvers.    

 

Fig. 1. Quadtree and chord removal coarsening 

 

Fig. 2. Removing a chord from a mesh 

The basis of the AQCRC algorithm derives from the dual chord representation of a 
quadrilateral/hexahedral mesh [14,21].  A dual chord is a set of quadrilaterals con-
nected through pairs of opposite edges extending through the mesh or connecting 
back on the original starting edge.  In Fig. 2 a dashed line is shown highlighting one 
chord of the mesh. 

Borden, et al. [15], recognized that it is possible to remove an entire chord from a 
quadrilateral mesh, maintaining conformal connectivity, by simply collapsing the defin-
ing edges of the chord as shown in Fig. 2. The removal of a chord reduces the number 
of quadrilaterals in the mesh and coarsens the quadrilaterals adjacent to the chord. The 
right panel of Fig. 1.  shows this coarsening applied to the selected coarsening region.  
Unfortunately, while the local region, highlighted in gray, is significantly coarsened, the 
effect of the coarsening may extend well beyond the boundaries of the coarsening re-
gion.  The research of Borden, et al., was continued in the paper by Benzley, et al. [16], 
where initial steps were made to localize the coarsening region. 
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Staten, et al. [17], speculated that if a circular chord (i.e. a chord which forms a 
closed loop) could be created in a specific region, then the removal of that chord 
would produce localized coarsening. Staten, et al., showed that if the portions of 
chords bounding a region can be established, then simple chord operations (i.e. altera-
tions to the mesh which change the connectivity of chords) can be performed at the 
intersections of these bounding partial chords to combine them into a single continu-
ous chord surrounding the region to be coarsened. The operations used to combine the 
partial chords into a single circular chord included the edge swap, face close and dou-
blet insertion operations that are described in the following paragraph. The faces 
within the region to be coarsened in these partial chords form a ring of quadrilaterals.  
A ring of quadrilaterals within the coarsening region will be known as a ‘coarsening 
ring’ throughout the remainder of this paper. 

Fig. 3 shows an example of the coarsening process developed by Staten, et al. [17].  
The left panel shows the initial mesh. The dashed lines mark chords which bound the 
region to be coarsened. The quadrilaterals highlighted in grey are the bounding partial 
chords and define a coarsening ring. In the second panel, the quadrilaterals where two 
bounding partial chords intersect have been modified with doublet insertion, face 
close, and edges swap operations.  The top left intersection is modified using a dou-
blet insertion operation.  The doublet insertion operation causes the quadrilateral at 
the intersection of two bounding chords to be divided into two degenerate quadrilater-
als by inserting two edges and a node between opposite nodes on a single quadrilat-
eral as shown in detail in the bottom left corner of Fig. 4. In both figures, the doublet 
node is circled for clarity. A doublet node is an internal node in a quadrilateral mesh 
connected to only two edges. The bottom two chord intersections in Fig. 3 are modi-
fied by a face close operation. The face close operation results in the quadrilateral at 
the intersection of the bounding chords to be deleted by merging two nodes opposite 
each other as shown in detail in the top right corner of Fig. 4. The top right chord in-
tersection in Fig. 3 is modified by an edge swap operation.  The edge swap operation 
results in an edge between the quadrilateral at the intersection of the bounding chords 
and one of the adjacent quadrilaterals within one of the bounding chords to change 
node connectivity as shown in detail in the bottom right corner of Fig. 4.  The combi-
nation of these operations result in the mesh shown in Fig. 3, which contains a single 
circular chord that now bounds the coarsening region as shown in the center panel of 
the same figure.  This chord is removed by an extraction operation (see Fig. 2.),  
resulting in the mesh shown in the right panel of Fig. 3.  

 

Fig. 3. Chord operations and removal 
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Fig. 4. Chord operations: top right, Face Close; bottom left, Doublet Insertion; bottom right, 
Edge Swap 

3   Automated Quadrilateral Coarsening by Ring Collapse 

The algorithm developed by Staten, et al., is a coarsening algorithm which can locally 
coarsen an unstructured, conforming, all-quadrilateral mesh [17]. The AQCRC  
algorithm, presented in this Section, generalizes, further develops and automates the 
work of Staten, et al. The AQCRC algorithm advances the basic methodology by ex-
tracting multiple coarsening rings simultaneously, introducing logic to maximize ele-
ment quality, and eliminating the step of combining the bounding partial chords into a 
single circular chord.   

One of the key developments of the AQCRC algorithm is the use of coarsening 
rings, i.e. a closed ring of quadrilaterals contained within the coarsening region, rather 
than circular chords.  The AQCRC algorithm does not take the step of modifying the 
bounding partial chords with chord operations to create a single chord (see Fig. 3.).  
Instead the coarsening ring is removed directly.   

The AQCRC algorithm iterates over five steps until sufficient coarsening has been 
accomplished. These five steps are outlined below and will be examined in detail in 
the following sections. 

1. A contiguous coarsening region and the final mesh coarseness are specified. 
2. One or more coarsening rings are selected within the coarsening region containing 

a number of quads less than or equal to a goal number of quads. 
3. The bounding partial chord intersections may be altered with chord operations to 

increase the final quality of the mesh or to prevent merging nodes illegally. 
4. The identified coarsening rings are collapsed from the mesh and the mesh recon-

nected in a manner that retains its conformal properties. 
5. The mesh is checked, cleaned up, and smoothed to ensure that elements have  

acceptable quality. 
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3.1   Defining the Coarsening Region and Removal Parameter 

The first step in the AQCRC algorithm is to specify a coarsening region. The left 
panel of Fig. 5 shows an example of a coarsening region highlighted in dark gray. An 
additional layer of elements marked with light gray surrounds the coarsening region 
and is used as a transition layer. Elements within the coarsening region may be moved 
and/or deleted during the coarsening process; the elements in the transition region 
may be moved slightly, but not deleted. If the coarsening region includes a boundary 
of the initial mesh (i.e. a curve which only bounds one meshed surface), the elements 
along that boundary are also considered transition elements. 

In addition to specifying the coarsening region, the number of quadrilaterals to be 
removed must be defined. A target size or coarsening factor may be given to establish 
the goal number of quadrilaterals which are to be removed from the mesh. A coarsen-
ing factor corresponds to the multiplicative increase in average area that should occur 
within the coarsening region during the execution of the AQCRC algorithm.  A target 
size corresponds to the average length of the edges in the coarsening region after the 
execution of the AQCRC algorithm. 

 

Fig. 5. Coarsening region selection and coarsening rings 

Equation 1 shows how a coarsening factor is used to determine the number of 
quadrilaterals that should be removed. 

F

E
EN t

tre −=−                  (1) 

where  Ne-r = the number of elements to be removed 
Et = the number of elements in the coarsening region 
F = coarsening factor 
Equation 2 converts the target size into an equivalent coarsening factor which is 

then converted into the number of elements to be removed by Equation 1. 
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where F = coarsening factor 
lf = the final average edge length specified by the user 
l0 = the initial average edge length in the coarsening region 

Once the number of quadrilaterals to be removed is determined, a 10% tolerance 
factor (tf) is also calculated such that the number of quadrilaterals actually removed is 
within ± tf of the calculated goal. This tolerance factor is limited to being a minimum 
of 3 quadrilaterals or a maximum of 50 quadrilaterals. The values of 10%, 3 and 50 
are heuristic values shown to give reasonable results during our experimentation. 

3.2   Selecting Coarsening Rings 

Once a coarsening region has been defined, a set of concentric coarsening rings is de-
veloped for removal.  Each of the coarsening rings is analyzed to determine which 
coarsening ring removals will preserve a high quality mesh and the goal number of 
elements to be removed. 

Ring Identification 
A coarsening ring is identified by locating an element in the coarsening region which 
is adjacent to or shares a node with an element marked as a boundary element.  Be-
cause the coarsening region is always bounded, the set of elements adjacent to the 
boundary forms a coarsening ring.  The elements in the new coarsening ring are set 
aside forming a new, but smaller, coarsening region.  This process is iterated, until all 
coarsening rings in the coarsening region are identified.  During the process of identi-
fying coarsening rings there are a few cases where the ring identified could not be col-
lapsed or there are not enough elements to form a closed loop.  These invalid cases 
are handled by marking some of the elements as boundary elements.  Eventually all of 
the elements in the coarsening region will be marked as boundary elements, which ef-
fectively ends the ring identification portion of the algorithm.  In most cases, the 
coarsening region is large enough that several rings are created concentrically.  The 
right panel of Fig. 5 shows the rings developed within the coarsening region.  The al-
ternating numbered regions of darker and lighter shaded grey elements show the set of 
rings.  The dark regions not numbered are locations of elements which are not  
included as rings because they were part of an invalid ring case. Further details on 
handling invalid cases can be found in [18]. 

Ring Selection 
Once the set of coarsening rings has been created, a subset is chosen for removal. To 
facilitate choosing an optimum set of rings for removal, each node connected to a ring 
is assigned to a node group.  A node group is the set of nodes that will be merged into 
a single node when the coarsening ring is collapsed.  The node groups are used to fa-
cilitate choosing the best set of rings to collapse by providing a rough estimate of the 
mesh connectivity and element shapes that will be created upon collapse. Each node 
group will be assigned a projected location.  Generally, the projected location is the 
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centroid of all the nodes in the group.  This location may be modified so that the mesh 
continues to adhere to the geometry of the model. 

The projected location of the node groups is calculated to enable quality metric 
calculations for each of the coarsening rings.  The rings are then ordered based on 
prospective quality.  Coarsening rings are removed based on the ordered list until the 
coarsening goal is satisfied (within the tolerance factor). 

3.3   Improving Quality 

In some cases, modifying the connectivity of a ring can improve the quality of the fi-
nal mesh.  As each ring is chosen for collapse, it is examined more closely to see if 
there is room for quality improvements. Quality is a major consideration in coarsen-
ing because ring removal generally reduces mesh quality.  Quality improvement op-
erations typically prevent the creation of high-valence nodes, (e.g., nodes with more 
than 5 edges), as well as to prevent merging nodes from different curves (see [17, 18] 
for details).   

3.4   Collapsing Coarsening Rings 

Once the coarsening rings have been selected and the various quality improvement 
operations have been applied, the mesh is ready to be coarsened. Each of the selected 
coarsening rings is collapsed in succession using the following procedure. The nodes 
in each node group are moved to the projected location and the quadrilaterals that are 
part of the ring are deleted.  As the quadrilaterals are deleted, any edge that is no 
longer associated with a quadrilateral (i.e. the quadrilaterals on either side of it have 
been removed) is deleted and the nodes on either end of the deleted edge are merged 
together. At corners, a simple collapse as shown in Fig. 6 creates a conformal mesh 
(compare to the operation shown in Fig. 3. ). In the left and center panels of Fig. 6, 
the node groups are circled with darkened edges connecting each group.  The dashed 
line indicates the coarsening ring of quadrilaterals being collapsed.  In the right panel 
the circled nodes are the locations of the merged nodes in the final mesh. 

     

Fig. 6. Collapsing node groups 

3.5   Mesh Clean-Up 

Despite efforts to minimize high-valence nodes during quality improvement, a few 
cases remain where high-valence nodes are formed.  Furthermore, the collapse of two 
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rings separated by a single layer of elements may reduce element quality due to mul-
tiple node projections for quadrilaterals in the non-removed coarsening ring.  Addi-
tionally, collapsing quadrilaterals along geometric curves may result in elements with 
low quality which cannot be smoothed. To improve mesh quality, clean-up operations 
like those described in [18, 20], which change mesh connectivity to create a more 
structured mesh, and smoothing operations, like those described in [23], which im-
prove the mesh quality by simply moving node coordinates, are applied. 

3.6   Coarsening Iterations 

At the end of each coarsening cycle the net number of quadrilaterals removed is de-
termined. This net number includes any quadrilaterals added or removed by the clean-
up procedures. If too few quadrilaterals have been removed, the algorithm is executed 
again. If a sufficient number of quadrilaterals have been removed, or if no quadrilat-
erals have been removed, the new, coarsened mesh is integrated into the original 
mesh. The algorithm provides a message if insufficient coarsening has taken place to 
reach the goal number of elements to be removed. Fig. 7 shows the example given in 
Fig. 5 after it has gone through several coarsening iterations.  The region exterior to 
the coarsening region is identical in both meshes. 

  

Fig. 7. Original mesh compared to coarsened region 

4   Results and Example 

One example of mesh coarsening using the AQCRC algorithm is given in this section.  
The resulting mesh and quality of the initial mesh and of a coarsened mesh will be com-
pared.  The quality metric used is the scaled Jacobian metric [19] which ranges from-1.0 
to 1.0, where a value of 1.0 represents a perfect square while anything below 0.0 is an 
inverted (non-convex) element (0.0 typically being a triangle-shaped element). A scaled 
Jacobian value greater than 0.2 is generally considered acceptable for analysis accuracy.  
A scaled Jacobian value below 0.2 are considered marginal [21]. 

4.1   Lever Mesh Example 

Fig. 8. shows a lever model that has been meshed with shell elements.  An initial 
mesh and a mesh that has had most of the inside area coarsened to a factor of four are 
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shown. Previous analysis showed that high stress gradients occurred around the  
outside boundaries.  In this example the mesh has had an analysis run on it using Cal-
culix, an open source finite element analysis package.  Both analyses had nearly  
identical results; the error introduced by the coarsening is less than 0.2% while the 
calculation speed increased 347%.  Table 1 shows the element count of the original 
and coarsened meshes, the minimum scaled jacobian of the elements in the mesh,  
the analysis time and peak Von Mises Stress of the model.  The accuracy of the  
analysis has not been compromised, but the speed of analysis has increased by more 
than three.  

Table 1. Lever mesh results 

Mesh Element 
Count 

Min. Scaled 
Jacobian 

Analysis 
Time 

Peak Von 
Mises Stress 

Initial 11113 0.71 3m 11s 5.34 E+4 psi 
Coarsened (factor 4) 3261 0.39 55s 5.33 E+4 psi 

 

Fig. 8. Lever shell mesh 

5   Conclusions and Recommendations 

The level of coarsening to be achieved is limited primarily by element quality consid-
erations.  Generally speaking, the more the mesh is coarsened, the greater the reduc-
tion in mesh quality. This can largely be attributed to the quality of the transition  
elements between the fine and coarse regions of the mesh.  At least one layer of ele-
ments must take on a trapezoidal shape to enable the sizing transition.  As the aspect 
ratio increases, the quality of the mesh is reduced.  This should not deter from the use 
of the coarsened mesh so long as the quality remains within acceptable ranges.   

The availability of a fast, robust coarsening algorithm for unstructured, all-
quadrilateral, conformal meshes expands the tools available for computational model-
ing. The use of coarsening coupled with refinement provides and effective means to 
adapt a mesh more effectively, increasing model accuracy while reducing computa-
tion times.  
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This paper presented the Automated Quadrilateral Coarsening by Ring Collapse 
(AQCRC) algorithm. The algorithm conformally coarsens localized regions of quadri-
lateral meshes by creating, modifying and removing coarsening rings. The automation 
procedure optimizes final element quality while attempting to heavily coarsen the de-
fined region. Application of the AQCRC algorithm demonstrates that it is capable of 
removing enough nodes from the mesh to increase speeds by many times while main-
taining a mesh quality sufficient for accurate analysis.  The potential speed benefits of 
coarsening algorithms could significantly reduce the time and cost of computational 
analysis of large scale problems. 

5.1   Further Research and Development 

Further research and development of this algorithm continues. Clean-up operations 
are already a focus of significant effort to address problems coarsening around com-
plex surfaces. An alternative method of coarsening, partial chord removal, is also be-
ing explored.  

One of the methods of coarsening discussed in the Section 2 was undoing refinement.  
The AQCRC algorithm could be developed into a reversible coarsening procedure, al-
lowing refinement of regions previously coarsened. This could be accomplished by stor-
ing the changes made to the mesh in the remaining mesh entities. As some nodes or 
edges may be merged and then merged again, a set of changes could be pushed onto a 
stack so that the reverse operations could be performed one at a time, restoring the mesh 
to its original state. 
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1 Local Mesh Optimization

Many applications in computational science such as heat transfer, advection-
diffusion, and fluid dynamics numerically solve partial differential equations. To
numerically solve the equations, finite element, finite volume, and other PDE-
discretization methods are commonly used, along with meshes to discretize the
physical domain. It is well-known that the mesh and its quality can greatly im-
pact the accuracy of simulations, as well as solver efficiency [1], [2]. Mesh quality
can be improved by various methods including adaptivity [3], [4], smoothing
[5], [6], and swapping [7], [8]. In mesh smoothing, one employs vertex-movement
strategies to change the coordinates of mesh vertices, leaving initial mesh connec-
tivity intact. Mathematically rigorous methods for formulating the smoothing
problem entail the use of an objective function that measures quality; included
in this category are the variational methods for structured meshes [9], [10], [11],
and the direct optimization methods based on mesh entities such as lengths and
angles [12], [13].

A commonly-used method for smoothing meshes is the local patch method
wherein one loops over a set of patches containing one free vertex and the
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adjacent vertices [14], [15], [16]. On each patch, the coordinates of the free vertex
are updated by using an update rule or by solving a local optimization problem.
These solution methods are required to be very fast in order to keep pace with
other parts of a PDE-based simulation. As such, one usually only performs a
few sweeps to obtain an inexact solution, i.e., one that is closer to optimal than
the initial mesh, but differs from the true optimum.

The local patch smoothing method strongly resembles local iterative methods
such as Gauss-Seidel for solving systems of equations. From that perspective, it
is natural to ask whether or not the knowledge of linear solvers can be applied to
mesh smoothing methods. One solver topic that seems particularly relevant to
local mesh smoothing is that of vertex ordering. It is well-known that, in solving
systems of equations via local relaxation methods, the order in which the local
sets of equations associated with a vertex are considered can make a difference
in the time needed to solve the equations. For example, [17] describes natural
and red-black orderings, also known as point partitionings. This must also be
the case when smoothing meshes via local patches; however, it does not appear
to have been investigated to any large extent. In the present study, we examine
the effect that altering the vertex ordering has on the CPU time to solution,
with the goal of accelerating the convergence.

2 Timing Considerations

Pseudocode for the local patch optimization scheme is shown below. The smooth-
ing or optimization procedure used to update the free vertex coordinates may
itself be iterative, but the details of this inner iteration procedure are not needed
for the present purposes. For this study, only interior vertices are allowed to
move; boundary vertices are treated as fixed and therefore do not appear in the
smooth list. Note that if the termination criterion (for the outer ‘while’ loop)
is not tight, then the final mesh will depend on which fixed vertex ordering is
selected.1 The outer termination criterion used in this study is a comparison
of the value of the objective function at each iteration (representing the mesh
quality) to a predetermined value. Therefore, we are interested in the ordering
scheme that reaches the given level of quality in the least amount of time. The
inner termination criteria varied as described later.

To assess the effectiveness of the reordering schemes in different situations,
we recorded the Optimization Time per Iteration (OTI), which is the difference
between Timer3 and Timer2. The cumulative optimization time (COT), Tj, is
the sum of all the OTI’s over the ‘while’ loop, with j denoting the reordering
scheme j = 1, 2, ..., J .2 Also recorded were the cumulative reordering time, CRT,
(Timer4 - Timer3) and the total time, TT, (Timer 5 - Timer 1).

1 In general, the final mesh can also depend on which fixed vertex ordering is selected
even when the tolerance is tight due to the existence of non-unique minimae. We
have attempted to avoid this possibility by using a convex local metric.

2 The timings include a negligible amount of time due to overhead operations.
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Pseudocode for Local Mesh Smoothing and Optimization

1. Initialization: vertex list, termination criterion,
tolerances, objective function, control parameters.

-- CPU Timer_1
2. While tolerance not satisfied and iteration count

not exceeded
-- CPU Timer_2
Loop over list of free vertices
- update free vertex coordinates (optimization)

End loop over free vertices
-- CPU Timer_3
Reorder vertex list every k-th iteration
-- CPU Timer_4

End while loop
-- CPU Timer_5

3 Study Design

There are many variables, parameters, and choices one might make in a study
of the impact of vertex reordering on the overall efficiency of local patch-based
mesh optimization. Among the possible choices are different quality metrics,
objective function templates, optimization solvers, serial or parallel solvers,
computer architecture, 2D/3D, element type, type of reordering scheme, mesh
anisotropy/isotropy, mesh heterogeneity/homogeneity, mesh connectivity, tight-
ness of the termination criterion of the outer ‘while’ loop, and the number of free
vertices in the mesh. For this initial work we confine our focus by fixing the local
quality metric (||T − I||2F ), the template (linear averaging), the solver (Feasible
Newton [18]), serial computation, and the dimension (2D). The quality metric is
described in [19] where its utility is demonstrated. The quality metric takes on
values from 0 to ∞ with 0 being the best value; a value of 0 is obtained when
A = W , i.e., whenever the physical and reference elements agree. Further, the
metric and objective function are proven convex in [20]. The machine employed
for this study is equipped with two Intel (R) Xeon (TM) processors each having
four cores; each processor has an 8MB cache shared between its cores. The 64-bit
machine has 4GB of RAM and runs Linux. Optimizations and reorderings were
performed using the Mesquite code (Version 1.99 Alpha) [21].

The remaining free variables that were studied in this research are: (i) several
vertex reordering schemes to be described in the next section, (ii) the number
of free vertices in the optimization problem, (iii) mesh type (element type and
degree of heterogeneity/isotropy), and (iv) the frequency with which the vertex
list reordering is performed.

The outer termination criterion for the runs was based on the desire to have
them complete in roughly five minutes, because, in this amount of time, the re-
sulting meshes are neither highly accurate nor grossly inaccurate (the inaccurate
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case, i.e., requiring about one minute, was also considered). The outer termina-
tion criterion value was determined in a set of baseline calculations by running
the code for more than five minutes to find the value of the objective function
at five minutes. This value was then used to terminate subsequent runs.

The optimization problem that is solved in this study used an objective func-
tion that was the average over the entire mesh of the values of the local metric
at the element corners (quadrilateral case) or at the barycenter (triangle case).
The matrix T = AW−1 was determined from A and W , where A represents the
quality of the physical mesh, and W represents the target quality, as determined
from a reference mesh. See [22] and [19] for details.

4 Vertex Reordering Schemes

Vertex reordering can be done either statically or dynamically. In the static
case, one takes as input the initial ordering of the vertex list provided to the
optimization scheme and reorders using some criterion. The reordered list is
then used and kept fixed during the optimization. In the dynamic case, the
reordered list is updated at the end of each iteration (or at the end of every
kth iteration) within the optimization, thus creating a sequence of lists. Both
strategies were considered in this study. The reordered lists contain the same
number of vertices as the initial list. The challenge in all of these approaches
is to devise a reordering scheme that accelerates convergence while keeping the
computational cost of the reordering low so that the latter does not dominate
the time to optimize.

The vertex reordering schemes chosen for this study were ones that were easy
to implement and make sense from a geometric point of view. Admittedly, from a
theoretical point of view, it is more appealing to choose reordering schemes based
on prior knowledge and experience from linear solvers. However, since it is not
necessary to derive the global linear systems in order to solve our optimization
problem, this approach is reserved for future work. Specific vertex reordering
schemes that were investigated are described next.

Scheme (N): Null Order. Do not reorder the vertex list.
Scheme (R): Random Order. Generate a random integer from 1 to N, with
N being the total number of local patches in the mesh. Place the vertex assigned
the value 1 first in the list and N last.
Scheme (WQP): Order by Worst Quality Patch. Evaluate the objective
function on a local patch to measure local patch quality. Sort by putting the
worst quality patch first in the list, and so on.
Scheme (GAVM): Order by Greatest Absolute Vertex Movement.
Evaluate the position of the free vertex in the local patch before and after the
optimization and calculate the absolute distance moved. Sort by putting the
patch with the greatest absolute distance moved first in the list, and so on.
Scheme (GRVM): Order by Greatest Relative Vertex Movement. Eval-
uate the relative distance moved by the free vertex in the local patch before and
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after the local optimization. Relative distance was measured by dividing the ab-
solute distance moved by the initial absolute distance moved; the normalizing
quantity thus varies from patch to patch. Sort by putting the patch with the
greatest relative distance moved first in the list, and so on.
Scheme (LNG): Order by Largest Norm of Gradient. Evaluate the �2-
norm of the local gradient of the objective function. Sort by putting the largest
norm first in the list, and so on.

For the schemes WQP, GAVM, GRVM, and LNG, there were associated ‘dis-
tance’ schemes D-WQP, D-GAVM, D-GRVM, and D-LNG which are created by
measuring the distance of the free vertex in each patch from the position of the
free vertex which had the (i) worst patch quality, (ii) greatest average vertex
movement, (iii) greatest relative vertex movement, or (iv) largest norm of the
gradient, respectively. Then sort by putting the patch with the smallest distance
first in the list, and so on.

For each of the schemes above, there is a corresponding ordering scheme pro-
duced by reversing the ordering (the abbreviation for these schemes is the same
as the forward ordering except there is a ‘minus’ at the start of the abbrevia-
tion). For example, scheme -WQP orders the vertex patches from best quality
first to worst quality last. There are a total of 20 ordering schemes.

A QuickSort algorithm was used in this study to do the reordering. The ex-
pected runtime of the sort is O(N logN), with the worst case being O(N2),
where N is the number of patches to smooth per outer iteration. The larger the
number of patches, the more time it takes to reorder them, so the key question
is whether or not the time saved by the reordering (as a function of N) increases
as fast as the time to do the reordering.

5 Mesh Selection Criteria

Five meshes were created, as described in Table 1. Two basic cases are the struc-
tured quadrilateral meshes and the unstructured triangle meshes. The meshes all
have the same physical domain, i.e., the horseshoe. The five mesh types contain
roughly 20K, 40K, or 80K free vertices each, for a total of 15 meshes included
in the study.

Table 1. Mesh Identification Table

MeshID Description

SQI Structured Quad, 1:1 cell aspect ratio
SQII Structured Quad, 1:5 cell aspect ratio
SQIV Structured Quad, Biased 1:5 cell aspect ratio
UTI Unstructured Triangle Mesh, Trapezoidal Logical Domain
UTIV Unstructured Triangle Mesh, Biasing
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Fig. 1. Mesh Type SQI for the Unit Square, Reference Semi-Annulus, and Horseshoe
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Fig. 2. The Three Quadrilateral Mesh Types. Left to Right: SQI, SQII, SQIV
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Fig. 3. Two Triangular Mesh Types. Left to Right: UTI, UTIV
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Fig. 4. Initial Vertex Ordering on Structured and Unstructured Meshes

The approach to generating these meshes was to first generate regular meshes
on the unit square. For each such mesh, a reference mesh on the semi-annulus and
an initial mesh on the horseshoe were created by analytically mapping each ver-
tex in the unit mesh to give corresponding coordinates on the other two domains.
An example of the mesh triples (logical, reference, and horseshoe domains) gen-
erated using the mappings for Mesh Type SQI is given in Figure 1. Optimization
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was always performed on the horseshoe domain using target matrices based on
the corresponding semi-annulus mesh.

Figures 2 and 3 show coarse versions of the Horseshoe meshes in Table 1.
Figure 4 shows the initial ordering of the vertices as given by the mesh genera-

tor in the structured and unstructured meshes on the unit square. The mapping,
of course, preserves the orderings. Large vertices occur early in the list, while
smaller vertices occur towards the end. The initial (row-by-row) ordering for all
of the structured meshes is the same as shown in the figure, while the ordering
for the unstructured mesh in the figure is a representative ordering for both
types of unstructured meshes used in this document.

6 Numerical Experiments and Results

Eight numerical experiments were run using the Mesquite code to investigate
the behavior of the reordering schemes under various circumstances such as
mesh type, mesh size, and reordering strategy. Table 2 summarizes the eight
experimental set-ups.

Table 2. Table of Experiments

Exp. Exp. Mesh Mesh Schemes S/D Frequency # Runs
No. Name Types Sizes

6.1 Baseline all 5 all sizes N D N/A 30
6.2 Static Reordering all 5 80K 20 S N/A 100
6.3 Sensitivity to IM SQI 80K 20 S/D5 N/A / 16 40
6.4 Dynamic Reordering all 5 all sizes 20 D 1 300
6.5 Frequency all 5 80K 20 D 1,2,5,10 400
6.6 ITC all 5 80K 20 D 1 100
6.7 Inaccurate all 5 all sizes 20 D 1 300
6.8 Red-Black all SQ 80K 20 D 1 60
5 One static (S) and one dynamic (D) experiment were conducted.
6 The frequency value is not applicable (N/A) for the static experiment and

is set to one (1) for the dynamic experiment.

The output of these experiments took the following form: 1) input summary
tables to record the key inputs, 2) overlay plots showing average mesh quality vs.
total time (TT) for all twenty reordering schemes, and 3) ranking tables giving
optimization (COT), reordering (RT), and total times (TT), along with rankings
from 1 to 20 for each of these items (plus a ranking based on outer iteration
count). Typical examples of the quality vs. time plots are shown in Figure 5.
Additional post-processing of the results was also performed. The purpose of
each experiment is described next, along with selected results. At the end of the
section, observations that pertain to all of the experiments are given.
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6.1 Baseline Experiment

The purpose of this ‘experiment’ was to determine the quality level that would
result in 1 or 5 minutes of smoothing. One minute of smoothing gives a relatively
inaccurate approximation to the optimal mesh, while five minutes gives moder-
ately accurate results. Runs were terminated after one or five minutes, and the
quality level was recorded, to be used in subsequent experiments.

Selected Results
By examining the quality vs. time plots, it was noted that the shape of these
curves generally followed two basic patterns: either the curves were straight lines,
or they were highly curved, similar to a rapidly decaying L-shaped function (see
Figure 5). The pattern was found to continue over the seven other experiments
that were performed. The explanation appears to be that if the initial mesh is
relatively ‘far’ from the optimal mesh then rapid convergence occurs at early
times and linear convergence at later times, giving the L-shaped curve. On the
other hand, if the initial mesh is relatively ‘close’ to the optimal mesh, one only
sees the tail of the L-shaped function, which appears linear. For the most part,
the curves for the SQI and SQII meshes appear linear, while the SQIV, UTI,
and UTIV meshes often showed L-shaped convergence behavior. In general, the
curves for the finer meshes (40-80K) had a steeper slope than the coarser meshes
(20-40K) and satisfied the convergence criterion more quickly.

6.2 Static Experiment

The purpose of this experiment was to observe the behavior of the reordering
schemes using a ‘static’ reordering strategy in which the reordering is done only
once, i.e., before optimization begins.

Selected Results
The average quality vs. time curves were observed to be monotonically decreasing
in most cases; however, for a few ordering schemes (GRVM, R, WQP) on the SQII
meshes, they actually increased initially, before decreasing and satisfying the con-
vergence tolerance.3 This placed these schemes in last place in terms of TT rank-
ing. In very rare instances (and this applies to all experiments), quality vs. time
curves were observed to cross one another, meaning that ordering schemes that
were effective at early times, became relatively ineffective at later times. For the
most part, however, quality vs. time curves do not cross one another. Moreover, in
the static experiment, they tend to be parallel to one another, as seen in Figure 5.

The choice of reordering scheme had a noticeable effect on time to convergence
(TT). The variation in total time-to-convergence relative to the average time-
to-convergence for the given mesh type over the reordering schemes in the static
3 The increase is attributed to the fact that it is theoretically possible for the local av-

erage quality to increase when using the Feasible Newton solver on a local patch; a
poor choice of search direction is one way this can happen. If the local average quality
can increase, then so can the global average quality.
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Fig. 5. Sample Quality vs. Time Plots: Linear (left) and L-shaped (right)

experiments was, for the 80K meshes, SQI: 312 ± 5 seconds, SQII: 366 ± 61
seconds, SQIV: 258 ± 62 seconds, UTI: 312 ± 10 seconds, and UTIV: 319 ±
13 seconds. That is, the variation in time-to-convergence due to the choice of
reordering schemes was: 1.6% for SQI, 16.7% for SQII, 24.0% for SQIV, 3.2%
for UTI, and 4.1% for UTIV. It appears that the choice of reordering scheme
is more important for biased or anisotropic mesh types. Although the difference
between using one reordering scheme versus another is noticeable, the maximum
effect was less than 40% of the total run times.

Nearly all reorderings took less than 1.5 seconds. Smoothing times varied
from 105 to 315 seconds, so reordering time was less than one percent of the
smoothing time. In terms of total time, -N was the best at 196 seconds, while -
GAVM was the worst at 320 seconds. Notably, Scheme N took about 314 seconds
while scheme -N took 196 seconds, about a 30% difference in total time. Other
mesh types had different reordering schemes giving the least TT.

6.3 Sensitivity of Results to Initial Mesh

The purpose of this experiment was to observe the behavior of the reordering
schemes when a different initial mesh was used, with both static and dynamic
(see Experiment 6.4) reordering strategies. The second initial mesh differed from
the first initial mesh only in the vertex coordinates. The vertices in both of these
initial mesh types were ordered in the same way (see Experiment 6.8 for an ex-
ample of different vertex orderings in the initial guess). The vertex coordinates
in the second initial mesh were obtained from the first initial mesh by randomly
perturbing them by the largest possible amount without creating inverted mesh
elements; the second mesh is farther from optimal.

Selected Results for the Static Case
The quality vs. time plots showed that the curves that were linear when using
the first initial guess became L-shaped when using the second initial guess, as
expected since the second initial guess is farther from optimal than the first.

The variation in total time-to-convergence relative to the average time-to-
convergence for the 80K SQI mesh type over the reordering schemes in this
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experiment was 895 ± 51 seconds, or 5.6%, compared to 1.6% when the first
initial guess was used. Thus, it appears that the farther the initial guess is from
optimal, the larger the variation, and thus the more significant the choice of
reordering scheme becomes.

6.4 Dynamic Experiment

The purpose of this experiment was to observe the behavior of the reordering
schemes using a different reordering strategy. The ‘dynamic’ strategy is to per-
form the reordering once per outer iteration. This will cost more than the static
strategy in terms of time spent reordering, so the question is whether or not the
added expense is worth it in terms of the total CPU time expended.

Selected Results
The quality vs. time curves differed from those in the static case in that the linear
curves that were parallel in the static case remained linear, but with differing
slopes, depending on the reordering scheme. This reflects the fact that in the
dynamic strategies, differences amongst ordering schemes become cumulative
with time, whereas this does not happen in the static case. As a result, the quality
vs. time curves in the dynamic case diverge from one another with increasing
time. A similar effect was seen for the L-shaped curves.

The choice of reordering scheme did have a noticeable effect on the time to
convergence. The variation in total time-to-convergence relative to the average
time-to-convergence for the given mesh type over the reordering schemes in the
dynamic experiments was, for the 80K meshes, SQI: 365 ± 55 seconds, SQII:
411 ± 107 seconds, SQIV: 345 ± 116 seconds, UTI: 488 ± 182 seconds, and
UTIV: 421 ± 120 seconds. That is, the variation in time-to-convergence due
to the choice of reordering schemes was: 15.1% for SQI, 26.0% for SQII, 33.6%
for SQIV, 37.3% for UTI, and 28.5% for UTIV. Comparing these results to the
static strategy, one sees that both the average total time-to-convergence and the
variation is larger in the dynamic case.

Although, the average time-to-convergence in the dynamic case is larger than
in the static case, it does not necessarily mean that there may not be particular
reordering schemes that, when used in the dynamic strategy, are competitive
with the static strategy. To investigate, we compared the best time-to-solution
for the static and dynamic cases for each of the 80K mesh types (excluding the
±N and ±R schemes). It appears that the best dynamic schemes (in terms of
least TT) are not quite as effective as the same schemes when used statically.
The only exception was for SQII, and that is attributed to the fact that in the
static runs the D-GAVM quality versus time curve initially increased, causing it
to lag the others; this did not happen in the dynamic case. Evidently, updating
the ordering once every iteration is too expensive compared to the gain in overall
solution time. The next experiment investigates a modified dynamic strategy.
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Table 3. Best Dynamic Scheme vs. Corresponding Static Result

Mesh Type Best Scheme Static Time Dynamic Time

SQI D-GRVM 312.74 314.81
SQII D-GAVM 326.13 313.40
SQIV -GRVM 203.35 228.77
UTI -GRVM 321.21 346.49
UTIV D-LNG 318.47 333.08

6.5 Frequency of Dynamic Reordering Experiment

The purpose of this experiment was to observe the behavior of the reordering
schemes with a modified dynamic reordering strategy. Instead of reordering every
iteration, in this experiment, reordering was performed every iteration, every
other iteration, every fifth iteration, and every tenth iteration.

Selected Results
The case of the 80K SQIV mesh is instructive. Consider the behavior of scheme -
GRVM vs. the reordering frequency (k); this scheme had the smallest TT over the
20 schemes when k = 1, 2.

Table 4. Scheme -GRVM vs. Reordering Frequency

Frequency COT COT Rank RT RT Rank TT TT Rank

1 198.07 1 33.48 12 231.55 1
2 224.76 6 9.55 10 234.31 1
5 261.32 6 0.05 5 261.37 6
10 307.20 7 0.02 6 307.22 7

Static 203.33 0.02 203.35

The fraction of time spent reordering vs. the total time decreases as reordering
becomes less frequent. The optimization time is smallest with frequency 1, as
is total time. In this case, reordering every iteration is well worth it compared
to the other reordering frequencies. However, the total time in the static case
is even less. Figure 6 shows TT vs. reordering frequency for schemes -GRVM,
-WQP, and N on the 80K, SQIV mesh. Note that the figure shows that it is best
to apply the -WQP scheme as infrequently as possible!

This experiment shows that the ideal frequency of reordering depends on the
reordering scheme in question. If the reordering scheme is an effective one for
the given problem, it should be applied as frequently as possible.

Does the dynamic strategy ever result in a total time that is less than the
corresponding static case? In general, the answer is yes, but not significantly.
For each of the five mesh types one can find a reordering scheme whose total
time when k = 1 or k = 10 is less than its own static time, but, even then,
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the dynamic times are only a few percent less than the static times. Therefore,
the dynamic strategy, even with infrequent reordering, seems to be mostly less
efficient than the static strategy.

6.6 Inner Termination Criterion Experiment

The purpose of this experiment is to determine whether or not the number of
inner iterations in the optimization had any significant impact on the results of
the reordering experiments.

Selected Results
Increasing the number of inner iterations to 2 increases the time-to-convergence
in many of these runs. Since the variation in total times over the twenty reorder-
ing schemes does not increase with the number of inner iterations, the impact of
the choice of reordering scheme becomes less as the number of inner iterations
increases. In addition, the rankings of the reordering schemes changes with the
number of iterations.

6.7 Inaccurate Experiment

The purpose of this experiment was to determine how the results of the reorder-
ing experiments might change if only an inaccurate (1 minute) solution were
sought when dynamic vertex reordering was performed.

Selected Results
The main result here was that, indeed, the rankings of the reordering schemes
did change when comparing the ‘inaccurate’ case to the ‘medium-accurate’ case.
The variations in total time-to-convergence relative to the average time-to-
convergence for the given mesh type over the reordering schemes in the Inaccu-
rate Experiment were, for the 80K meshes, SQI: 101 ± 25 seconds, SQII: 204 ±
70 seconds, SQIV: 100 ± 39 seconds, UTI: 113 ± 35 seconds, and UTIV: 107
± 40 seconds. That is, the variation in time-to-convergence due to the choice of
reordering schemes was: 24.8% for SQI, 34.3% for SQII, 39.0% for SQIV, 31.0%
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for UTI, and 37.4% for UTIV. Comparing these results to the medium-accurate
dynamic strategy, one sees that although both the total time-to-convergence and
the variation is smaller in the inaccurate case, the choice of reordering scheme
becomes more significant percentage-wise.

6.8 Red-Black Experiment

The purpose of this experiment was to investigate whether or not the ordering
of the vertices in the initial mesh had a significant impact on the behavior of
the ordering schemes. The first (original) initial meshes for the structured mesh
types were modified to create a red-black (checkerboard) ordering of the vertices
while keeping the vertex coordinates the same. Results were then compared to
the original initial mesh.

For this experiment, the percent variation over the reordering schemes was
much larger than when using the ordering in the first initial mesh: SQI - 144%,
SQII - 209 %, and SQIV - 222 %. For example, the SQI curves diverge much
more than in the original ordering, giving a larger variation and much longer run-
times overall (300-800 sec vs. 300-450 in original). Scheme rankings are somewhat
similar to original, but not too close. For the SQII curves, it was observed that the
plots no longer show an initial increase in average quality for any scheme, whereas
in the original some did. The scheme rankings are completely different. For SQIV,
there was slightly more L-shaped convergence behavior, and overall run times
are longer, and the scheme rankings change. The -N scheme is conspicuously bad
in the red-black experiments.

The results in the scheme ranking tables showed that for SQI, the best red-
black total time is 308.72 sec (for scheme N), while the best original total time
was 309.51 sec (again for N), so red-black ordering per se is hardly worse than the
original ordering. However, the worst red-black time is 752.21 sec (for GAVM),
compared to the worst original (WQP, 420.21 sec). Table 5 directly compares
results for three reordering schemes. The table shows that the ordering of the
initial mesh itself can alter the final results, but it is hard to predict in advance
what will happen.

Table 5. Comparison of Natural and Red-Black Orderings (SQI)

Scheme COT COT Rank RT RT Rank TT TT Rank

D-GRVM-or 309.07 4 5.74 9 314.81 3
D-GRVM-rb 314.57 12 6.48 8 321.05 4

GAVM-or 316.50 14 79.53 16 396.03 17
GAVM-rb 599.84 19 152.37 20 752.21 20

WQP-or 391.84 20 28.37 11 420.21 20
WQP-rb 392.21 15 28.25 10 420.46 16
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6.9 Reordering Time

For each of the runs performed in this study, we measured the cumulative CPU
time (RT) expended during the reordering step. To investigate which reordering
schemes tended to take the least amount of CPU time, we computed a set of
histograms. For each reordering scheme we counted the number of times it was
ranked first (in terms of reordering time), second, third, and all the way to
twentieth. The counting was performed over the entire set of runs performed
in this study. Results are summarized in Table 6 and the schemes assigned an
overall rank.

Table 6. A Rough Reordering Time Ranking Over All Runs

Rank Scheme Mode 2nd Mode Best Rank Worst Rank

1 N 1 - 1 1
2 -N 2 3 2 4
3 R 3 4 2 5
4 -R 4 3 2 5
5 GRVM 5 6 4 6
6 D-GAVM 7 8 6 12
7 -GRVM 6 12 4 16
8 D-LNG 7 8 6 11
9 D-GRVM 9 8 6 12
10 WQP 10 11 9 19
11 -WQP 11 14 10 20
12 D-WQP 12 10/13 9 17
13 -D-GRVM 14 11 10 19
14 -D-GAVM 14 13 7 19
15 -D-LNG 15 13 7 19
16 -D-WQP 16 15 13 20
17 -GAVM 17 18 12 19
18 LNG 19 18 10 20
19 GAVM 20 18 10 20
20 -LNG 20 19 11 20

Scheme N ranks first since it takes no CPU time at all, being a null operation.
The next three schemes also take very little work since they only reverse a
given ordering that was fast to create in the first place. It is difficult to explain
the rankings for the remaining schemes, although perhaps a look at operation
counts might help. ‘Distance’ scheme ranks are mixed with the schemes upon
which they are based, a somewhat surprising result. As expected, the reverse
orderings ranked below the forward orderings (except GAVM).

6.10 Overall Scheme Rankings

The selected results reported in the previous experiments are supplemented by
taking a look at TT scheme ranking results over the entire set of runs that were
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performed over all the experiments. From the results obtained, it was found
that the ‘best’ orderings varied from experiment to experiment, mesh type to
mesh type, mesh size to mesh size, etc., with no discernible pattern. If one were
going to do a lot of mesh optimization calculations with these variables fixed,
one might benefit by determining which ordering scheme is best in that specific
instance. For a general purpose tool such as Mesquite, it is reasonable to ask if
there are reordering schemes which generally performed well over all the runs
(and which generally did poorly). To investigate, we created a set of histograms,
one for each reordering scheme, in which we counted the number of times the
scheme was ranked first, second, third, and all the way up to twentieth. The
counting was over the entire set of runs.

Table 7. A Rough Scheme Ranking Over All Runs

Rank Scheme Mode 2nd Mode Best Rank Worst Rank

1 N 1 2 1 20
2 -N 1 2 1 20
3 D-GAVM 3 4 1 15
4 D-LNG 4 3 1 15
5 D-GRVM 4 5 2 16
6 D-WQP 6 9 2 17
7 -D-GAVM 7 8 1 17
8 -D-LNG 9 7 1 17
9 -GRVM 2 15 1 18
10 -D-GRVM 8 9 2 17
11 GRVM 16 2 2 20
12 -D-WQP 10 15 1 19
13 -R 18 17 1 20
14 R 17 18 9 20
15 -GAVM 14 11 5 20
16 -LNG 15 12 2 19
17 LNG 13 18 3 19
18 GAVM 20 12 6 20
19 WQP 20 19 3 20
20 -WQP 20 19 4 20

To rank the schemes using these histograms, we looked at the mode for each
scheme and the general distribution around the mode. Based on this, the overall
rankings are shown in Table 7, with schemes N, -N, D-GAVM, D-LNG among
the best and LNG, GAVM, WQP, and -WQP among the worst. The best ‘worst
rank’ over all the schemes was 15th, so no scheme was immune from a circum-
stance in which it did poorly. The worst ‘best rank’ was 9th, so nearly all the
schemes had at least one circumstance it which it did very well relative to the
others. On the whole, though, the top five of these schemes stand out as being
good general purpose reordering schemes. It is perhaps not too surprising to see
schemes N and -N at the top of the rankings since they incur virtually no cost in
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terms of reordering time. Furthermore, there may be an advantage to leaving the
original orderings alone since these reflect the order in which the mesh vertices
were likely created when the mesh was generated. Not surprising perhaps is the
relatively low rankings of the ±R schemes since they do not take advantage of
problem structure. Nevertheless, they ranked higher than six other schemes. As
a general rule, the ‘distance’-based schemes were ranked higher than the schemes
from which they were derived. For example, GAVM ranks 18th while D-GAVM
ranks 3rd; this is because reordering for D-GAVM takes less time than that of
GAVM, and often the optimization for D-GAVM is more effective than that of
GAVM in that the number of outer iterations is reduced thus requiring less time
spent on optimization. Counterintuitively, reordering by patch quality is not ad-
vantageous. Ordering of patches to maintain or create locality seems to be an
important variable in creating an effective reordering scheme.

7 Conclusions and Future Work

The results of this study are somewhat preliminary but a number of important
trends are suggested. First, it appears that the static strategy is superior to
the dynamic ones because the cost of additional reordering does not result in
enough of a speedup in the optimization process. Second, reordering appears
most important when ‘inaccurate’ meshes are considered satisfactory or when
the initial mesh is far from optimal. Third, it is difficult to predict in advance
which reordering scheme will be best for a given problem. It was noted that
optimization of meshes with strong biasing or heterogeneity will likely benefit
most from a consideration of vertex ordering. Additionally, reordering may be
beneficial if the ordering of the patches in the initial mesh lacks locality, as seen
in the red-black experiment. Fourth, although total time to solution is impacted
noticeably by vertex ordering, it is usually within a factor of two, as opposed
to orders-of-magnitude. This could change if other mesh sizes and types were
considered. Fifth, the natural ordering provided by the mesh generator resulted
in scheme N being one of the more efficient orderings. Reversing the ordering
of the list (forward to reverse) is inexpensive and often improved TT. Sixth,
distance-based reordering schemes appear to be more effective than the schemes
upon which they are based; once again, this is most likely due to an increase in
locality. Seven, no discernible pattern of results was observed related to mesh
size. Perhaps much smaller or larger meshes would have resulted in a pattern with
respect to this parameter. Some of these observations can perhaps be explained
theoretically, as has been done for the linear equation solver case. Nonetheless,
it is useful to have empirical data to suggest possible theoretical results and to
provide additional insight.

More data was generated in this study than could be presented due to space
limitations. Additional post-processing and analysis of the data is planned in
the future to better quantify the results, check for over-looked tendencies, and
to determine if there are particular circumstances which can be predicted in
advance as to which of the reordering schemes should be used. Future work
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on this topic might include the creation of better ordering schemes to provide
more locality, further investigations of reordering efficiency vs. mesh size, other
dynamic strategies, and the effect of using other optimization solvers.
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Abstract. A method of flattening 3D triangulations for use in surface meshing is presented. 
The flattening method supports multiple boundary loops and directly produces planar locations 
for the vertices of the triangulation. The  general nonlinear least-square fit condition for the 
triangle vertices includes conformal (angle preserving) and authalic (area preserving) condi-
tions as special cases. The method of Langrange multipliers is used to eliminate rotational and 
translation degrees of freedom and enforce periodic boundary conditions. Using matrix parti-
tioning, several alternative sets of constraints can be efficiently tested to find which  produces 
the best domain.  A surface boundary term is introduced to improve domain quality and break 
the symmetry of indeterminate multi-loop problems. The nonlinear  problems are solved using 
a scaled conformal result as the initial input.  The resulting 2D domains are used to generate 3D 
surface meshes. Results indicate that best mesh quality is achieved with domains generated 
using an intermediate altitude preserving condition. Apart from an admirable robustness and 
overall efficiency, the 2D developed domains are particularly suited for structured transfi-
nite/mapped meshes which often reveal wiggly irregularities with most conventional developed 
domains. Flattening and meshing (both free and transfinite/mapped) results are presented for 
several 3D triangulations. 

Keywords: flattening, free-boundary, interpolation, Langrange multipliers, parameterization, 
periodic, transfinite, triangle. 

1   Introduction 

Although direct methods of generating meshes on 3D surfaces abound, a large  
majority of mesh generation programs used in both the industry and the research labo-
ratories continue to use indirect method of generating the mesh on a flattened 2D pa-
rameter space first, transforming the mesh back to the original 3D surface later. Finite 
element analyses of structures, fluid flow and interaction problems have increased in 
complexity over the last few decades. The mesh to solve (especially quad-form 
meshes) often have pressing quality requirements. Crash analyses limit the variation 
of element size in anisotropic meshes. A large range of boundary-flow and structural 
problems require meshes to be boundary structured or partially or wholly transfinite. 
                                                           
* Corresponding author. 
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A general purpose mesh generation engine needs to be able to cater to most classes of 
problems. Such meshes of high quality and constraint are often virtually impossible to 
generate directly on real, complex 3D geometry efficiently.  

Thus the problem of generating a low distortion 2D parameter space from the 3D 
surface continues to enthrall engineers and mathematicians. The goal is to create a 2D 
flattened domain of a crack-free triangulated (tessellated) 3D surface where the mesh 
could be generated. A discrete, continuous transformation function should be made 
available to finally transform the mesh nodes to the 3D surface. The same transform 
can be also used in 2D space to check the quality of the 3D elements being generated 
in 2D space.  

1.1   Use of 2D Domains Created from 3D Triangulation 

Two-dimensional domains created from 3D triangulations have a variety of applica-
tions. These include the fitting of parametric surfaces, the use and creation of texture 
maps, and as a parameterization to solve differential equations on 3D surfaces. In our 
case, the domains are used in the meshing of tessellated faces, which are based on a 
3D triangulation. These faces can be derived by combining triangulations of several 
NURBS surfaces. The topology associated with these faces can include many bound-
ary loops and/or repeated edges. To see how we use the 2D domains, we give a sim-
plified version of our meshing process: 

1.2   Simplified Meshing Method – Free or Transfinite Meshing 

Before we start the meshing process, we abstract the tessellated faces. This geometry 
abstraction toolbox includes a host of basic discrete geometry operators which involve 
splitting and combining the facetted faces, cutting sharp corners that cause meshing 
issues. First mesh all edges at 3D locations. (For mapped meshes one must match the 
number of vertices on matched edges for the whole system.) For each surface:  

1) Create 2D domain from 3D triangulation and topology. Split edge uses of 
same edge in domain (to create non-periodic surfaces from periodic) if needed 
for quality. 

2) Transform nodes on 3D edges to 2D domain.  
3) Mesh domain in 2D using boundary nodes. 
4)  Map 2D node positions to 3D using triangle coordinates. 

In this paper we will  focus on how the domains produced in step 1 affect our 
meshing result. 

2   Past Research 

There is an extensive literature for the parameterization of 3d triangulations [1]. Some 
techniques require a fixed convex boundary in UV space as an initial condition. 
Floater [2] has developed an improvements to this approach by considering harmonic 
function theory. Using his approach, the results vary smoothly with input data, are 
fast to solve, and guarantee no triangle flips in UV space. Though the technique is 
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powerful, the requirements  of a non-convex boundary (and the filling in of holes) can 
often cause significant distortion. Instead we focus on free boundary methods. 

One of the first free-boundary approaches was developed by Hormann and Greiner 
[3]. They developed the Most Isometric Parameterization (MIPS) based on minimiz-
ing a metric of distortion. They realized that directly using the Dirichlet energy did 
not punish the collapsing of triangles, or a degenerate solution. Instead they found a 
nonlinear criterion that was more difficult to solve.  They had good results on small 
models, but the overall approach was computationally expensive. Levy et al. [4] con-
sidered a quasi-conformal approach  (Least square conformal  mapping  -LSCM) in 
the context of automatic atlas generation.  For smaller regions this method was quite 
fast and could produce good results. They found they could avoid degeneracy by fix-
ing two points of the system in UV space.  They chose two far apart in  geodesic dis-
tance along the surface. Desbrun et al [5] developed a similar least squares conformal 
approach independently. They found they could linearly combine the results with area 
preserving  (authalic) solution that was not formulated for a free boundary. They de-
veloped a general approach of constraints using Lagrange multipliers. Even though 
that constraint approach was quite general, in practice they used a more simplistic 
approach to avoiding degeneracy than Levy et al. They fixed two points farthest apart 
in 3d space.  An angle based flattening  (ABF) approach was found by Sheffer and de 
Sturler [6]. They considered equations for angles that were consistent with the plane.  
When they found a solution to their nonlinear problem with constraints,  they could 
guarantee a no triangle flip answer. Sheffer et al. [7] developed a hierarchical ap-
proach for large systems and pointed out their approach produced significantly less 
stretch than the LSCM method. We suggest that in the comparison the LSCM proce-
dure suffered from a simplistic pinning condition and a “collapsing triangle” problem 
evident with large triangulations. Recently Zayer et al [8] have found a fast linear 
approach that gives very similar results to the ABF method.  After the angles of the 
triangles are determined by the ABF (or derivative) procedure,  it is still necessary to 
find a solution in UV space. Here at Siemens, we have used a flattening approach 
based on preserving the lengths of triangle sides. Chief architects of the  technology 
included Evan Sherbrooke and David Gossard (formerly of  New Technologies Inc.) 
Similarly to the ABF method,  constraint equations are developed such that the result 
is consistent with the restriction of the plane. The constraints were based  on the  law 
of cosines for the wheel of triangles around all interior vertices. Once the lengths of 
the triangles are found, they must be rolled out into the 2D plane. (The work in this 
paper originated from improvements to the robustness of the roll-out procedure used 
in NTI’s method.)  A global  parameterization based on gradient fields was developed 
by Gu and Yau [9]. In their method they found the underlying basis vectors of the 
linear space. The bounding conditions were based on periodic boundary conditions on 
cuts of closed surfaces or a double covering of the non-closed surface. By tying to-
gether the boundaries of the surface together, and avoiding pinning of points, very 
uniform conformal solutions were found.    

3   Problem Statement  

Our meshing method requires a procedure to create a 2D domain for meshing from a 
3d triangulation of a face. Associated with the facetted face there is a topology which 
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includes loops and edges. This topology is a important component of our meshing 
process,  which in turn puts requirements on our flattening procedure. The facetted 
faces consist of triangles defined by facet vertices.  The facetted faces to be flattened 
have a loop and edge topology.  The edges are defined on edges of facets. The edges 
can be  both on the exterior and interior of the 3d face.  Edges on the interior of a face 
have two uses by the loops, which are in different orientations. Edges interior to a 
face can be used to make non-manifold connections between different faces or en-
force meshing along an edge. They can also be added to help the creation of a low 
distortion domain in two dimensions.   A cylinder can be represented with one loop of 
edges with a repeated edge use.  If the repeated edge is allowed to split apart in a UV 
domain,  then we can get a rectangle where the vertices along the repeated edge have 
different uses with different UV values. An edge so used is commonly referred to as a 
“seam”. Originally, we distinguished between interior edges that were from cutting a 
cylinder, and edges that were added for other purposes. However,  there were two 
problems with this approach.  The first is that an edge could have different uses on 
different faces. (This problem could be rectified by considering edge uses.)  The sec-
ond problem was that a small modification of the topology of a surface could require 
reevaluating the status of all edges of the surface. These considerations lead us to the 
following requirements for our flattening process. 

 

i)   Produces a 2D domain with  minimal global and local distortion. 
     Ability to trade-off shape distortion,  dimension distortion, and  
     performance depending on application. 
ii)  Supports multiple loops and non-convex boundaries 
iii) Automatically finds constraints between the repeated edges of  
      a face’s topology that lower distortion  in the 2d domain. 

       iv) Overall procedure must be fast and robust. 

4   Weighted Edge Flattening Method (WEFM) 

The WEFM will be presented as both a local and a global solution.  The local solution 
is a simpler framework, but can become unstable with large systems of badly shaped 
triangles.  It also requires explicit constraints.  A global solution  that overcomes these 
problems is presented. 

4.1   Rolling Out  a 3D Triangulation into 2D Using Iteration 

Consider creating a 2D domain from a 3D triangulation surface with the five triangles 
shown in Figure 1. All of the triangles of the surface are equilateral,  and four of them 
are from the top of a square based pyramid.  An additional (equilateral) triangle is 
added with one side attached to one side of the square at the base of the pyramid.  In 
the case of this example, it is impossible to put the vertices into 2-d without distorting 
the lengths of the edges and the angles of the triangles.  Notice the angles of the four 
triangles the meet the vertex of the pyramid are 60 degrees. However, as this point is 
interior to the surface the total angle must be 360 degrees. But only triangles with all 
angles the same  have all sides of the same length, so the sides can not be all the same 
length in  2D. If we put a cut at the thick solid line in Figure 1a,  and let these sides 
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Fig. 1a. Simple 3D Triangulation 

  
 

Fig. 1b. Flattened 2D domain with 
cut  (5 equilateral triangles) 

 
separate in the UV plane,  then it is possible to find a UV domain with no area/length 
distortion except measurements that involve the cut. The result is given in Figure 1b.  

When rolling the triangulation out to the plane requires deformation, aver-
ages/compromises are used for determining the positioning of vertices.   The first step 
of the iterative procedure is to lay a long perimeter edge of the triangulation along the 
x-axis. The edge is given the same length that it has in 3D. For the given figure, the 
edge is placed from vertex 1 to vertex 2 on the x – axis. Then the vertex is placed op-
posite  to the edge in  the domain to keep the same shape and orientation. This process 
is continued,  picking a vertex that neighbors the edges placed in 2D. In Fig. 2a, this is 
done with vertices 3 and 4. When vertex 5 comes, it is found that it is neighboring  
two different triangles,  and the coordinates found for the vertex are different.  The 
vertex is placed at  weighted average of these results. Each triangle is given a weight 
which is determined by the length of the opposite side divided by the altitude to the 
vertex we are placing in 2D.  Up until vertex 5 is placed in 2D,  all of the edges have 
their original length. This makes it possible for each triangle to have a position for a 
neighboring vertex  that does not change any lengths or angles. Once the results are 
averaged, vertex 5 is no longer at each desired position,  and distortion results.   

When we come to placing vertex 6 in the plane we have a new problem. The length 
from vertex 4 to vertex 5 in the plane is different then they are in 3D. Vertex 6 could 
be placed such that:  

1) The triangle in 2D has the same angles as in 3D. 
2) The altitude to the vertex has the same length in 2D and 3D. 
3) The triangle in 2D has the same (absolute) area as in 3D. 

Cut 
Edges 
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Fig. 2a. Simple triangulation roll-out where 
vertex 5 is weighted average from triangles 4-
3-5 and 3-2-5 

Fig. 2b. Simple triangulation roll-out where 
vertex 6 placement can vary from preserv-
ing angles to preserving area 

 
To calculate the location of vertex 6 for these different cases a notation based on 

half-edges is used. (Choices 2 and 3 will be made unique with further restrictions.) A 
half-edge is associated with one and only one side of a triangle. There are one half-
edge for each exterior edge of the triangulation, and two half-edges for each interior 
edge of the triangulation. A special notation is used to indicate the vertex indices as-
sociated with an half-edge with index h.   The vertex indices along a half-edge with 
index h are designated in the counter-clockwise order of the triangle by I(h,1) and 
I(h,2).   The vertex opposite the half-edge with index h is designated by I(h,3). Con-
sider this notation applied to Fig. 2b for the half-edge the goes from vertex 4 to vertex 
5. This half-edge is in triangle 4-5-6, since is assumed the triangles are numbered 
consistently and counter-clockwise. If the half-edge from vertex 4 to vertex 5 has an 
index of 13,  then  I(13,1) =4,  I(13,2)=5, and I(13,3) = 6.  

Associated with each half-edge are two parameters that give the shape of the trian-
gle.  The first gives how far along the half-edge is the opposite vertex.   Using the dot 
product to find the parameter (αh) along the half-edge: 
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where Lh= length of the half edge with index h.  The second parameter (βh) is a ratio 
of the altitude to the opposite vertex to the length of the half-edge with index h. Using 
the cross product for the parameter perpendicular to the half-edge: 
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where f(I(h,3)) is an adjustment for Gaussian curvature around the opposite vertex.  
For a vertex on the boundary it is set to 1.0.  For an interior vertex it is the sum of the 
angles around the vertex divided by 2π. Also associated with an half-edge is the ratio 
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(ρh) of the geodesic length of the half-edge with index h (which we take to be the 3D 
length) to the length of the edge in the UV domain.  That is  
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zz
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=ρ                                        (3) 

where the each z  refers to the UV position of the vertex with the same index. The  
formula to calculate a new UV location of a vertex from anopposite half-edge is given 
by eqn.(4) where the UV coordinates have been  

 
(4) 

 
 

represented as complex numbers,  i  is the imaginary unit vector, and s  is  a global 
parameter which gives different types of “roll outs”. Choices 1,2, and 3 correspond to 
s values of 0, 1, and 2 respectively.  These choices are referred to as conformal, alti-
tude preserving,  and authalic. Notice for the s =0 solution the value of ρ does not 
matter. When one vertex is across from many half-edges,  then the weight for each 
half-edge is proportional to the reciprocal of its associated β.  The weights are normal-
ized to sum to 1.0. Taking half-edge 13 which goes from vertex 4 to vertex 5, and 
using an s value of 1.0 the equation (4) becomes: 

( ) ( )( )izzzzzz 134513451346 ρβα −+−+=             (5) 

The order in which points are selected for putting into 2d affects the solution that is 
found. Ordering the vertices by the ratio of the 3d lengths of the edges which are in 2d 
that ring a vertex to the perimeter of the ring in 3d provides a good heuristic for sort-
ing the list of possible vertices.  Once all the points are in the UV plane, we can con-
tinue to iterate through all vertices updating their  position.  Choice (1) can lead to 
degenerate solutions, and choice (3) is often unstable.Though choice (2) often works 
well  for domain generation,  it is not always stable and can produce domains that are 
of poor quality.  It is also order dependent;  heuristic choices of which vertex to calcu-
late next can dramatically affect the result. Though it is straightforward to constrain 
points of the iterative solution, creating periodic boundary conditions is more  
problematic.  

4.2   A Global Method for Triangle Roll-Out 

To overcome the limitations of the iterative scheme, we move to a global solution 
using a least squares fit. The  solution is directly in terms of planar coordinates, and 
the constraints can be any linear combination of vertex positions.  The function to be 
minimized consists of four terms.  The first term is a surface energy term based on the 
same formulation as the iterative method.  The second term uses Lagrange multipliers 
to take out the translation degree of freedom by constraining a weighted average of 
the UV points to be at the origin.  The third term is a more general constraint term 
used to enforce boundary conditions and eliminate a rotational degree for freedom.  
The rotational degree of freedom can be eliminated by enforcing the difference  
between the UV position of two vertex uses to be a vector. (At repeated edges the 
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vertices can be split in the domain)  The last term is based on angles in UV space be-
tween  edges on the boundary loops. The angles are for a counterclockwise direction 
in the designated outer loop, and for a clockwise direction in all other loops.  This 
convention breaks the symmetry of the problem for uncut cylinders. The upper limit n 
is for the number of vertex uses of the model. The upper limit m is for the number of 
constraints in the model. The upper limit d  is for the loops of the model. li  is the 
number of facet segments for loop i. The four term function to be minimized for the 
vector of unknown UV positions: 
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qi of the first term is a 2d vector (or complex number).  Multiplying qi  by its complex 
conjugate gives a distance squared.  The vector qi starts at a weighted average of UV 
positions determined by all half-edges opposite the vertex use. (There is one such 
half-edge for each triangle that contains vertex use i.)  It ends at the UV position  
of the vertex use times the sum of the weights of all half-edges for which it is an  
opposite. 
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The index notation for vertices based on half-edges,  I(h,1) etc., was described in 
the previous section. The  scaling-rotation vector, which depends on the type of “roll 
out, is: 

( ) i.s
hhhh ρβασ +=              (8) 

In  the special case s is set to zero, a value for ρ is not needed.  The weight of each 
half-edge is given by 
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where βh is defined in eqn. 2. The sum is over the set of all half-edge indices that have 
the same opposite vertex use. Setting k to 1 normalizes the sum of the weights around 
a vertex use to 1.  Improved results are often found when k is set to ½. (In the iterative 
scheme k is always set to 1.)  For the second term of eqn. (6),  ηi   is the area of all 3D 
triangles connected to  vertex i.   For the second and third terms the λk are Lagrange 
multipliers.  For the third term,  gi

k  is a weight for a point of the constraint,  and ck is 
a fixed vector [5].  In our current usage, gi

k  is usually -1, 0,  or 1 and  ck  is zero. But 
these constants can be any complex value. The last term of the global equation  
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involves loop segments of different loops.  pi,j is a vector relation for loop i segment j.    
The term preserves boundary angle and length ratios: 

( ) jiji i
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φ  is half the goal angle between two neighboring segments of a loop. r l,+-1  is the ratio 
of segment length before/after the vertex to their average.  In the last term,  li,j  is the  
average length of two consecutive segments of the loop.  µd is a weighting factor for 
the boundary. zi,j is the UV position for the point on loop i at the end of segment j.  
Solve the system by setting the partial derivatives for the points and Lagrange multi-
pliers to zero.   

4.3   General Solution Process 

The solution of the least squares minimization problem is found by solving the equa-
tions resulting from setting the partials for the points and the Lagrange Multipliers to 
zero. Approaching the general nonlinear solution is done in three steps: 

1) Solving the (linear) conformal system without repeated edge constraints.  
Return if the solution is of sufficient quality. 

2) Compare solutions for repeated edges to find if each repeated edge should be 
periodic, free, or together (scar). Again, can return with solution if domain is 
of sufficient quality.  

3) Repeat solve with increasing s value using the constraint decision found in 
step 2. Iterate to an s=1.0 solution.  Use the boundary energy term in the 
nonlinear solution.  When s is not 0.0,  a value of ρh determined from equa-
tion 3 must be used in equation 8.  The value is determined from the solution 
at the previous s.  

During the solution process we often make use of a score to assess the quality of 
the domain. The score is from zero to one based on a weighted average of the square 
of the ratio of areas for the triangles in UV and 3d space. (The reciprocal of the ratio 
is taken if it is above 1.0). One is  subtracted from the total weighted score for all tri-
angles if there  is any triangle flip. Two is subtracted for boundary intersection. (A 
flip of a triangle would result in a mapping such that a position in the UV domain 
would not correspond to one point in the 3-d triangulation. This could lead to an un-
usable mesh.). 

To eliminate these degrees of freedom for step 1 of the process, Levy fixed  two 
points that were far away in a 3D geodesic sense.  This requires finding geodesic dis-
tances in 3D with holes. Instead of fixing two points apriori,  we do most of the work 
of solving the linear system, and add the constraints later. To do this  extensive use  
was made of the method of Lagrange Multipliers and matrix partitioning. To elimi-
nate the translational degree of freedom, a weighted average of the vertex UV posi-
tions was constrained  to be at the origin. To eliminate a rotational degree of freedom,  
we fix the vector between two points that are on the boundary. Once this solution is 
found,  we can find two points on the boundary that are far apart in the UV domain.  
We eliminate the constraint fixing the facet edge, and add the constraint for the two 
points that are far apart in UV. We reuse the LU decomposition of the part of our  
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matrix that involves points, so the second solution is found very quickly. One exam-
ple where the two-step approach works well, while the methods of Levy and Desbrun 
do not, is in the flattening of the triangulation of  a sphere with a small hole.  A two 
level matrix partitioning procedure significantly speeded up step 2 of the process. 

5   Surface Mesh Generation 

Once a 2D triangulated domain is generated, the boundary of the domain is discre-
tized with nodes (driven by a global element size) and a variety of 2D mesh genera-
tion algorithms are used to fill the area. The algorithms used can be broadly classified 
into three categories, namely 

a. Unstructured free mesh generation using subdivision technique [10,11] 
b. Unstructured free mesh generation using a combination of subdivision and 

advancing loop-front methods [12] 
c. Structured mesh generation using boundary-blended transfinite interpolation 

techniques [13,14] 

5.1   Mesh Quality Measure 

For free, unstructured meshes, mesh distortion can be measured by an element quality 
metric, λ, where  

                                                                         n           1/n 
λmesh  = (Πi=0 λi)              denotes the quality of the mesh (11) 

λi   (mesh quality of the i-th triangle)  where λi is as proposed by Lo[15]. 
All elements need to pass a critical threshold defined by λcr = 0.6. 

Both λmesh and λi  of the worst element in the mesh can be compared for different 
domains to decide which is better.  

For transfinite meshes however, element or mesh quality, as determined by λmesh or 
λi is not necessarily a good measure. Bad domains can cause the transfinite nature 
(structured) of the mesh to be destroyed even for the same number of nodes/elements 
and element connectivity. The rail lines of the mesh can be wiggly, or unparallel – all 
of these could destroy the properties of a transfinite mesh. To measure the wiggle of 
the rail lines a “wiggle factor” is used. The wiggle factor, εfi for the i-th rail line is an 
error norm computed for each interior mesh node on the line summed over the length 
of  the rail line in j direction made up of n nodes.   

                     n                                   _ 
                  εfi= 1/n ∑j=0(Lij – Lij-1)

2/Li
2                 (12) 

Lij denotes the length vector at node ij  (jth node on the i-th rail line). Li   denotes 
the average length vector of all nodes on the i-th rail line.  

6   Examples and Discussion 

Three different examples will be discussed to show the benefit of using an efficient flat-
tening or domain development technique for high quality surface meshing. Certain  
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specific aspects of mesh quality or pattern will be discussed in this connection. In all of 
the results presented a k value of 1 was used in eqn. (9),  though it has subsequently 
found a k value of ½ slightly improved the results for the boundary structured free mesh. 

 

Fig. 3a. 2D domain of a helical surface developed by WFEM at s=0 (conformal) with no 
boundary constraint 

 

Fig. 3b. 2D domain of the same helical surface by WFEM at s=1 with boundary constraint 

 

Fig. 3c. 3D final transfinite mesh on the helical surface 
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Fig. 4a. 2D domain of a pressure vessel wall 
surface by WEFM at s = 0 (conformal) 

 

 

Fig. 4b. Corresponding final 3D transfinite 
mesh with wiggly ends 

     

Fig. 5a. 2D domain of a pressure vessel 
wall surface by WEFM at s = 0.3 with 
boundary energy term 

 

Fig. 5b. Corresponding final 3D transfinite  
mesh 

       

Fig. 4c. Rail lines at near face boundary showing 
wiggles 

       

Fig. 5c. Smooth rails 

6.1   Helical/Spiral Surface Meshing 

Meshing is often challenged by merged tessellated surfaces that are helically/spirally 
coiled. Such surfaces abound in threaded mechanical enginering parts and are often 
encountered in finite element analysis. Fig. 3a shows a typical rolled out 2D domain 
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Fig. 6a. 2D domain of an automobile frame by 
WEFM at s=0.8 with boundary energy term  

 

 

Fig. 6c. Corresponding final 3D mesh  

 
 
Fig. 6b. 2D triangular CSALF mesh on 
the 2D domain 
 
 

   

Fig. 6d. Layered mesh around frame cut-
out 

 

Fig. 6e. Boundary structured mesh around 
holes 

 
which has appreciable distortion but is not suitable for map meshing. Fig. 3b presents 
a continuous section of a 2D domain developed by WFEM with s=1. This domain is 
regular and can be meshed by transfinite interpolation (mapped meshing) which is 
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depicted in Fig. 3c. Note, the domain has a small kink resulting from an irregular cut 
line chosen along the facet edges. The 3D mapped mesh reflects a small local distor-
tion at that location. 

6.2   Accurate Transfinite Meshing Needs 

Transfinite or mapped meshes are structured and mathematically accurate. The Coon’s 
surface is not easily available on discrete geometry. Thus the efficiency and the accu-
racy of the flattening strategy is important for generating such meshes. Fig. 4a shows 
the 2D domain of a pressure vessel wall surface developed by WFEM (s=0.0) with no 
boundary energy term.  The corresponding 3D transfinite mesh is shown in Fig. 4b. 
When we zoom in on the elements near the vertical edge, as is evident in Fig. 4c, we 
notice a lateral waviness in a certain region. This region corresponds to the two longitu-
dinal kinks that exist on the vertical edges of the 2D domain.  The wiggle factor of the 
transfinite distortion parameter for this mesh is 0.12 which is  far above the limiting 
value of 0.01. With a domain developed by WFEM (s = 0.3)  with a boundary energy 
term as pictured by Fig. 5a, these irregularities vanish and we get a perfect 3D transfi-
nite mesh as shown in Fig. 5b-5c. The wiggle factor, described by eqn. (12) is 0.007.     

6.3   Boundary-Structured Free Meshing on Complex Geometry 

Good quality boundary-structured free meshes are important for a host of structural 
and fluid flow analysis problems. Generation of such surface and volume meshes on 
complex industrial geometry is key to the success of an engineering design process. 
Fig. 6a shows the 2D domain of such a frame structure developed by WFEM (s=0.8).  
A triangular CSALF mesh is shown on the 2D domain in Fig. 6b. These zones are of 
importance to the designer as they are usually susceptible to high stresses. The final 
3D mesh shown in Fig. 6c reveals the same. It is important to note that the mesh, al-
though unstructured in a global sense, is extremely layered/structured around all the 
inner circular/oval boundaries (see insets in Fig. 6d -6e). 

7   Conclusion 

It was found the conformal (s=0) solution for the WEFM can be used  for  meshing 
processes based on a 2d domain.  However, as in all conformal based solutions, the 
dimensions for non-developable triangulations  are changed when they are mapped to 
the UV domain.  This can be a problem when high quality meshes are required. It was 
found an intermediate  “altitude preserving” condition (s=1) of the WEFM, which 
compromises shape and dimension distortion,  could give superior results when  used 
with the presented map meshing process, and with forms of “mesh paving”. It was 
found that automatically choosing from all the valid solutions gave us the best overall 
strategy. An automatically procedure for creating and evaluating constraints for re-
peated edges was developed. It was used to determine if each repeated edge should be 
left free, treated as a scar, or be part of a periodic boundary condition.  A boundary 
energy term in the WEFM formulation enabled the solution of indeterminate multi-
loop problems, and generally improved the quality of the resulting domain. The dif-
ference in quality was readily apparent in the resulting 3D mapped mesh produced 
from the different  domains. 
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Delaunay-Based Anisotropic Mesh Adaptation

Doug Pagnutti and Carl Ollivier-Gooch

Advanced Numerical Simulation Laboratory
The University of British Columbia

Summary. Science and engineering applications often have anisotropic physics and
therefore require anisotropic mesh adaptation. In common with previous researchers on
this topic, we use metrics to specify the desired mesh. Where previous approaches are
typically heuristic and sometimes require expensive optimization steps, our approach
is an extension of isotropic Delaunay meshing methods and requires only occasional,
relatively inexpensive optimization operations. We use a discrete metric formulation,
with the metric defined at vertices. To map a local sub-mesh to the metric space, we
compute metric lengths for edges, and use those lengths to construct a triangulation
in the metric space. Based on the metric edge lengths, we define a quality measure
in the metric space similar to the well-known shortest-edge to circumradius ratio for
isotropic meshes. We extend the common mesh swapping, Delaunay insertion, and
vertex removal primitives for use in the metric space. We give examples demonstrating
our scheme’s ability to produce a mesh consistent with a discontinuous, anisotropic
mesh metric and the use of our scheme in solution adaptive refinement.

1 Introduction

Numerical solution of PDEs is an important analysis tool for scientists and engi-
neers. Ideally, such numerical software should require only specifying the physics,
geometry, and boundary conditions of the problem and then produce a solution
of a certain accuracy. Unfortunately, assessing and minimizing discretization er-
ror is a non-trivial task, requiring time consuming mesh dependence analysis or
computation of solutions on meshes that are much finer than the required solu-
tion accuracy dictates. Mesh adaptation seeks to automate this process by first
computing the solution on a coarse mesh and then successively refining the mesh
so that each mesh is more nearly optimal for the solution being computed. Un-
structured meshes are well-suited for adaptation because they can be modified
locally much more easily than structured meshes, which have a fixed topology.

Labelle and Shewchuck [7] have developed a theoretically sound extension
of guaranteed-quality Delaunay meshing by constructing anisotropic Voronoi
diagrams and then dualizing to a Delaunay triangulation. Unfortunately, these
anisotropic Voronoi diagrams can be difficult to generate, and the dualization to
a valid triangulation requires restrictions on metric smoothness. Alternatively,
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there are other more heuristic methods for generating anisotropic meshes that
rely on local optimization algorithms. Dompierre et al. [5] suggest splitting edges
with length1 above a threshold, removing nodes with all edge lengths below a
threshold, and swapping edges and moving nodes to equidistribute length. New
edges are assigned lengths based on an interpolated error estimate from the
background mesh. Buscaglia and Dari [3] take this a step further by testing a
large set of potential operations on a sub-mesh and then selecting the one that
most increases quality according to an error estimate on a background mesh;
this approach can produce excellent meshes, but at a high cost.

Our algorithm combines the heuristic nature of these two approaches with
some of the attributes of isotropic Delaunay meshing. This gives us two prin-
cipal advantages over other heuristic methods. First, we do not rely on moving
vertices and so metric information can be easily retained without storing and
referencing the original mesh. Second, because of an improved choice of where to
insert vertices, our algorithm produces quality anisotropic meshes without the
expense of methods like Buscaglia and Dari’s [3], or the challenges in updating
the metric when moving nodes of the scheme of Dompierre et al [5]. In addition,
our scheme does not require the use of a background mesh to maintain error /
metric information.

To explain our algorithm we will examine, in Section 2 metric spaces and how
they can be used for anisotropic meshing. Then, we will create a quality measure
for our anisotropic mesh (Section 3) and modify several existing mesh operations
to increase that quality measure (Section 4). Next, we turn our attention to
treatment of boundaries during anisotropic adaptation (Section 5). Finally, we
will demonstrate that our algorithm produces meshes well suited to the desired
metric.

2 Metric Spaces

Before defining what a quality anisotropic mesh is, we must first define the
desired cell sizes and shapes using a metric to measure distance between two
points. For a vector space X , a metric is a function d : X ×X → R for which
the following conditions are satisfied for every x, y, z ∈ X .

d(x, y) = d(y, x) > 0 ⇐⇒ x �= y

d(x, x) = 0
d(x, z) ≤ d(x, y) + d(y, z)

For uniform isotropic meshing, the metric is the standard distance measure
‖x− y‖. More complicated metrics allow for distance to be measured differently
depending on orientation, thus introducing anisotropy. In particular, the metric
1 The term error is used in the cited paper, however the metric length can be defined

as equivalent to the error and so we will use the term length to be consistent with
usage later in the paper.
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most commonly used in anisotropic meshing can be found by linearly trans-
forming the standard distance measure diso(x, y) into one which is anisotropic
dani(x, y) as follows:

diso(x, y) =
√
V TV

dani(x, y) =
√

(TV )T (TV )

dani(x, y) =
√

V T (T TT )V

Where V = x−y and T is an invertible linear transformation. Since a triangle is
perfectly defined by the lengths of its sides, any triangle in an anisotropic mesh
has an equivalent triangle when its edge lengths are measured by the metric.
Quality measures can typically be rewritten to use only edge lengths as well. For
example, if a triangle’s edges have metric lengths (a, b, c) then the area A and
circumradius R of a triangle can be calculated by the following formulas

A =
1
4

√
(a + b + c)(−a + b + c)(a− b + c)(a + b− c)

R =
abc

4A
(1)

and subsequently used to compute quality measures in the metric space. Al-
though we use the linear transformation metric throughout this article, our al-
gorithm is based purely on vertex spacing in the metric space and could be
adapted to use any metric.

For most problems of interest, different metrics must be used in different
areas of the domain. This is the principal difficulty faced by anisotropic meshing
algorithms, because even if the metric function is valid at a specific point, the
interpolated metric space between any two points might not be valid. We deal
with this problem by defining the metric discretely at vertices. When refining the
mesh, we measure the length of each triangle’s edges according to the average
metric of the three vertices. This provides a good estimate of whether the triangle
is large enough that it requires insertion. If a vertex is inserted, the metric at
that vertex is assigned based on a linear interpolation from the three vertices of
the triangle in which it was inserted.2 Alternatively, when coarsening the mesh
we estimate the length of each edge by first calculating what that length is
according to the two adjacent triangles and then averaging those lengths. These
two definitions give unique triangle quality and edge length measures which can
then be used for mesh improvement operations.

3 Quality Measures

There are a staggering number of triangle quality measures used to determine
how good the elements of a mesh are. Since no quality measure is known to be
2 Note that this is not necessarily the triangle it was inserted to split!
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Fig. 1. The quality space used to evaluate triangles in the mesh

superior for every numerical solver, we have chosen to use the quality measure
that best suits our meshing approach. Miller, Talmor and Teng [10] pointed out
that the most natural quality measure for Delaunay refinement is the ratio of
circumradius to shortest edge. We will therefore define a quality space

(ξ, η) =

(
3

1
4

2
√

Ades
lmin,

3
3
4

2
√

Ades
R

)
.=

(
0.658√
Ades

lmin,
1.140√
Ades

R

)
(2)

where lmin is the length of the shortest edge, R is the circumradius, and Ades is
the desired area. For a uniform isotropic mesh, the ideal triangle is an equilateral
triangle with area Ades = AΩ

Nv
where AΩ is the total area of the domain Ω and

Nv is the number of triangles; this triangle has (ξ, η) = (1, 1) for our chosen
constants. We use this same concept to choose Ades in Equation 2. To estimate
the area AΩ of the domain Ω in the metric space, we sum the area of individual
triangles in the metric space. Then, the ideal area Ades is found by dividing the
total area AΩ by the number of triangles Nv and a desired refinement ratio r,
so that Ades = AΩ

rNv
. The equilateral triangle with this area would be located at

(ξdes, ηdes) = (1, 1) in the quality space.
Having defined the perfect triangle, we define the range of triangle qualities

are considered acceptable based on a value τ such that triangles with ξ < 1− τ
or η > 1 + τ are considered bad. To ensure shape quality, we restrict τ to so
that we have a lower bound on the minimum angle of the triangle, which can be
written as lmin

R = 2 sin θmin. Eliminating lmin and R in favor of ξ and η, we have

ξ
√

3
η

= 2 sin θmin

and so for the corner point (1 − τ, 1 + τ) in Figure 1,
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1− τ

1 + τ
=

2√
3

sin θmin (3)

τ =
3− 2

√
3 sin θmin

3 + 2
√

3 sin θmin

(4)

So choosing θmin is equivalent to choosing τ . Chew’s uniform isotropic De-
launay refinement algorithm[4] produces triangles whose angles are all greater
than thirty degrees so we have chosen to use this as the target angle giving
τ = 2−

√
3 ≈ 0.2679. An illustration of the quality space is found in Figure 1.

4 Mesh Operations

There are three principal operations that our algorithm uses to improve the qual-
ity distribution of triangles in the mesh. The first two operations, edge swapping
and point insertion, are extensions of isotropic Delaunay operations for use with
metric spaces. The last operation, vertex removal, is done simply to remove the
smallest edges in the mesh.

4.1 Swapping

The first and simplest operation is edge swapping. For isotropic Delaunay mesh-
ing algorithms, edge swapping is used to ensure all triangles have empty cir-
cumcircles. For our discrete representation of the metric, this is not necessarily
possible. Furthermore, whenever an edge is swapped, the metric used to examine
the new triangles can differ from the metric of the old triangles, possibly revers-
ing the swapping decision. Both of these problems are solved using a heuristic
approach. Instead of swapping for cells with non-empty circumcircles, we instead
swap to maximize the minimum quality ratio ξ/η — after mapping according
each triangle according to its own metric — for each pair of adjacent triangles.
For an isotropic metric, this is equivalent to maximizing the minimum angle,
which produces a Delaunay triangulation. To determine which configuration
does this, we calculate (ξ, η) explicitly both for the current triangles and the
triangles that would be formed if the edge were swapped. Note that our discrete
metric definition — specifically, the metric function we use to compute metric
edge lengths for a triangle — is dependent on vertex connectivity, so swapping
an edge effectively changes the metric. Because of this, a Delaunay triangula-
tion cannot be found by simply mapping the local vertex locations to the metric
space, as one might do with a continuous metric.

4.2 Vertex Insertion

The second mesh modification operation that we use is vertex insertion. In
isotropic Delaunay refinement, vertices are inserted for triangles with large cir-
cumradii or poor shape. After insertion, the resulting triangles have smaller
circumradii, and no edge smaller than the original circumradius is created. In
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our anisotropic adaptation, we hope for similar behavior by inserting at an ap-
proximate circumcenter. We find this approximate circumcenter by creating a
virtual sub-mesh around the triangle we want to refine. To construct this virtual
sub-mesh, we first transform the initial triangle to one with lengths as described
by the metric. Then, we calculate that triangle’s circumcenter and build the vir-
tual sub-mesh one triangle at a time until the circumcenter lies within it. Once
this circumcenter is found, we transform it back to the actual mesh and insert a
vertex at that location.

Due to our choice of metric, the measured length of a shared edge is not
necessarily the same for both triangles. To address this when creating the virtual
sub-mesh, we scale any added triangle so that the edges match. This does not
deteriorate our insertion result since the Delaunay property is independent of
size. In Figure 2, the triangles T1 and T2 are first transformed to have the
lengths assigned by their respective metrics. Then T2 is scaled by a/d so that
the edges can be aligned. Since the swapping algorithm discussed in Section 4.1
does not guarantee empty circumcircles, each time a triangle is added to the
virtual sub-mesh it must be tested to determine whether it is Delaunay.

The construction of a virtual sub-mesh is illustrated in Figure 3. In this case,
triangle T 1 is chosen for insertion and the circumcenter X of the mapped triangle
T 1′ is calculated in the virtual space. Additional triangles are added to the virtual
sub-mesh: their shape is determined by their relative edge lengths in the metric
space, and they are scaled so that both copies of each edge have the same length
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in the metric space. In this case, T 2 and T 3 are mapped, scaled, and stitched onto
the virtual sub-mesh, at which point the sub-mesh contains the circumcenter of
T 1′ (in this case, in T 3′). Once that insertion location is chosen in the virtual
sub-mesh, it is linearly transformed back to the real mesh so that it has the
same barycentric coordinates in both the real and the virtual triangle. The new
vertex is inserted with the most simple connectivity and swapping is performed
recursively. The desired effect of each insertion is to decrease circumradii without
dramatically reducing the quality of the local triangles. Unfortunately, due to
the discrete nature of the metric, there are some cases where this approach fails.

The first degenerate case occurs when the circumcircle of the triangle we wish
to eliminate by insertion is not empty in the virtual mesh. When this occurs, we
instead split the longest edge of that triangle. There is theoretically no limit on
the minimum edge that this operation will create. To address this, we smooth
the new vertex to maximize the minimum angle in the virtual mesh, resulting in
a much better insertion location. A similar approach is used in other anisotropic
refinement algorithms [1, 3]. In our algorithm, however, optimization is only
required for degenerate cases, which are a small fraction of the total number of
insertions.3

3 The exact percentage of degenerate cases is entirely dependent on how the metric
varies within the mesh. Experience has shown that degeneracy in 5-10% of insertions
is typical for the metric we used.
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The second degenerate case occurs when inserting the new vertex does not
affect the triangle for which it was inserted. In other words, insertion did not
reduce the largest circumradius in the mesh. This happens most often when
there is large difference in metric size between triangles. Currently, insertion is
simply repeated for the original triangle. Since that triangle will no longer have
an empty circumcircle, refinement will split the longest edge and then locally
optimize the location.

4.3 Vertex Removal

The final operation that we use to improve the mesh is coarsening. Coarsening is
not a natural component of Delaunay meshing so there are no standard isotropic
techniques to apply on the virtual mesh. Instead, we know that removing vertices
increases edge lengths in the mesh. Thus, removing a vertex that is part of
the shortest edge will always increase the minimum edge length. To remove a
vertex, we first swap edges until there are only three edges incident on that
vertex and combine the three incident triangles to form one triangle when the
vertex is removed. The edges are then swapped recursively in the same manner
described in Section 4.1. Coarsening is the only operation that can destroy metric
information. Because of this, repeated refinement and coarsening tends to smooth
the metric.

5 Boundary Protection

A key element of Delaunay meshing is boundary treatment. While the previous
discussion of point insertion assumed that the circumcenter lies within the do-
main, that is not necessarily true. For cases when the circumcenter lies outside
the domain or across a boundary, the virtual mesh cannot be completely con-
structed. When this happens, the boundary edge which terminated the virtual
mesh is split. For cases where the circumcenter of a triangle lies inside the do-
main, but near the boundary, there are no constraints on the circumradius of
the new triangle formed. To address this problem, we adapt the boundary pro-
tection proposed by Shewchuk [19]. That is, we disallow any insertion within the
diametral lens of a boundary segment and instead split that boundary segment.
A diametral lens can be found by taking the intersection of the two circles of ra-
dius 1√

3
L with the boundary segment (of length L) as a chord. For an anisotropic

mesh, the diametral lens is approximated by transforming any potential bound-
ary triangles using the average metric of the two boundary vertices.

A further complication with boundaries is that any curvature of the boundary
must be preserved throughout refinement. If the curvature of the boundary is
not preserved, then the geometry will not converge to the modeled geometry,
introducing unnecessary modeling error. This is also very important for high-
order solutions because correct curved boundary representation is essential to
achieving high order accuracy. Ollivier-Gooch and Boivin [2] solved this problem
for isotropic meshes by limiting the curvature of the boundary discretization and



Delaunay-Based Anisotropic Mesh Adaptation 149

Boundary
Curve

Boundary Offset

Diametral Lense
Offset

Diametral Lense

Boundary
Curve

Boundary Offset

Fig. 4. Isotropic, modified diametral lens for curved boundary

thus enforcing that the diametral lens lie outside the boundary curve. This is a
much more difficult task when the metric is allowed to vary along the bound-
ary edge because the measured curvature changes depending on what metric is
used. Instead we rely again on heuristics: expansion of the diametral lens and
encroachment checking before boundary insertion.

First, we expand the diametral lens to better account for the curvature. To do
this, we first calculate the vertical offset between the linear boundary segment
and the actual curved boundary. Then, we scale the diametral lens of the segment
to have a height that is the sum of the original lens height and the offset. An
isotropic example of this is shown in Figure 4. For an anisotropic metric, we
compute the offset in the metric space based on the average metric of the two
boundary vertices.

As with similar approaches in isotropic meshing, making this adjustment still
does not guarantee that new vertices will be inserted within the domain or that
splitting a boundary curve will produce good quality triangles. To remedy this,
whenever a boundary edge is split, any vertex that encroaches on the new edges
in the virtual mesh must be removed. Together, these methods ensure that the
refined meshes will respect the boundary discretization and that no overly-flat
triangles will be created along the boundary.

6 Algorithm Summary

We apply the following algorithm to produce quality anisotropic meshes that
match an arbitrary metric and have a prescribed maximum number of vertices.

1. Assign a metric to each vertex.
2. Sum the anisotropic area of each triangle and calculate Ades and thus (ξ, η)

for every triangle.
3. Remove any interior vertices that encroach on a boundary segment according

to the metric.
4. Recursively swap edges to minimize the ratio η/ξ. If this does not result

in an anisotropic Delaunay triangulation, mark offending edges as being
non-Delaunay.

5. Insert vertices for triangles with η > (1 + τ) until the maximum number
of vertices is reached or there are no more triangles with large circumradii.
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Assign metrics to new vertices based on a linear interpolation from the three
vertices of the triangle in which the vertex was inserted. If a face used in
constructing the virtual mesh is marked as non-Delaunay, then the treatment
for non-empty circumcircles from Section 4.2 is applied.

6. Remove vertices for edges with ξ < (1− τ) until there are no more small
edges or sufficiently many triangles with large η are created. Limiting how
many large triangles can be created is an effective way of reducing the overlap
between refinement and coarsening. If this limit is a fraction of the number
of vertices inserted in the previous refinement step then it adds a guarantee
of termination irrespective of how many iterations are allowed.

7. Repeat the process of inserting and removing vertices until all triangles are
within the acceptable tolerance, no more vertices can be removed, or a fixed
number of iterations are performed. For quality meshes, the final process
must always be mesh refinement.

7 Results

To demonstrate our algorithm’s ability to create anisotropic meshes from a met-
ric, the metric d(x1,x2) defined by Equation 5 is assigned at every vertex.

d(p1,p2) =
√

(p2 − p1)TM(p2 − p1)

M(x, y) =
[
a 0
0 b

]
a =

{
1× 104

1
0.475 < x < 0.525

Elsewhere

b =
{

1× 104

1
0 ≤ x < 0.05
Elsewhere (5)

This metric should produce a mesh with distinct anisotropic regions. We first
assign the analytic metric to vertices of a very coarse mesh and then refine the
mesh so that the metric-based area per triangle is approximately halved. Then,
the vertices of the new mesh are again assigned the metric from Equation 5.
We repeat this process four times to produce a mesh that is approximately
sixteen times more refined then the original mesh and well representative of the
analytic metric. The meshes produced from one iteration to the other are shown
in Figure 6. To demonstrate that the mesh achieved the desired anisotropy we
can view the mesh around the point (0.525, 0.1) with different axis scalings. It is
obvious in Figure 7 that the mesh has achieved the desired anisotropy because
the mesh appears isotropic when certain regions are scaled appropriately.

For a more practical example, and one involving curved boundaries, we exam-
ine laminar flow around the NACA-0012 airfoil. To compute the solution on each
mesh, we use a second-order, vertex-centered finite-volume solver. This solver
uses least-squares reconstruction [14], Roe’s scheme [18], and Newton-GMRES
for rapid convergence [9, 11]. Viscous terms are discretized as described in [14].
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Fig. 6. A square mesh being recursively refined according to the metric defined by
Equation 5

To calculate the metric between adaptation loops, we use the reconstruction er-
ror metric proposed in [15]. The initial mesh, shown in Figure 8a, is constructed
using the isotropic mesh generator in GRUMMP [2, 13, 12]. This mesh is obvi-
ously ill-suited to computing viscous flow around the airfoil since refinement is
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Fig. 8. NACA 0012, Mach=0.5, Re=5000, 197 Vertices

done based only on boundary curvature. The resulting solution in Figure 8b is
evidence of how poor the mesh is.After choosing a metric based on this solution,
we create a new mesh that should be better suited to the flow solution. We
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Fig. 9. Intermediate Meshes and Solutions: NACA 0012, Mach=0.5, Re=5000
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repeat this process and generate the intermediate meshes in Figure 9. The drag
convergence plot of Figure 10 illustrates that the solution is converging to a sin-
gle value and that this convergence occurs much more quickly with anisotropic
refinement than isotropic refinement. This increase in accuracy is also visible in
the improved resolution of the wake on the final mesh of Figure 9.In Table 1 we
show that the fine mesh results for both anisotropic and isotropic refinement are
comparable to other results in the literature. Close inspection of the stagnation
point in Figure 11 shows that cells are small and isotropic around the stagna-
tion point and quickly become highly anisotropic as the boundary layer develops.
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Table 1. Comparison of drag, lift, and separation point for NACA 0012 airfoil: Mach =
0.5, Re = 5000, α = 0

Method Final Mesh Size CD,P CD,ν CL
xsep

xchord

Anisotropic 20187 0.0226 0.0323 0.000114 0.795
Isotropic 20642 0.0224 0.0332 0.0095 0.834

ARC2D [16] 320 x 128 cells 0.0221 0.0321 – 0.824
Mavriplis [8] 320 x 64 cells 0.0229 0.0332 – 0.814
Radespiel [17] 512 x128 cells 0.0224 0.0330 – 0.814
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Fig. 11. Close up view of the stagnation point of the finest mesh in Figure 9 a

Since the metric in this case is based on the Hessian of the flow variables, this
is exactly the type of mesh that one would expect.

For each mesh adaptation, there is an inner series of refinement and coarsening
loops that aim to improve the final mesh. To illustrate the effect of these inner
iterations on the quality of the mesh, we have shown the distribution of the
triangles within the quality space in Figure 12 for the intermediate mesh created
in Figure 9a. The change between distributions a and b in Figure 12 clearly shows
that the initial refinement step is very effective at concentrating triangles within
the the desired area. Unfortunately, it also produces many small edges and some
poor angles. After coarsening is performed in Figure 12c, most of the triangles
with small edges are removed but some triangles with very large circumradii
are created. Those small edges that do remain are all located in regions of high
boundary curvature. The next refinement again eliminates the large circumradii
triangles without creating many small edges. The final two passes of coarsening
and refinement have very little net impact on the quality of the mesh. While
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Fig. 12. Sample Quality Distribution During Refinement and Coarsening

the final mesh contains some triangles outside the desired bounds, this appears
unavoidable for a general geometry and metric.

8 Conclusions and Future Improvements

We have presented a method for anisotropic mesh refinement that produces high
quality meshes without expensive local optimization routines. Our methods as-
signs metrics to vertices and then defines triangle quality based on approximate
metric lengths. The three mesh modification tools we use are swapping to max-
imize quality, inserting at approximate circumcenters to decrease circumradii,
and removing vertices to eliminate small edges. Because there are no guarantees
on the results of these modification tools, we use them iteratively to produce
an optimal mesh. We have presented examples demonstrating that our algo-
rithm produces meshes that are well adapted to the prescribed metric. When
we combine this anisotropic adaptation with an effective metric estimator, we
can recursively improve CFD solutions much more cheaply than with uniform
refinement.

There are also several improvements to our algorithm that could be imple-
mented in the future. For example, we have stated that local mesh optimiza-
tion is generally an expensive procedure. However, experience with isotropic
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meshing in GRUMMP has shown that if the mesh is already of high quality,
local optimization-based smoothing can be a fast and effective way of further
improving the mesh [6]. It is therefore our belief that the most efficient way of
creating high-quality anisotropic meshes would be to insert and remove vertices
according to our algorithm and then perform a limited number of passes over the
mesh using local optimization. Since the mesh is already of high quality, many
fewer passes over the mesh would be required to maximize the quality then if
local optimization was the principal tool for mesh improvement. The challenge
here will be defining an appropriate objective function for the anisotropic mesh,
including determining its gradient with respect to the location of the vertex
being smoothed.

Another potential improvement to our algorithm is a modification of the de-
sired quality bounds in areas near boundaries with small features. The isotropic
approach is to assign length scales based on the boundary geometry [19]. A sim-
ilar approach might work for anisotropic meshing by decreasing the area of the
desired equilateral triangle used in the calculation for (ξdes, ηdes) in Figure 1.
This would likely reduce the number of instances where vertex removal creates
poor quality triangles and thus it should reduce the need for repeated vertex
insertion and removal iterations.

Finally, our meshing algorithm produces some small angle triangles that could
be improved by further insertion. This would result in smaller triangles than de-
sired, but the improvement in triangle quality might be worth the extra compu-
tation cost associate with more triangles. A final pass of quality-based refinement
seems a likely way of addressing this problem.

Although many two dimensional meshing algorithms proclaim a straightfor-
ward extension to three dimensions, experience in three-dimensional isotropic
meshing shows that this is rarely the case. The main stumbling block in extend-
ing the current algorithm to three dimensions will be developing an analog to
the triangle mapping procedure described in Section 4.1. Mapping tetrahedra
and scaling faces will definitely fail because of shape differences between the two
mapped copies of a single face; mapping faces and patching those together to
form tetrahedra in the metric space seems the most promising approach.
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Summary. In fluid-structure interactions and fluid simulations, like incompressible
two-phase flows involving high viscosity and density ratios, interface capturing and
tracking is considered as a very challenging problem and has a strong impact on indus-
trial applications. Usually, an adaptive grid is used to resolve the problem as well as to
track the interface. In this paper, we describe an adaptive scheme based on the defini-
tion of an anisotropic metric tensor to control the generation of highly streched elements
near an interface described with a level set function. In our approach, quasi-uniform
anisotropic meshes are created with the objective of minimizing the interpolation errors
by capturing the interface features using curvature-adapted anisotropic elements. The
accuracy of the method is verified and numerical experiments are presented to show
its efficiency.

1 Introduction

In this paper, we consider the very challenging problem that consists in captur-
ing and tracking moving fronts and interfaces. This situation arises typically in
bi-fluid flow simulations, free surface flows, non linear processes like dendritic
growth, for example. Such numerical simulations are considered difficult to carry
on because the quality of the numerical solution strongly depends on the accu-
racy of the interface approximation, which is in principle related to the minimal
size of the discretisation. Hence, it seems often tedious to find a right compro-
mise between the desired level of accuracy and the overall computationnal cost
(memory and time ressources) of the simulation.

Since the pionnering works of Dervieux [11] and Osher [28], level set methods
have been successfully used in numerous scientific computing applications where
time-dependent equations and moving interfaces were involved. Until recently,
most applications of level sets involved structured grids on which high-order
schemes can be implemented and computed easily. On such grids and on related
spatial decompositions (e.g., octree), the differential operators and the solutions

� Research supported by the INRIA ARC-LMN and a BQR grant from UPMC Sci-
entific committee.
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of time-dependent Hamilton-Jacobi equations can be efficiently computed [15].
The simplicity of Cartesian grids associated with the simplicity of level set for-
mulations compared to Lagrangian or ALE methods seemed to have frozen the
situation. For dealing with complex geometries (i.e., domain boundaries and
interfaces) however, geometry-adapted unstructured meshes have proved more
versatile and accurate in finite element simulations, notably because the num-
ber of vertices for a given accuracy is lower than with (graded) Cartesian grids.
Moreover, high-order non-oscillatory schemes have been efficiently introduced
on triangulations[1]. The next step would be to generate anisotropic curvature-
adapted meshes to represent the interface manifold. Then, the numerical schemes
may be more expensive to solve, but the substantial reduction of the number
of elements will largely compensate this drawback and favorably impacting the
overall computational cost of the simulation.

Over the last decade, several anisotropic mesh adaptation techniques have
been developed and efficient adaptive algorithms are now available, at least for
steady-state problems. For time-dependent problems however, and especially
dynamically evolving interfaces, the principal difficulty is to follow the arbitrary
evolution of the phenomenon in space and time, including the possible topology
modification. Indeed, in these simulations, the geometry is intrinsically a part of
the solution of the simulation. Usually, the triangulation is adapted frequently,
to maintain a valid representation of the interface with minimal approximation
errors. This issue has been partially addressed by using a fixed point algorithm
and a metric-based refinement procedure to locally adapt a triangulation within
each time step with respect to the solution variations (first and second-order
derivatives) [4]. In [25], the triangulation of the interface is directly adapted to
the interface curvatures using local mesh modifications thus making it difficult
to handle topology changes during the simulation. To overcome this problem, we
suggest to use the level set formulation of a time-dependent problem that offers
the advantage of embedding the manifold in a higher dimensional space and does
not require to discretize it explicitly, and anisotropic mesh adaptation techniques
to refine the triangulation in the vicinity of the manifold for approximation error
control purposes.

The aim of this paper is to present an anisotropic mesh adaptation method,
based on a geometric error estimate, for capturing an interface described by a
level set function, with a high level of accuracy. This result is obtained by defining
a Riemannian metric tensor based on the differential properties of the manifold
of codimension one corresponding to the interface [14]. Mesh adaptation consists
then in creating a quasi-uniform mesh with respect to the metric tensor field,
using local mesh modifications: edge split, edge collapse, edge flip and vertex
relocation. As the interface evolves in time, we rely on a fixed point algorithm to
correctly locate the interface positions at the beginning and at the end of each
time step (before and after each advection step of the level set function). By
intersecting the metric tensors corresponding to these relative positions, we will
show that it is possible to substantially reduce the diffusion problem. Moreover,
we solve this advection step by a second order scheme based on the method
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of characteristics. This approach can be used with any implicitly-defined, scalar
valued function. This allows us to envisage other categories of applications, for in-
stance: in computational solid geometry modeling (where objects are commonly
defined by an implicit function) and in scientific visualization for representing
isovalue curves or surfaces of a numerical finite element solution accurately.

The remainder of this paper is organized as follows. In Section 2, we briefly
review the level set formulation of the interface tracking problem and we outline
the related numerical issues we have specifically addressed. In Section 3, we in-
troduce the main notions of anisotropic mesh adaptation based on Riemannian
metric tensor. A complete description of this method can be found in the gen-
eral purpose book [18] and the references therein. In particular, we outline the
definition and construction of a metric tensor and the fixed point algorithm for
time dependent problems. In Section 4, we explain how to control and bound
the geometric approximation of an interface and we introduce an anisotropic
error estimate for this problem. Numerical examples of simulations are given in
Section 5 to show the efficiency of this approach.

2 The Level Set Context

2.1 Level Set Formulation

We consider a level set formulation of an time dependent problem in a computa-
tional domain Ω ⊂ R

d (d = 2, 3) which is subdivided in two subdomains Ω+ and
Ω− sharing a common interface Γ , such that Ω+ ∪Ω− = Ω and Ω+ ∩ Ω− = ∅
and Γ = ∂Ω+ ∩ ∂Ω−, where ∂Ω∗ denotes the boundary of the domain Ω∗.
Typically, we introduce a Lipschitz-continuous function u : R

+ × R
d → R and

the interface Γ is chosen to coincide with the level set where u(t, x) = 0. As
suggested by Osher [28], the level set function u is initialized with the distance
function to the initial interface u(0, x) = ±d(x), the sign ± is negative in Ω−

and positive in Ω+.
Usually, the motion of the interface is driven by a velocity field v(t, x) related

to the differential properties of the manifold. This leads to a first-order advection
equation posed in R

d, for all x ∈ Ω, t ∈ [0, T ]:

∂tu(t, x) + vn(t, x)|∇u(t, x)| = 0 (1)

where vn denotes the normal component of the velocity to each level set. It is
well known that singularities are often encountered in solving this equation and
thus appropriate techniques must be developed to select the unique viscosity
solution [10].

2.2 Numerical Issues

The computational domain Ω is covered by an anisotropic unstructured trian-
gulation Th and the distance value to the interface is associated with its vertices,
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thus defining the level set function u in a discrete manner. The numerical resolu-
tion of Equation (1) raises several issues that we emphasize in the next sections.

Level set advection. We use a finite element technique to solve the level set
advection problem on anisotropic unstructured meshes. Suppose the vector field
v(t, x) is sufficiently smooth, we recall that a trajectory associated to the field v
is a solution of the differential problem :

dX

dt
(t, x0) = v(t,X(t, x0)) , X(0, x0) = x0

where the point X(t, x0) represents the position at time t ∈ [0,∞] of a particule
initially in x0 at time t = 0. Such a trajectory is a parametrized curve X(t, x).
The method of characteristics solves this problem by converting the PDE into
a system of ODE. Using a finite element scheme to find an interpolation of the
desired solution u using piecewise affine continuous functions, the variational
problems reads, with the basis functions ϕi:∫∫

Ω

un+1(x, y)ϕi(x, y)dxdy =
∫∫

Ω

un ◦Xn(x, y)ϕi(x, y)dxdy . (2)

The linear system Aun+1 = f is solved using a second-order scheme thanks to a
prediction-correction loop [26]. The main advantage of this formulation is that
it accounts for large time stepping as compared with other explicit method.

Reinitialization procedure. An interesting property of the signed distance
function is that we have |∇u| = 1, which greatly simplifies the calculation of
the normal n, the mean curvature H and the Gaussian curvature K. Hence, we
have: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

n(x) =
∇u(x)
|∇u(x)| = ∇u(x) ,

H(x) = div(n(x)) = ∆u(x)

K(x) = det(Πt(x)D2u(x)Π(x)) ,

(3)

where Π is the matrix of the projection on the tangent plane at x. Unfortunatly,
almost all motion fields, but a constant velocity field v, do not preserve this prop-
erty. Therefore, in order to recover it and the simple formulas, a reinitialization
stage is introduced.

Two different approaches have been proposed in the literature. On the first
hand, one can solve the non-linear equation at steady state [33]:

∂tψ − S(ψ)(1− |∇ψ|) = 0 , (4)

where S(ψ) is a sign function taken as 1 in Ω+, −1 on Ω− and 0 on the inter-
face Γ , and ψ(0, x) is taken as the current value of u(t, x). At convergence, the
function ψ is substituted back to the function u. A drawback of this methods
is related to the regularity of the function ψ that may cause the interface Γ
to move incorrectly from its starting position, if ψ is not smooth. Moreover, in
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the numerical schemes, the time step is usually bounded by a stability condition
related to the minimal size hmin of the triangulation Th. Since we are concerned
with anisotropic triangulations with high aspect ratio elements and a minimal
size at least three orders of magnitude smaller than the domain size to resolve
small features, such technique would lead to a prohibitive computational cost.

On the other hand, a Fast-Marching method is used to evolve a front at
constant speed initiated from the interface Γ [34, 31, 13]. It consists in solving
the following equation in each element:

d+1∑
i=1

|∇ϕiui|2 = 1 (5)

where the ϕi are the shape functions in the element and ui is the value of the level
set function at the vertices of the element. The problem is usually solved using a
first-order scheme. However, this approach could be improved when considering
that the function u is a signed distance function to an interface Γ . Since the
sign is not modified by the reinitialization stage, it is sufficient to compute the
Euclidian distance to Γ in order to determine function ϕ. Furthermore, we have a
bound ε on the distance between the approximation Γh and the manifold Γ on Th

using the Riemannian metric tensor field. Hence, function ϕ can be determined
with an accuracy of order ε by computing the distance of the mesh vertices to Γh.
This can be achieved in a efficient by a parallel algorithm for computing point
distance to polyline [21]. The complexity of our approach is then in (m+n) logm,
where m represents the number of entities in the reconstructed interface and n
denotes the number of mesh vertices, n� m, in general.

3 Anisotropic Mesh Adaptation

In order to resolve the velocity field accurately, it is mandatory to have a suf-
ficient number of grid points in the vicinity of the interface. For this reason,
unstructured triangulations offer a better alternative to Cartesian grids in solv-
ing this equation [1]. The approximation error is then strongly related to the
quality of the triangulation and to the mesh density. To this end, the definition
of a Riemaniann metric tensor helps to control the generation of anisotropic
elements close to the interface.

In this section, we briefly present some basic notions and definitions on compu-
tational triangulations, metric tensor fields and mesh adaptation. We introduce
the following notations: Ω denotes a simply connected open bounded domain in
R

d, Ω is a closure of Ω and |Ω| is the d-dimensional measure or the volume of Ω.

3.1 Uniform Triangulations

Suppose given a family of triangulations Th on the domain Ω, h representing
the characteristic element size. Each element K ∈ Th is a closed subdomain of Ω
and we assume that Ω ⊂

⋃
K∈Th

K and that the usual finite element requirements
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are verified (i.e. elements do not overlap). Then, a uniform mesh Th of Ω is a
mesh in which all element are equally sized and regular. In such case, if |Th|
represents the number of mesh elements and hK = diam(K) the diameter of K,
the size h = max

K∈Th

hK is given by the relation:

hK ≈
(
|Ω|
|Th|

)1/d

∀K ∈ Th .

A quasi-uniform mesh is a mesh for which (i) there exists a constant τ such that

hK

ρK
≤ τ ∀K ∈

⋃
h

Th ,

where, for any open ball Bi ⊂ K, ρK = supi{diam(Bi)} is the in-diameter of
K and (ii) the variation of h is bounded by a constant. This does not mean a
constant mesh size over the domain.

3.2 Anisotropic Mesh Adaptation Scheme

Nowadays, mesh adaptation is widely used to improve the efficiency of the nu-
merical schemes as well as the accuracy of numerical solutions in computational
simulations. It consists in concentrating a maximum number of nodes in regions
of large solution variations and a minimal number of nodes in other regions of
the computational domain. Consequently, the overall number of nodes required
to achieved a desired accuracy can be reduced by a substantial amount, thus
impacting favorably the computational cost of the simulation. In many applica-
tions, solutions exhibit a large gradient variation in some regions, often combined
with highly anisotropic features (shock waves or boundary layers in fluid dynam-
ics, for instance), and elements with high aspect ratio are needed. In this case,
isotropic triangulations would contain too many elements. It is thus desirable to
adjust the element size as well as the element shape and orientation to better
match the solution variations. In the past decade, the theory of error estimates
as been largely investigated by various research groups [5, 8, 12, 16, 19] and
has provided the concept of optimal triangles with respect to a so-called metric
tensor field based on the gradient and Hessian of the solution [7].

3.3 Metric Tensor Field

From the geometric viewpoint, the metric defining the element size, shape and
orientation is represented by an ellipsoid. Hence these notions are related to its
volume, the lengths of its semi-axes and its principal axes vectors, respectively.
The metric tensor denoted as M(x) is used to generate a quasi-uniform mesh in
the metric related to M . More precisely, the volume of an element K ∈ Th is
unitary: ∫

K

√
det(M(x)) dx = 1 , ∀K ∈ Th

which corresponds to the discrete formulation
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|K|
√

det(MK) = 1 , ∀K ∈ Th

where MK is an average of M(x) on K. By extension, the length of a curve γ in
a metric given by M(x) for any x ∈ Ω is defined as:

|γ|M =
∫ 1

0

√
〈γ′(t),M(γ(t))γ′(t)〉dt ,

where γ(t) : [0, 1] → R
d is a parametrization of γ. Since the metric tensor M(x) is

a symmetric positive definite matrix, the spectral decomposition theorem allows
to decompose M as:

M = P ΛP t =
d∑

i=1

λieiei
t ,

where the normalized eigenvectors of M are the columns of matrix P =
[e1, . . . , ed] such that P P t = Id and Λ is the diagonal matrix of the eigen-
values λi. Notice that the matrix P prescribes the orientation and the matrix Λ
prescribes the size and shape of any element K.

3.4 Mesh Quality

As we have numerical simulations in mind, it is important to introduce quality
measures in order to evaluate how close the metric prescriptions are satisfied
at any x in the domain. Mesh quality assessement has been an active area of
research for isotropic meshes (see [6] for a survey). For practical reasons, we will
consider a single measure to evaluate the quality of an element K:

Qani(K) = αd

(
k∑

i=1

〈ei,MKei〉
)d

|K|
√

det(MK)
,

where ei represents here any of the k egdes of K and αd is a normalisation
constant such that Qani(K) = 1 for a regular element. Notice that Qani ≥ 1 for
all K ∈ Th and thus the larger max

K
Qani(K) is, the more the triangulation Th

deviates from the metric prescriptions.

3.5 Anisotropic Mesh Adaptation

Traditionally, mesh adaptation algorithm are based on either r-methods or h-
methods. In the first approach, the number of mesh vertices is kept constant,
only the vertex locations are changed throughout the simulation. Algorithms in
the second category proceed by local mesh modifications like edge flipping, edge
contraction, vertex addition and vertex relocation. In our approach, anisotropic
meshes are created using a Delaunay-based method in which a metric tensor
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Fig. 1. Anisotropic mesh for the transient fixed-point problem. Adapted to the solu-
tions un and un+1, and the corresponding velocity field at time tn.

prescribing the size, stretching and orientation of the element is associated with
the mesh vertices [18]. Moreover for unsteady physical problems, several metric
tensor fields must be combined to overcome the numerical diffusion associated
with the numerical scheme [4, 20].

Solution prediction. To deal with unsteady phenomena, we use a fixed-point
mesh adaptation algorithm to predict the solution evolution in the domain Ω.
This algorithm solves a transient fixed-point problem for the couple (mesh, so-
lution) at each iteration of the classical adaptation scheme. Suppose that the
triangulation Th is adapted to the behavior of the solution un = u(tn, x), for
all x in Ω, at the beginning of a time period [tn, tn+1], the aim of this scheme
is to predict the solution behavior at tn+1 and to refine the mesh accordingly.
Therefore, within this time period at least two anisotropic metric tensors must
combined together, producing a mesh that is refined in regions of large gradient
variations of both un and un+1. This procedure can be seen as an internal loop
within a classical adaptation scheme. In each internal iteration j, the solution
uj

n+1 converges toward the solution un+1. This can be checked numerically using
the L1-norm of the difference between the solutions uj

n+1 and uj−1
n+1.

When two solutions are considered their relative metric tensors must be re-
duced to a single one for mesh generation purpose. To this end, a metric inter-
section procedure is used, based on the simultaneous reduction of the quadratic
forms associated with the tensors [20]. Figure 1 shows the anisotropic mesh used
to resolve the internal fixed-point loop.
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Local mesh adaptation. In our approach, we rely on local topological and
geometrical mesh modifications (edge split, edge collapse, vertex relocation,
edge flip). At each step, the current triangulation is modified to generate quasi-
uniform triangulations with respect to the metric tensor field M . The method
is based on the analysis of the mesh edges: all edges must belong to the interval
[lmin, lmax] and the mesh elements quality must be close to the optimal unit
value. Long edges lM (e) > lmax are splitted into unit subsegments with respect
to M and the new vertices are introduced using a modification of the Deau-
nay kernel to account for anisotropic elements. Short edges lM (e) < lmin are
collapsed by merging their two endpoints at one of the extremity. A mesh opti-
mization stage involving vertex relocation procedure is then applied to improve
the overall mesh quality [18].

4 Geometric Approximation

In the kind of problem we consider, an interface is defined as a manifold of codi-
mension one embedded in R

d. We introduce an implicit level set interface repre-
sentation, where the interface Γ is the zero isocontour of a Lipschitz-continuous
function u. We choose to have a Vh = P1(Th) Lagrange approximation space,
and we denote uh the projection of u on Vh.

4.1 Error Bound

We aim at controlling the approximation error between the exact (unknown) curve
Γ and an approximate curve Γh defined as a zero isocontour of the function uh:

Γh = {x ∈ Ω , uh(x) = 0} .

This control can be obtained by introducing a bound on the Hausdorff distance
between Γ and Γh, i.e., by prescribing a value of ε sufficiently small such that:

max(max
x∈Γ

min
y∈Γh

|x− y|,max
y∈Γh

min
x∈Γ

|x− y|) < ε .

Actually, we established the following result that provides an indirect yet prac-
tical control on the Hausdorff distance [14]. Suppose u is an implicit real-valued
function defined on a domain Ω such that ∇u exists (|∇u| = n, n > 0) and such
that its derivatives are k-lipschitz (k ≥ 1) on an open set. Then, we have the
theoretical bounds:

Theorem 1. Under the previous hypothesis, if we denote the set of elements
intersected by Γ as E = {x ∈ K,K ∈ Th and K ∩ Γ �= ∅}, then for all x ∈ Γh:

d(x, Γ ) ≤ 1
min
p∈E

|∇u(p)|

∣∣∣∣∣∣
d+1∑
j=1

λj

(
t(x − xj)(D2u(xj)−D2u(x))(x − xj)

)∣∣∣∣∣∣ ,
and conversely, for all x ∈ Γ ,
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d(x, Γh) ≤ 1
|∇uh(K)|

∣∣∣∣∣∣
d+1∑
j=1

λj

(
t(x− xj)(D2u(xj)−D2u(x))(x − xj)

)∣∣∣∣∣∣ .
where λj denotes here the barycentric coordinate of a point x associated with the
vertex xj of K and D2u represents the Hessian of the function u (the gradient
of uh is piecewise constant per element).

The complete proof of this result can be found in [14] and relies on the analysis
of a Taylor expansion with integral rest in any simplex intersected by the desired
level set. In the next section, we will show how this result can be used to define a
metric tensor field to prescribe appropriate element sizes and shapes to minimize
the approximation error in a triangulation.

4.2 A Geometric Metric Tensor

Let us consider the set E of mesh simplices intersected by the zero level set man-
ifold Γ , i.e. such that the sign of the function u is not constant on the element.
The following results relate the size of the elements of the set E to the local
curvature(s) of the manifold in two and three dimensions and provide a bound
on the distance between the manifold and its piecewise affine approximation.

Corollary 1. In two dimensions, we have:

d(Γh, Γ ) ≤ max
K∈E

l2κ

1− hκ− h2κ2

where h (resp. l) represents the size of the element K in the normal (resp.
tangential) direction to the curve Γ , κ is the maximum of the absolute value of
the local curvature to Γ in K.

Corollary 2. Similarly, in three dimensions, we have:

d(Γh, Γ ) ≤ max
K∈E

l21κ1

1− hκ1 − h2κ2
1

+
l22κ2

1− hκ2 − h2κ2
2

where h (resp. l1, l2) represents the size of the element K in the direction normal
(resp. of the principal curvatures) to the manifold and κ1, κ2 are the minumum
and maximum values of the two local principal curvatures of Γ in K.

Again, the full proof of these results has been given in [14]. These bounds on the
approximation error can be conveniently used to define a suitable discrete metric
tensor field at each mesh vertex of every element in the set E . Indeed, setting
the level of accuracy of the piecewise affine approximation to an arbitrary value
ε is equivalent to imposing d(Γh, Γ ) < ε. Hence, we propose to define the metric
tensor at each vertex as follows:

M =
∇u∇ut

h2
min

+
(D2u)

ε
(6)
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where hmin represents the smallest (user-defined) element size in Th. With this
definition, the elements will be aligned with the principal directions of curvatures
and with the normal to Γ and their relative sizes will be related to the local
curvatures by setting:

li =
√

ε

κi
.

4.3 Numerical Issues

The geometric metric tensor definition involves the Hessian matrix of the level
set function u. Practically, the solution uh is piecewise affine and only known
at the vertices of triangulation Th. In order to compute the gradient and the
Hessian matrices, we propose to reconstruct a high-order solution ũ ∈ C2(Ω)
from uh in order to write:

|u− uh|X ≈ |ũ− uh|X

where | · |X is the norm related to the approximation space. Notice that in our
approach, the solution ũ does not need to be known, as only the Hessian matrix
is required to define the metric tensor.

We propose a least-squares approximation of the second derivative of ũ based
on a Taylor expansion of the solution ũ at vertex x, following [3]:

ũ(xi) = ũ(x) + xxi · ∇ũ(x) +
1
2
〈xxi,M(x)xxi〉

where ũ(xi) is the solution associated with the vertex xi connected to the vertex
x. This leads to a usually overdetermined linear system Ay = b, that is solved
using a least square approximation AtAy = Atb, where y is a d(d+1)

2 vector of the
Hessian coefficients. Solving it directly allows us to avoid all problems related
with ill-conditioned matrices.

We have also investigated the Hessian reconstruction using a dual L2 pro-
jection scheme of the numerical solution u [18]. This robust technique, did not
provide better results for our purposes in the numerical simulations, thus we
have used the least-square approximations in all following examples.

5 Numerical Examples

The authors and colleagues have implemented all the numerical techniques de-
scribed in this paper (the error estimate, the adaptive mesh generation algorithm,
the advection and the Stokes flow solvers) in two and three dimensions.

5.1 Numerical Examples in Two Dimensions

In this section, we investigate the efficiency and the accuracy of our interface
tracking mesh adaptation method on numerical simulations of Zalesak rigid body
rotation and on a viscous flow problem.



170 V. Ducrot and P. Frey

Zalesak rigid body

This test case has been originally proposed by Zalesak [36] and we consider here
a slightly modified version suggested by Rudman [30] and commonly used for
volume integrity checking. The computational domain Ω is here a [−2, 2]×[−2, 2]
square, the circular body of unit radius is centered at position (0, 0.75) and the
width of the slot is 0.12. We consider a steady advection problem where the disk
is rotated with a constant angular velocity of 1 time unit, which constitutes a
good test of how efficiently the interface is advected in case of high curvatures.
The body should return to the initial position after a revolution of 2π, without
any modification of the interface shape and volume (Figure 2). To overcome
numerical dissipation problems when solving the advection equation, we have
used a simple mass-correction procedure. Assuming that the error is constant
over the domain, we use an optimization scheme to determine a constant value
by which the level set is normalized so as to preserve the total mass.

(a) (b) (c)

Fig. 2. Evolution of the rigid body Zalesak disk: (a) four positions of the rotated body,
(b) superposition of the initial and final (after one complete revolution) discretized level
set curves , (c) zoom near a singularity

Figure 2 shows the evolution of the rigid body in the velocity field corre-
sponding to angles of rotation θ = kπ/2, k ∈ {1, . . . , 4}. At each time step,
the solution is computed using a high-resolution adapted mesh, for which the
smallest prescribed edge length is 0.001 and the maximal prescribed element
stretching is given by the ratio between the maximal and the minimal edge
length, 0.2/0.001 = 200. Each anisotropic adapted mesh contains about 6 500
vertices whereas the corresponding isotropic graded mesh (i.e., non uniform)
would contain about 10 times more vertices. The generation of each anisotropic
mesh corresponding to a rotation angle of π/8 is obtained using a fixed point
algorithm involving 5 metric intersections in time and requires about 46 seconds
while the advection time requires 4.3 seconds on a laptop.

The accuracy of the level set approximation can be evaluated by two measures.
First, we evaluated the perimeter of the interface and the area of the domain
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Fig. 3. Zalesak disk test. Advection of the level set corresponding to rotation angles

θ = 0, θ = 2π (top) and θ =
3π

4
with a local enlargement close to the singularities

(bootom).

delineated by of the interface during the simulation without and with the mass
correction scheme. Without mass correction, the perimeter values are ranging
from 4.3275 (initial length) to 4.2985 (final length), corresponding to a shrinkage
of less than one percent of the interface curve. The area of the internal domain is
equal to 0.71316 (initial) and to 0.706 (final), the area (mass) loss is of the order
of one percent. With the mass correction scheme, the final surface is 0.7131677,
less than 0.01 percent difference wih the initial surface,but the final perimeter
value is 4.450584 (Figure 3).

A viscous flow example

The next example concerns a viscous flow computation. Here, we attempt to
solve the Stokes problem (7) describing an incompressible flow of two immiscible
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fluids with very different viscosities µi on a domain Ω subdivided in two sub-
domains Ωi sharing a common interface:{

−µi∆ui +∇pi = ρi f i

div ui = 0 (7)

where ρi and pi represent the volumic mass and pressure, respectively and with
the continuity condition of the velocity field and the equilibrium of the normal
constraints with the surface tension at the interface Γ :{

u1 − u2 = 0
(σ1 − σ2) · n1 = −K n1 (8)

endowed with Dirichlet or Neumann boundary conditions:

u = uD on ΓD, σ · n = sN on ΓN , ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅ (9)

In the variational formulation, we consider as approximation space of the velocity
u (resp. of the pressure p) the space of Lagrange finite elements P1-bubble (resp.
P1). Uzawa’s method is then used to solve the resulting linear system, in which
several equations of the form AX = G, A being the stiffness matrix, are solved
using a conjugate gradient method. In our approach, the condition number of
A depends only on the mesh size h of the triangulation Th covering the domain
Ω. The Uzawa solution (u, p) of the Stokes problem is now obtained as the limit
of a sequence of solutions (uk, pk) when k →∞ [9]. If this example, the critical
part is related to the anisotropic discretization of the interface.

Here, we present the simulation of a Couette flow in a unit square Ω = [0, 1]×
[0, 1], a disk of radius 0.1 centered inside the domain corresponds to the domain
Ω1. We considered the following parameter values: viscosities µ1 = 1, µ2 = 10−6

Fig. 4. Mesh of the computational domain (notice the anisotropy in the vicinity of
the interface) and streamlines of the velocity field
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(a) (b) (c)

Fig. 5. Example of mesh adaptation of a surface embedded in the unit sphere. (a) the
reconstructed piecewise affine surface, (b) cutting plane through the tetrahedral mesh
and (c) local enlargement of the cutting plane.

and volumic mass ρ1 = ρ2 = 1. Dirichlet boundary conditions have been pre-
scribed on the external boundaries of Ω: ux = 2(y − 0.5), uy = 0. Figure 4
shows the anisotropic mesh used to perform the simulation and the streamlines
of the velocity field.

5.2 A Numerical Example in Three Dimensions

This approach has been implemented in three dimensions for dealing with in-
terface capturing problems. In order to illustrate this feature, Figure 5 shows
an anisotropic mesh adapted to a slightly complex although regular analytical
surface embbeded in a unit sphere defined in spherical coordinates as:

ρ = 0.45 + 0.3 cos(6θ) cos2(3φ) θ ∈ [0, 2π] , φ ∈ [0, 2π] .

Here, the accuracy level is controlled by the parameter ε = 10−3, leading to a
mesh containing 242 887 < 3.105 vertices. Notice that an isotropic mesh corre-
sponding to the same level of accuracy would contain about 109 vertices, 3 to
4 orders of magnitude more vertices than with an anisotropic mesh. The ap-
parent irregularity of the mesh Figure 5 (middle and right-hand side) is due to
the cutting plane through tetrahedral elements. Actually, the piecewise affine
discretization of the manifold is surprisingly smooth (Figure 5).

6 Conclusions and Perspectives

In this paper, we have presented an efficient method for obtaining very accurate
piecewise affine approximations of manifolds of co-dimension one based on the
definition of a metric tensor field used to govern the generation of anisotropic
meshes. The results obtained so far in numerical simulations are more accurate
than similar results obtained using isotropic meshes. The next stage will be to
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Fig. 6. Preliminary results for capturing accurately a dynamically evolving manifold
in three dimensions

handle dynamically evolving interfaces in time-dependent simulations. Figure 6
shows the preliminary results obtained on the deformation of a unit sphere under
a deformation field. This approach seems quite successfull in preserving the vol-
ume of the level set when the interface undergoes large amount of deformation
and stretching induced by an incompressible flow field and can very well com-
pete with methods like particle level sets [15]. By nature, this approach is well
suited to maintain regions of high-curvature and the thin surface that developed
during the deformation. Less than 105 vertices are required to resolve this test
case, a number that can be compared with the 1003 grid generally used in other
approaches.
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gestion de rapports de viscosité importants dans le problme de Stokes bifluide.
C.R. Acad. Sci. Série I, 524–529 (2008)

10. Crandall, M., Lions, J.L.: Two approximations of solutions of Hamilton-Jacobi
equations. Math. Comp. 43, 1–19 (1984)

11. Dervieux, A., Thomasset, F.: Multifluid incompressible flows by a finite element
method. Lecture Notes in Physics 11, 158–163 (1981)

12. Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., Habashi, W.G.:
Anisotropic mesh adaptation: towards user-independent, mesh-independent and
solver-independent CFD. Part III: unstructured meshes. Int. J. Numer. Meth. Flu-
ids 39, 675–702 (2002)

13. Dijkstra, N.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1(1), 269–271 (1959)

14. Ducrot, V., Frey, P.: Contrôle de l’approximation géométrique d’une interface par
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Summary. Anisotropic mesh adaptation is a key feature in many numerical simu-
lations to capture the physical behavior of a complex phenomenon at a reasonable
computational cost. It is a challenging problem, especially when dealing with time
dependent and interface capturing or tracking problems. In this paper, we describe a
local mesh adaptation method based on an extension of the Delaunay kernel for creat-
ing anisotropic mesh elements with respect to adequate metric tensors. In addition, we
show that this approach can be successfully applied to deal with fluid-structure inter-
action problems where parts of the domain boundaries undergo large displacements.
The accuracy and efficiency of the method is assessed on various numerical examples
of complex three-dimensional simulations.

1 Introduction

In the context of numerical simulations based on variational methods, adaptive
and anisotropic triangulations have proven to be very effective for solving com-
plex physical and biomedical problems described by a set of partial differential
equations; see for instance [19, 30, 32]. Actually, many applications (e.g., in solid
and fluid dynamics, combustion, heat transfer, etc.) require localized regions of
the computational domain to have a larger mesh density, i.e., closely-spaced ver-
texs, to capture the singular or nearly singular solutions that develop in such
regions and to resolve large solution variations sufficiently accurately. Solving
these equations with a uniform mesh would require a huge number of mesh ver-
texs, often out of reach of the current computer technology. Indeed, the aim of
mesh adaptation is twofold: improving the efficiency of the method for better
accuracy and stability at a lower computational expense.

On the other hand, dynamically evolving surfaces arise in numerous compu-
tational applications, such as free surfaces in multiphase flows or moving and de-
forming interfaces in fluid-structure interactions, biomedical surfaces, etc. These
applications require or involve potentially large displacements or deformations
of the domain geometry in time. Furthermore, this moving geometry is generally
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part of the solution of a set of partial differential equations and thus it is not
known by or described by an analytical model. Such surfaces can be success-
fully handled by level set formulations [29] or implicit surfaces. In many cases,
it is again more efficient to use anisotropic elements and to adapt the mesh to
capture the interface or to follow the severe deformations of the geometry. The
goal of this paper is to provide such mesh adaptation features for unstructured
simplicial meshes in view of time-dependent and geometry evolving simulations.

In general, anisotropic mesh adaptation aims at equidistributing the approxi-
mation error by adjusting locally the mesh density according to a metric tensor
field based on the Hessian of the numerical solution [16, 18]. It relies on the abil-
ity to control the size, the shape and the orientation of the mesh elements. In
addition to improving the accuracy of the solution, anisotropy allows to preserve
the order of convergence of the computational schemes [19]. It has already been
largely shown that highly stretched mesh elements can interpolate a smooth
function much more accurately than an isotropic mesh with regular elements
[3, 33, 34]. As we will emphasize here, anisotropic elements also have the ad-
vantage of introducing regularity in the approximation of interfaces between
physical domains.

The contributions of this paper are the following. First, it provides a general
context for anisotropic Delaunay-based mesh adaptation in three dimensions,
based on a local point insertion procedure. In this respect, it can be considered
as an extension of previous works on anisotropic meshing for complex domains
[7, 9, 12, 13, 22, 32]. It can also be related to computational geometry results on
Delaunay insertion of Steiner points in a triangulation, sometimes called point
placement methods [11, 26]. However, here we provide a straightforward and con-
vergent algorithm to locally adapt the mesh elements to any anisotropic metric
tensor. Furthermore, we show how a slight modification of the Delaunay kernel
allows us to prevent the generation of badly-shaped elements. Since our approach
is based on local mesh modifications, the termination of the algorithm is straight-
forward, although the resulting triangulation fulfill the Delaunay criterion only
locally. Second, this paper explains how to build an anisotropic metric tensor for
level set interface tracking, following the ideas of [14]. Then, we show how this
method can be efficiently used to resolve fluid-structure interactions and mov-
ing mesh problems where the computational domain geometry undergoes large
displacements. We demonstrate benchmark and simulation results on rigid-body
and on fluid dynamics simulations. For the sake of simplicity however, we will
assume in all these simulations that the initial surface mesh is not concerned by
adaptation. The local adaptation of surface meshes has been largely discussed in
other papers over the last years (surveys can be found in [17, 27], for instance).

The remainder of this paper is organized as follows. In Section 2, we review the
main issues of anisotropic mesh adaptation based on Riemannian metric tensors.
This notion of an anisotropic metric tensor has been described in a general
purpose book [18] and in many research papers. In particular, we outline the
definition of a metric tensor, the notion of metric intersection and interpolation.
In Section 3, we show how the classical Delaunay mesh generation procedure can
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be extended to the anisotropic context. In particular, we show how to compute
the Delaunay kernel used for point insertion in the Bowyer-Watson approach to
mesh generation. In Section 4, we describe our local mesh adaptation algorithm.
Numerical examples of simulations are given in Section 5 to show the efficiency
of the approach.

2 Anisotropy and Metric Related Issues

As pointed out already [18, 23], anisotropic meshing is closely related to differen-
tial geometry concepts and numerical error estimates. Here, we will briefly review
the theoretical material (curvature estimates, metric tensor field, mesh quality)
for anisotropic meshing strictly required to understand our approach, as it has
already been thoroughly described in various papers [1, 3, 7, 12, 13, 15, 22, 19].

2.1 Basic Definitions

We introduce the following notations: Ω denotes a simply connected open
bounded domain in R

3, Ω is the closure of Ω and |Ω| is the d-dimensional mea-
sure or the volume of Ω. We suppose we are given a conforming triangulation
Th on Ω, h representing the characteristic element size. Each element K ∈ Th is
a closed subdomain of Ω and we assume that Ω =

⋃
K∈Th

K and that the usual
finite element requirements are satisfied (i.e., non-overlapping and intersecting
elements are disallowed).

A uniform mesh of Ω is then a mesh in which all elements are equally-sized
and regular. In such case, if |Th| represents the number of mesh elements and
hK = diam(K) the diameter of K, the size h = max

K∈Th

hK is given by the relation:

hK ≈
(
|Ω|
|Th|

)1/d

∀K ∈ Th .

A quasi-uniform mesh is a mesh for which (i) there exists a constant τ such that

hK

ρK
≤ τ ∀K ∈

⋃
h

Th ,

where, for any open ball Bi ⊂ K, ρK = supi{diam(Bi)} is the in-diameter of
K and (ii) the variation of h is bounded by a constant. Notice that this notion
does not assume a constant mesh size over the domain.

2.2 Metric Tensors

Essential to mesh adaptation is the ability to control the size, the shape and
the orientation of mesh elements. This specification is usually based on an er-
ror estimate or an error indicator. Typically, it uses a matrix-valued field for
anisotropic mesh adaptation.
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On the continuous level, it is suitable to consider that mesh elements are
represented by ellipsoids. In this geometric representation, the size of the element
is its volume, the shape is associated with the ratio of the lengths of its semi-axes
and the orientation is provided by its principal axis vectors. Then, their control
can be achieved by specifiying a metric tensor M(x) to indicate the size, shape
and orientation of mesh elements on the whole domain. Here, M(x) is a 3 × 3
symmetric positive definite matrix, sometimes referred to as a monitor function
[23]. The function ρ(x) =

√
det(M(x)) is called the adaptation function. This

metric tensor is used to generate a quasi-uniform mesh of Ω in the metric related
to M . The volume of an element K ∈ Th is unitary:∫

K

√
det(M(x)) dx =

∫
K

ρ(x) dx = 1 , ∀K ∈ Th

and corresponds to the discrete formulation:

|K|
√

det(MK) = 1 , ∀K ∈ Th ,

where MK is an average of M(x) on K. By extension, the length of a curve γ in
a metric M given by M(x) for any x ∈ Ω is defined as:

|γ|M =
∫ 1

0

√
〈γ′(t),M(γ(t))γ′(t)〉dt ,

where γ(t) : [0, 1] → R
d is a parametrization of γ. By analogy, the length of a

mesh edge e is defined as:

lM (e) =
∫ 1

0

√
etM(t)e dt .

The edge length value represents also the number of subdivisions of the edge
required to match the mesh size prescribed by the metric tensor. Since the met-
ric tensor M(x) is supposed a symmetric positive definite matrix, the spectral
decomposition theorem allows to decompose M as:

M = P ΛP t =
d∑

i=1

λieiei
t ,

where the normalized eigenvectors of M are the columns of matrix P =
[e1, . . . , ed] such that P P t = P t P = Id and Λ is the diagonal matrix of the
eigenvalues λi = hi

−1, where the hi are the sizes in each eigendirection. It is
obvious to see that the matrix P prescribes the orientation, and the matrix Λ
prescribes the size and shape of any element K.

Metric intersection and interpolation

Metric intersection

Suppose that two metric tensors are specified at a vertex p ∈ Th. For mesh gen-
eration purposes, we would like to deal with a single metric at the vertex. To
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this end, we define a metric intersection procedure. Geometrically speaking, it
consists in defining the largest ellipsoid E included in the intersection of the two
ellipsoids E1 and E2 associated with the two metric tensors. From the algebraic
point of view, we use the simutaneous reduction of the two underlying quadratic
forms to find a basis of the vector space in which the matrices M and N as-
sociated with E1 and E2 are represented respectively by I3 and D, a diagonal
matrix of M3(R).

Denoting by P =
(
e1 e2 e3

)
the invertible matrix of GL3(R) formed by the

eigenvectors ei, i = 1, 3 of the matrix N ′ = M−1 N leads to define the intersec-
tion matrix M∩ as: M∩ = (P t)−1 ΛP−1, where Λ is the diagonal matrix with
the coefficients max(λi, µi).

Metric interpolation

Consider a parametrization of a mesh edge pq as c : [0, 1] → R
3, c(t) = (1−t)p+tq

and two metric tensors Mp and Mq associated with the endpoints. We are looking
for the metric tensor at t, hence for a matrix M(t) defined along the segment
c(t) for any value of the parameter t ∈ [0, 1]. The definition of this matrix M(t)
involves the interpolation of the eigenvalues of the matrices Mp and Mq. This
procedure allows one to define a continuous metric field along the segment. To
this end, we suggest the following linear interpolation scheme:

M(t) =
(
(1− t)M− 1

2
p + tM

− 1
2

q

)−2

, 0 ≤ t ≤ 1 . (1)

Finding the interpolated metric tensor Mt requires us to express the two matrices
in a basis {ei} in which both are congruent to a diagonal matrix and then to
deduce the metric tensor at point t. In other words, this scheme is similar to
reducing simultaneously the two quadratic forms associated with the metrics.

2.3 Mesh Quality Measures

There are several reasons for assessing a mesh and controlling its quality. In
particular, it is useful to know if the mesh elements are aligned with the physical
solution, especially in the anisotropic context. Then, in the adaptive context, it
is important to know how closely the equiditribution and alignment conditions
are satisfied by the mesh. Finally, in three dimensions, a quasi-uniform mesh
is not easy to produce if only controlling the lengths of mesh edges. It is well
known that slivers (null volume) elements may occur and their creation cannot
be prevented by simply checking the their edge lengths.

The topics of mesh quality and mesh assessment have been studied in the
context of finite element methods in numerous papers. We refer the reader to [2]
and the references therein for more details on the related issues. Classical quality
measures include minimal angle condition [35] or maximal angle condition [4]
as well as aspect ratio considerations. Other works include error estimates to
account for the shape of the element and the solution behavior [6]. The adequacy
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between anisotropic elements and the anisotropy of the solution can be measured
by a matching function [25].

Given a metric tensor field M(x), it is natural to define critera to measure how
closely the mesh elements are aligned and equidistributed with respect to M(x).
For practical reasons, we introduce a single measure to evaluate the quality of
an element K (given here in dimension d):

Qani(K) = αd

(
k∑

i=1

〈ei,MKei〉
)d

|K|
√

det(MK)
,

where ei represents any of the k egdes of K and αd is a normalisation constant
such that Qani(K) = 1 for a regular element. Notice that Qani ≥ 1 for all K ∈ Th

and thus the larger max
K

Qani(K) is, the less the triangulation Th matches the

metric specifications. This quality measure is able to indicate how well a mesh
element match the metric specification, both in terms of size (edge lengths) and
of shape (aspect ratio).

In addition, we define an efficiency index τ that provides a single scalar value
to evaluate how well a mesh complies with the metric requirements:

τ = exp

⎛⎝ 1
ne

∑
1≤i≤ne

�M (ei)

⎞⎠ , �M (ei) =

{
lM (ei)− 1 if lM (ei) < 1

l−1
M (ei)− 1 else

(2)

and ne denotes the total number of mesh edges. The objective is to generate
meshes for which the efficiency index is close to the optimal value of one. In the
simulations, a value τ ≥ 0.85 will be considered as an acceptable lower bound.

2.4 Error Estimates

A function e(h, uh, f) is called an a posteriori error if it provides an upper bound
on the approximation error: ‖u−uh‖W ≤ e(h, uh, f). In the context of numerical
simulations, the aim is to obtain an anisotropic bound where the physical deriva-
tives are related to the size, the shape and the orientation of mesh elements. Re-
search has been very active these recent years to develop mathematically-based
error estimates and several references are provided in the bibliography section
of this paper. From the numerical point of view, it is interesting to obtain es-
timates for the classical L1 and L2 norms or the H1 seminorm. Such estimates
have been provided for the interpolation error on linear Lagrange finite elements
and involve the eigenvalues and eigenvectors of the Jacobian matrix of the affine
mapping between the reference element and a mesh element [15, 31] or are based
on the Hessian matrix of the solution [18, 1]. A local error model can be defined
at a mesh vertex p as follows:

eM (p) =
d∑

i=1

h2
i

∣∣∣∣ ∂2u

∂α2
i

∣∣∣∣ ,
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where the αi are the coefficients of the diagonal matrix Λ (see above) and the
hi indicate the local sizes in the directions of the eigenvectors of the Hessian
matrix. For our purposes, we define a local error indicator the L∞ norm as:

eK = ‖u− Phu‖∞,K ≤ C max
y∈K

max
c⊂K

〈v, |D2u(y)|v〉 ,

where D2u represents the Hessian matrix of the function u and C is a constant
independent of h.

3 Anisotropic Delaunay Mesh Adaptation

Our approach suggests a modification of the classical point insertion procedure
in a Delaunay triangulation to account for the anisotropic metric specifications.
At first, we briefly recall the Delaunay kernel in the isotropic context, and then
we introduce the modifications in the anisotropic context and for local mesh
adaptation.

3.1 The Delaunay Kernel

In the classical isotropic context, mesh points are inserted in an existing De-
launay triangulation using the so-called Delaunay kernel [18]. This incremental
yet practical method provides an efficient means for constructing a Delaunay
triangulation.

Theorem 1. (Delaunay kernel) Let Ti be the Delaunay triangulation of the
convex hull of a set of points S ⊂ R

d, and let p /∈ S be a vertex enclosed in Ti.
The Delaunay kernel procedure can be written as:

Ti+1 = Ti \ C(p) + B(p) , (3)

and provides Ti+1, a Delaunay triangulation of the convex hull of S ∪ {p}.

The proof is obtained by duality with the Voronöı diagram and can be found in
[21, 18]. In this fundamental result, C(p) stands for the cavity of point p: the set
of simplices in Ti such that their circumspheres contain point p and B(p) denotes
the ball of point p: the set of simplices formed by joining p to the external faces
of C(p). Practically, this result ensures that the cavity C(p) is a star-shaped
polytope with respect to point p.

However, in numerical simulations, at least two specific problems arise, related
to the necessity of:

i) inserting specific entities in the triangulations (a given set of edges defining
the domain boundary, for instance) and

ii) creating additional vertices in the triangulation that are not part of the initial
set S (for instance internal vertices during mesh adaptation).

Regarding the last requirement, the following result provides the existence of a
triangulation:
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Lemma 1. Let Ti be an arbitrary triangulation and let p ∈ R
d be a point enclosed

in Ti, p not being a vertex of Ti. Then, a valid conforming triangulation Ti+1

having p as vertex can be created using the Delaunay kernel, Theorem 1.

The proof relies on the star-shaped character of the region C(p) with respect to
point p [18]. This is only possible if the cavity is created incrementally from a
seed tetrahedron (see above). Notice that due to this restriction, the resulting tri-
angulation Ti+1 may not be a Delaunay triangulation, although it is conforming
to finite elements requirements [10].

Point insertion issues

Defining the cavity C(p) of a point p requires identifying all simplices having
a circumsphere that contains point p. The radius of the sphere circumscribed
to a simplex K corresponds to the distance between any vertex pi of K and
the circumcenter O of K: rK = d(pi, O) = ‖Opi‖. The circumcenter O can be
computed as the solution of a linear system of the form:

‖Op1‖ = ‖Opi‖ , ∀pi ∈ K , pi �= p1, i = 2, . . . , d .

Hence, given a point p, an element K belongs to the cavity C(p) iff the following
relation holds:

α(p,K) =
‖Op‖
rK

< 1 ,

where α(p,K) is the Delaunay measure of point p with respect to the simplex K.
First, we have to find the simplex or, in some peculiar cases, the set {K ∈ Th , p ∈
K} of all simplices containing p the point to be inserted. Then, by incorporating
all adjacent simplices Ki such that α(p,Ki) < 1, the set C(p) is obtained. Each
time a new simplex Ki is added to C(p), the star-shapedness of this set is checked
and the simplex is eventually removed if C(p) loses its property.

In addition, to avoid the generation of badly-shaped elements like slivers,
we introduced a minimal volume requirement: all new simplices obtained by
connecting p to the external faces of C(p) must have a measure larger than a
given lower bound: |K| > ε, with ε set to 1.10−5 in the numerical experiments.
This simple check has revealed especially and quite surprinsingly efficient in
preventing the generation of most of the slivers, thus impacting favorably the
optimization stage and the mesh quality histograms (cf. Section 4).

3.2 Anisotropic Delaunay Kernel

As expected, the extension to the anisotropic case consists of introducing a metric
tensor, hence a symmetric positive definite matrix Mp at each point p ∈ R

d. This
will allow us to consider the Euclidean norm of any vector in R

d given the inner
product 〈·, ·〉M . Hence, all distance checks involved in the Delaunay measure will
be replaced by length checks according to the given matrix Mp, namely:

αMp(p,K) =
‖Op‖MP

(rK)Mp

< 1 .
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The Delaunay kernel (Theorem 1) relies on distance evaluations to define the
cavity of the point p to be inserted in an existing Delaunay triangulation. Using
the Delaunay measure αMp , it is possible to define a valid the cavity i.e., star-
shaped with respect to p. In [21, 18], we have the following result:

Lemma 2 (anisotropic Delaunay kernel). Given a metric tensor Mp at a
point p ∈ R

d, the anisotropic Delaunay measure, αMp(p,K) < 1, provides a valid
anisotropic Delaunay kernel.

Again, the proof of the validity relies on the definition of a cavity, star-shaped
with respect to p. Notice however that the resulting triangulation Ti+1 may not
be a Delaunay triangulation [26], but it is still conforming to finite elements
requirements. In this respect, this result provides a practical way of inserting a
point in an anisotropic triangulation.

Numerical issues

Obviously, taking into account only the metric tensor at the given point p is not
sufficient and accurate in many applications as the mesh element size may change
rapidly from one point to another in space. Therefore, we advocate considering
all metric tensors related to the vertices of element K [20]. But doing so however,
leads to solving a nonlinear system of equations. The center OK of the topological
sphere circumscribed to tetrahedron K = {p1, . . . , p4} is the solution of a set of
equations:

lMp(OK , p1) = lMp(OK , pi) i = 2, . . . , 4 ,

where the length of the edge OKpi in the metric Mp is given by:

lMp(OK , pi) = 2m12 (xi −Ox)(yi −Oy) + m11 (xi −Ox)2

+ 2m13 (xi −Ox)(zi −Oz) + m22 (yi −Oy)2

+ 2m23 (yi −Oy)(zi −Oz) + m33 (zi −Oz)2,

with pi = (xi, yi, zi)t, OK = (Ox, Oy, Oz)t, and Mp = (mij)1≤i,j≤3. Finding the
center OK simply leads to solving the following linear system:⎛⎝ a2 b2 c2

a3 b3 c3
a4 b4 c4

⎞⎠⎛⎝Ox

Oy

Oz

⎞⎠ =

⎛⎝d1

d2

d3

⎞⎠ ,

with the coefficients:

ai = 2 (m11 (xi − x1) + m12 (yi − y1) + m13 (zi − z1)),
bi = 2 (m22 (yi − y1) + m12 (xi − x1) + m23 (zi − z1)),
ci = 2 (m33 (zi − z1) + m13 (xi − x1) + m23 (yi − y1)),
di = m11 x

2
i + 2m12 xi yi + 2m13 xi zi + m22 y

2
i + 2m23 yi zi + m33 z

2
i

−(m11 x
2
1 + 2m12 x1 y1 + 2m13 x1 z1 + m22 y

2
1 + 2m23 y1 z1 + m33 z

2
1).

Furthermore, numerical experiments revealed that it is interesting to account
for all metric tensors at the vertices pi in order to define the cavity. We found
efficient to assess the cavity with two inequalities:
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αMp(p,K) < 1,

4∑
i=1

αMpi
(p,K) + αMp(p,K) < 5.

(4)

Like in the generic case, we avoided the creation of most slivers by introduc-
ing a minimal volume requirement |K| > ε, the measure of the element being
computed in the relevant metric.

4 Local Anisotropic Mesh Adaptation

Adaptive meshing methods belong to one of two categories depending on whether
they proceed by global or local remeshing of the computational domain at each
iteration. Global remeshing techniques consist in constructing a new mesh of
the domain at each iteration, to ensure that the elements are in good agreement
with the anisotropic metric-related prescriptions. The latter are supplied at the
vertices of the previous mesh that is then acting as a control space. Obviously,
the order of complexity of the meshing method remains the same throughout the
whole adaptation scheme. In steady-state adaptative simulations, the number of
modifications usually decreases with the iterations since a fixed point of the
pair (mesh,solution) is targeted. In other words, once mesh features have been
identified and captured by adjusting the local vertex density, numerical accuracy
is only a matter of introducing a few more vertexs in critical regions while most
of the mesh is kept unchanged. Hence, remeshing at each iteration the whole
domain results in a loss of efficiency (even if improvements have been proposed
[9, 19]). It seems more advantageous that fewer vertices are inserted in critical
regions over time, as this will help to minimize the run time of the algorithm
while at the same time converging to a solution. Hence, in our approach, we
perform local mesh modifications.

4.1 Mesh Modification Operations

Mesh modification are either geometrical (edge split, edge collapse, vertex relo-
cation) or topological (edge flip). In the anisotropic context, we assume that a
metric tensor field is provided at the mesh vertices of a given triangulation. The
objective is then to modify this triangulation iteratively by local operations in
order to obtain a quasi-uniform triangulation wih respect to this field. An im-
portant feature consists in modifying the metric specifications to account for a
desirable (i.e., user-specified) mesh gradation. This procedure is fully described
in [8] and is used here as such.

Our approach is based on the analysis of the edge lengths. Given a metric field
prescription, all mesh edges have to belong to the interval [lmin, lmax] and the
mesh element quality has to be close to the optimal unit value. Theoretically,
a quasi-uniform triangulation is characterized by the fact that all edges have
a unit length, i.e., lmin = lmax = 1. However, it is easy to understand that
such restriction is highly improbable and we suggest to set the lower and upper
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bounds of the edge lengths to the values lmin =
√

2
−1

and lmax =
√

2. All local
mesh modifications can be simulated in order to check whether the resulting
configuration is better than the previous one. A configuration is considered as
improved if the mesh quality of all the elements involved is better (or almost
identical in the case of an edge collapse) than the original configuration.

Short edges lM (e) < lmin are simply collapsed by merging the two endpoints
of such edge at one of the endpoints. All mesh elements surrounding this edge
are then removed. If a short edge cannot be collapsed, an edge flip operation
attempts to solve the problem. The edge swap consists in remeshing the set of
elements surrounding the edge by changing the vertex connectivity. This is an
expensive modification as it requires the computation of a large (combinatorial)
number of quality measures. For such reason, no edge flip will be checked if the
set of elements contains more than 7 elements.

Long edges lM (e) > lmax are normally removed by splitting them into unit
subsegments with respect to the metric specification. This consists in introduc-
ing the new vertices using the anisotropic Delaunay kernel. The main advantage
of this approach is that the set of elements concerned by the vertex insertion
(the cavity) is usually much larger than the set of elements strictly surround-
ing the edge (the initial cavity). Computationally, it revealed more efficient to
proceed like this and the quality of the resulting mesh is better than with the
classical edge split operation. Furthermore, the creation of slivers is explicitely
checked and prevented during this stage. Sometimes, in peculiar cases, an edge
flip operation can be used to remove a long edge.

In addition, a mesh optimization stage involves a vertex relocation procedure.
This procedure aims at equidistributing the edge lengths, with the objective of
improving the efficiency index. Given a mesh vertex p, the objective is to im-
prove the lengths of all edges connected to p. To this end, the vertex is moved in
the direction of an optimal vertex location corresponding to the average optimal
positions along each edge. This operation does not affect the mesh topology,
nonetheless optimal vertex positions have to be checked to prevent invalid con-
figurations.

All mesh modification operations are described in details in the general pur-
pose book [18].

4.2 Mesh Adaptation Scheme

Our mesh adaptation algorithm can then be described as follows: we assume
given a triangulation T and a metric tensor field M defined at the mesh vertices,

Enforce the desired h-gradation,
do

1. loop over mesh edges /* edge analysis */
compute lM (e) for every edge e
if (lM (e) < lmin) then

collapse e
else if (lM (e) > lmax) then
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split e and insert new vertex (Delaunay kernel)
endif

while ( T is modified )
2. loop over mesh elements /* quality optimization */

perform edge flips
perform vertex relocation

end for
while ( triangulation T is modified ).

Notice that this algorithm (composed of two levels of imbricated loops) al-
ways terminates in a finite number of iterations. Indeed, mesh modifications are
only applied if they result in the mesh quality improvement. An infinite loop
could potentially occurs between several configurations if the analysis is based
on the edge lengths only. For instance, if the values of lmin and lmax are too
close, the edge split and the edge collapse operations could possibly lead to a
previous configuration. However, since we apply the mesh modification if the
quality is strictly improved, this case cannot happen in our scheme. In addition,
for efficiency purposes, we have restricted the overall number of iterations to a
maximum value.

The complexity of the algorithm is related to the number of loops that are
performed. The inner loops are in O(nt), where nt is the number of mesh ele-
ments. Since we limit the nmber of outer loop to a maximum value c, the overall
complexity is cO(nt), i.e., linear in number of mesh elements.

4.3 Application to Large Displacements Problems

As pointed out in the introduction, our local anisotropic mesh adaptation ap-
proach allows us to handle rigid-body displacement problems without difficulty.
Fluid-structure interactions involves a moving structure, rigid or deformable,
and a fluid in flow around a part or the whole structure. The domain boundary
is moving, however moving only boundary vertices would quickly result in an
invalid mesh. Therefore, internal vertices are also relocated using a linear elas-
ticity analogy [5]. Actually, the whole procedure is straightforward and can be
decomposed in three successive stages: given a field of displacements prescribed
at the domain boundaries, e.g., resulting from a fluid calculation, (i) solve a lin-
ear elasticity equation as suggested by [5] to define a discrete displacement field
at all mesh vertices and (ii) move the mesh vertices to the positions prescribed
by this field and (iii) optimize the resulting mesh.

This boundary value problem assumes that part of the boundary remains
fixed as another part is moving. It reads:⎧⎨⎩−divσ(u) = f in Ω

u = 0 on Γfixed

σ(u) · n = 0 on ∂Ω\Γfixed
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and the Hook’s law gives the relation between the stress tensor σ and the lin-
earized strain tensor e as: σ = 2µe(u)+λtr(e(u))I3 , with e(u) = 1

2 (∇u+∇ut),
λ and µ are the Lamé coefficients describing the mechanical properties of the
material. The variational formulation is solved using affine P1 Lagrange finite
elements. The Lamé coefficients have been set experimentally in our simulations.
The linear system is solved using a conjugate gradient routine with a LDLt pre-
conditioning step. The convergence of the linear system is not affected too much
by the anisotropy of the mesh, indicating that the condition number does not
degrade too much with the anisotropy.

Notice that our approach preserves the number of mesh vertices during this
stage and involves vertex relocation and edge flips only. However, edge splits and
edge colapses can also be used to achieve a better efficiency in large displacement
problems.

5 Application Examples

Our approach has been tested on numerous test cases and is currently used by
several research groups. We provide here a set of numerical examples to assess
this method.

5.1 An Analytical Metric

This first test case is provided to illustrate our mesh adaptation scheme on a
steady-state problem where the size, the shape and the orientation of the mesh
elements are prescribed using the following analytical metric:

M =

⎛⎝h−2
1 0 0
0 h−2

max 0
0 0 h−2

max

⎞⎠ with
{
h1 = hmax|1− e−|x−0.5||+ 0.003
hmax = 0.2

(5)

This metric simulates the capture of a planar shock in the computational domain:
Ω = [−1 , 1]3. We started with an initial surface-adapted mesh T0 containing no
internal vertex containing 4, 399 vertices and 13, 978 tetrahedra (Figure 1). The
final adapted mesh after 5 iterations contains 51, 440 tetrahedra and its efficiency
index is 0.87. Regarding the mesh quality, 99.96 percents of the elements have a
quality measure between 1 and 3.

5.2 Interface Capturing

Our approach has also proven useful in accurately tracking and approximating
a dynamically evolving interface [14]. In this approach, the metric tensor field
is related to the intrinsic properties of the manifold of codimension one that
correspond to the interface. We consider an implicitly-defined, scalar valued
function u on a domain Ω ⊂ R

3 and we denote by Γ the surface associated
to the isovalue u = 0. The objective is to produce a mesh where the density
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Fig. 1. Initial surface-adapted mesh (left), cut though the final adapted mesh (middle)
and local enlargment (right)

Fig. 2. Example of mesh adaptation to capture an implicitly defined surface: cutting
plane through tetrahedral elements (left) and isosurface reconstruction (right)

is high in the vicinity of the isosurface so as to minimize the piecewise affine
approximation of this interface. To this end, we defined the following metric
tensor at the vertices of all mesh elements intersected by the manifold:

M = R

⎛⎝ 1/ε2 0 0
0 |λ2|/ε 0
0 0 |λ3|/ε

⎞⎠ tR,

with R =
(
∇u v1 v2

)
, where (v1, v2) is a basis of the tangent plane to the

surface and λi are the eigenvalues of the Hessian of u. At all other vertices, we
define the metric αI3 with α ∈ R

+. We consider the analytical surface defined in
spherical coordinates as: r = 0.45+0.3 sin(3φ), with θ ∈ [0; 2π] and φ ∈ [−π

2
;
π

2
].

We started from an initial uniform mesh of size h = 0.2 (Figure 2). The final
mesh after 8 iterations contains 105 vertices for a minimal element size h = 10−3.
The approximation error in the L∞ norm between the surface and its piecewise
affine discretization is lesser than 10−4.
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Fig. 3. Two moving spheres are crossing an anisotropic field

5.3 Moving Spheres in Anisotropic Field

We consider two spheres of different radii moving in a computational domain
Ω = [−2 , 2]× [−2 , 6]× [−10 , 1.5] (Figure 3). The initial mesh is adapted to a
planar shock corresponding to a metric specification very similar to that given
by Equation (5). The main difficulty is to preserve the anisotropic refinement
throughout the simulation. To this end, we have allowed edge split and edge
collapse operations in addition to vertex relocation and edge flips. Nevertheless,
the number of vertices remains almost constant: 12, 200 for he inital mesh and
11, 282 at the 34th time step. The efficiency index is also constant τ = 0.86.

5.4 Airflow around a Rotating Helicopter Propeller

The flow is governed by the classical compressible Euler equations of the fluid
dynamics and the numerical resolution uses the software Fluidbox based on
finite volume and Arbitrary Lagrangian Eulerian (ALE) method [28] that im-
poses a constant number of vertices and the connectivity to remains identical
to that of the initial mesh. The solver uses implicit time stepping scheme. Fur-
thermore, we consider that the propeller turns with a constant angular velocity
θ = 3.6deg, i.e., 10 full rotations per second. One mesh is generated at each time
step dt = 1/6, 000 seconds and 100 meshes are needed to achieve a complete rev-
olution. However, the constant topology and number of vertices constraints have
been relaxed: a few edge flips were introduced to remove badly-shaped elements
and the solution had then to be interpolated on the optimized mesh (Figure 4).
All meshes contain about 3.105 elements for an efficiency index close to 0.85
(more than 98 percent of the elements have a quality better than 3).
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Fig. 4. Airflow simulation: adapted meshes at iterations 1, 99 and 500 (top); stream-
lines and velocity modulus (bottom)

6 Conclusions and Perspectives

In this paper, we have presented an efficient method for obtaining anisotropic
adapted meshes based on Riemannian metric specifications. This approach is
based on a modification of the classical Delaunay kernel and involve local mesh
modification operations. The results obtained so far in the numerical simula-
tions are promising and confirm the cogency of the local modification strategy.
The next stage will be to handle dynamically evolving domains where both the
geometry and the topology of the domains change in time.
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1 Introduction

The anisotropic mesh adaption techniques in the last decade have dramatically
improved the numerical simulations accuracy of complex problems. An optimal
anisotropic mesh adaption consists in refining and coarsening the mesh, by using
a metric to specify stretching directions, in order to accurately capture physical
anisotropy such as shock waves, contact discontinuities, vortexes, boundary lay-
ers and free surfaces. Thus, we propose in this paper, an anisotropic a posteriori
error estimator that controls the error due to mesh discretization in all space
directions. From the a posteriori error analysis, we obtain an optimal metric
(optimal mesh) as a minimum of an error indicator function and for a given
number of elements. The optimal metric obtained is used to build an optimal
mesh for the given number of elements. Furthermore, solutions for the physical
problems illustrated here are often more accurate on adapted meshes than those
obtained on globally-refined meshes and at a much lower cost.

The mesh adaption procedure consists in improving iteratively the couple
mesh/solution until convergence. This iterative process becomes more expensive
when we handle the complex industrial three-dimensional problems.

In this paper, we propose a dynamic parallel mesh adaption on unstructured
mesh that is powerful for computing unsteady three-dimensional problems. In
this context, we decompose the original 3-dimensional mesh adaption problem
into Ns smaller subproblems which are solved (i.e., meshed) concurrently using
P processors.

Unfortunately, the adaptive solution of unsteady problems causes load imbal-
ance among processors on a parallel machine. This is due to the fact that the com-
putational intensity is not only time dependent, but also varies spatially over the
problem domain. However, balancing dynamically the computational load is very
difficult. It requires reliable measurements of processor workload and the amount
of data transfer, as well as the minimization of interprocessor communication. For
this reason, we have built a parallel mesh partitioning/re-partitioning procedure
that is extended and customized for FEM computations [7]. The partitioning/
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re-partitioning scheme allows also to dynamically load balance the workload over
heterogeneous architectures [8].

Figure 1 depicts our framework for parallel adaptive flow computation. It con-
sists of a CFD solver and mesh adapter, with a partitioner that redistributes the
computational mesh when necessary. The mesh is first partitioned and mapped
among the available processors. The flow solver runs for several iterations, updat-
ing solution variables. Once a solution is obtained, the mesh adaption procedure
is invoked. It targets a re-meshing based on the a posteriori error estimator com-
puted from the flow solution. The old mesh is then locally adapted, generating
a new one and followed by the repartitioning procedure to load balance the new
workload.

     Partitioning

Initial mesh

Balanced mesh

Adaption

Data exchange Data exchange

Load balancingLoad balancing

Adaption Adaption

sub−mesh  1 sub−mesh  i sub−mesh  p

Flow solutionFlow solution

  New sub−mesh   New sub−mesh   New sub−mesh

Flow solution

Fig. 1. Overview of our framework for parallel adaptive flow computation

This paper is organized as follows: the first section details the notations and
notions that will be used in the sequel. The second section is devoted to the main
contribution of this paper, the generalization of Almeida’s anisotropic estimator
[1] to multi-dimensional unstructured meshes (n ≥ 3). The second major contri-
bution consists in the parallel implementation of the mesh adaption procedure,
presented in Section 3. In Section 4 we depict numerical results which exhibit
the advantage of the combined parallel mesh adaption algorithm and anisotropic
error estimator to handle accurately complex CFD problems.

2 The Optimal Adaptive Mesh Procedure

2.1 Notations and Notions

Given a polygon Ω ∈ Rd, we consider a set of triangulations {Th}. We use the
standard subspace of approximation

Vh = {v ∈ H1
0 (Ω) : v|T ∈ Pk(T )} (1)
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where Pk(T ) denotes the space of polynomials of degree k. We associate, for
each node ni, 1 ≤ i ≤ NTh

of the triangulation, a basis function ϕi ∈ Vh. For
each i, we set Si = supp ϕi.

An a posteriori error estimator for the difference between a given function
u ∈ W 2,p(Ω) and a discrete function uh which is an approximation of u ∈ Ω is
presented as,

‖u− uh‖Lp(Ω) ≤ C‖u−Πu‖Lp(Ω) ≤ C
( ∑

T∈Th

‖H(u)(x)‖p
Lp(T )

) 1
p

, (2)

where Π : W 2,p(Ω) → Vh is the Clément interpolation operator,
H(u)(x) = D2u(x)(x − xT )(x − xT ), D2u(.) is a Hessian operator and xT is
the barycenter of the element T .

The a posteriori error estimator is based on processing the function uh ∈
Vh in order to obtain a better approximation to the Hessian of u. We use an
approximation instead of the exact Hessian matrix to estimate the Lp-norm of
the error e = u− uh.

The process to obtain a recovered Hessian matrix from the function uh is
based on a technique to recover the gradient. Zienkiewicz and Zhu [9] used a
recovered gradient to estimate the energy norm of the error of the finite element
approximation (for more information on recovering first derivatives, see also
[10]). Furthermore, Almeida et al. [1] presented an upper bound of the error
‖u − uh‖Lp(Ω) that depends on the recovered Hessian and on the number of
elements,

‖u− uh‖Lp(Ω) ≤ C‖u−Πu‖Lp(Ω) ≤ C
( ∑

T∈Th

‖H(u)(x)‖p
Lp(T )

) 1
p

≤ C′N−α
Th
‖HR(uh)(x)‖Lp(Ω) (3)

where α ≥ 0 and NTh
denotes the number of elements of the mesh.

In our work, we use the Lp-norm of the recovered Hessian as an a posteriori
error estimator. To simplify the notation, the recovered Hessian HR will be noted
only H .

In what concerns re-meshing, our algorithm implies that around an arbitrary
point P of the mesh, we try to build equilateral tetrahedrons in the metric
defined by the local metric field M, according to a local topological technique.
This metric is defined in Rd by:

M(P ) =
1

h1(P )
e1 ⊗ e1 + · · ·+ 1

hd(P )
ed ⊗ ed (4)

where (ei)i=1,d are the eigenvectors of the recovered hessian H(uh(P )) and hi(P )
are the mesh sizes in the ei directions.

2.2 Anisotropic A Posteriori Error Estimator

We assume that the function uh ∈ Vh is a good approximation of the function
u. Hence, we get
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‖u− uh‖Lp(Ω) ≈ C‖H(uh(x))(x − x0) · (x− x0)‖Lp(Ω) (5)

where H(uh) is the recovered Hessian. This shows that the interpolation error
in one point x such that |x − x0| is small enough, is governed by the behavior
of the second order derivative in such point. Thus, the interpolation error is
not distributed in an isotropic way around point x0, i.e., the error depends on
direction x−x0 and the Hessian matrix value in this point, H(uh(x)). Therefore,
we suggest as in [15, 1, 16, 14, 13, 4] the use of the expression (5) as a directional
local estimator. However, the Hessian matrix is not a metric: it is not positive
definite. Therefore, the following tensor is introduced

H = RΛRT (6)

where R is the orthonormal matrix which corresponds to the eigenvectors
(ei)i=1,d of the Hessian matrix, while Λ = diag(|λ1|, ..., |λd|) is the diagonal
matrix of the absolute values of the eigenvalues of H(uh(x)). H can be also
written as follows:

H = RΛRT = |λ1|e1 ⊗ e1 + · · ·+ |λd|ed ⊗ ed (7)

Given a mesh discretization Th of Ω, we define the anisotropic error estimator
of the element T ∈ Th by

ηT =
( ∫

T

(
H(uh(x0))(x − x0) · (x− x0)

)p
dT

) 1
p

(8)

and the global estimator η by

η =
( ∑

T∈Th

ηp
T

) 1
p (9)

where x0 is the barycenter of T .
The definition of ηT can be used to get the following upper bound.

ηp
T =

∫
T

(
H(uh(x0))(x − x0) · (x− x0)

)p
dT (10)

Substituting (7) in (10) we get,

ηp
T =

∫
T

( ∑
i=1,d

|λi(x0)|[ei(x0)⊗ ei(x0)](x− x0) · (x− x0)
)p
dT

=
∫

T

( ∑
i=1,d

|λi(x0)|[ei(x0) · (x− x0)]2
)p
dT

If we write x − x0 in the eigenvectors basis: x− x0 =
∑

i=1,d

xiei where |xi| ≤ hi,

the projection of x− x0 on ei direction is [ei · (x− x0)]2 = x2
i ≤ h2

i and then,
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ηp
T ≤

∫
T

( ∑
i=1,d

|λi(x0)|h2
i

)p
dT (11)

We notice that an optimal mesh regarding a solution field u is the one that
is aligned with this solution. It means that the shape of each element in the
mesh is such that the local error in any direction attains the same value. This is
equivalent to the fact that the local error in the principal directions of curvature
is constant per element i.e.

|λ1|h1 = · · · = |λd|h2
d = cte. (12)

Then, the stretching of the element T is defined as

s1T :=
h1

h2
=

( |λ2|
|λ1|

)1/2
, siT :=

hi

hi+1
=

( |λi+1|
|λi|

)1/2
, s(d−1)T :=

hd−1

hd
=

( |λd|
|λd−1|

)1/2

(13)

where hi are sorted in the decreasing order, i.e., h1 ≥ h2 ≥ · · · ≥ hd. Combining
(11) and (12) we get

ηp
T ≤ |T |

(
d|λd(x0)|h2

d

)p (14)

where |T | is the volume of element T .
Finally, we obtain the following upper bound of the local error estimator

ηT ≤ d|T | 1p |λd(x0)|h2
d (15)

This shows that the local estimator is bounded by the maximum of the second
order derivative in the barycenter of the element times the square of the longitude
in this direction.

We may introduce as the local estimator the above upper bound and is given
by

ηT = d|T |
1
p |λd(x0)|h2

d (16)

In the next section, we define a minimization problem where the functional is
the error indicator. The solution of this problem is the metric used to construct
an optimal adapted mesh.

2.3 Optimal Mesh as a Solution of an Optimization Problem

Let Th denote the current finite element discretization of the domain Ω, uh

denotes the approximate solution associated to the mesh Th, hold(P ) describes
the local mesh size at node P in the direction of the maximum value of the
directional second order derivative at the point P . Then, given the number of
desired elements NT ′

h
in the new adapted mesh, the optimal mesh adaptive

procedure generates a new mesh, T ′
h, such that the new distribution hnew(P ),

for all P ∈ Th minimizes the global estimator error. Hence, the optimal mesh
adaptive procedure looks for an optimal mesh as a solution of the following
constrained optimization problem
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Find hT = {h1T , · · · , hdT}, T ∈ Th that minimizes the cost function

F (hT ) =
∑

T∈Th

(
ηT

)p

under the constraint NT ′
h

= C−1
0

∑
T∈Th

∫
T

d∏
i=1

1
hiT

dT

(17)

where C0 is the volume of a regular tetrahedron. In the constraint equation, the
number of desired elements is obtained as follows:

|Ω| =
∑

T∈Th

|T |M = NT ′
h
C0 =

∑
T∈Th

∫
T

det(M) dx =
∑

T∈Th

∫
T

d∏
i=1

1
hiT

dx. (18)

The optimization problem (17) was studied in the case of two dimensional meshes
(d = 2) in [1]. Here, we generalize the study to three dimensional unstructured
meshes. The main difficulty of the 3D analysis is, that there are different direc-
tions of stretching, in opposition to 2D case where there is only one direction.
The following theorem generalizes the anisotropic error estimator proposed in
[1] to three dimensional unstructured meshes.

Theorem 1. For d = 3, the optimization problem (17) has a unique solution
and is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h3T =

[
β

(2p+3)
3 C1T

∫
T C2T dT

] 1
2(p+3)

h2T = s2Th3T

h1T = s1T s2Th3T

(19)

where

C1T = 3pC0s1T s2
2T |λ3|p, C2T = C−1

0
1

s1T s2
2T

and

β
1

2
3 (p+3) = N−1

T ′
h

∑
T∈Th

{( 1∫
T

C2T dT

) 1
2
3 (p+3)

∫
T

C2T

[ 2p + 3

3
C1T

] 1
2
3 (p+3) dT

}
.

Proof. Let us consider the following optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find hT = {h1T , h2T , h3T }, T ∈ Tn such that minimizes the cost function

F (hT ) =
∑

T∈Th

|T |
[

3|λ3|h2
3T

]p

under the constraint NT ′
h

= C−1
0

∑
T∈Th

∫
T

3∏
i=1

1
hiT

dT

(20)
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Let s1T = h1T

h2T
and s2T = h2T

h3T
be the two stretching directions of the element T

in R3. Then, we write h1T and h2T as a function of s1T , s2T and h3T :

h1T = s1T s2Th3T , h2T = s2Th3T (21)

The volume of a tetrahedron T on the metric space can be written as:

|T |M = |T | det(M) → |T | = |T |M det(M)−1 = C0 h1Th2Th3T . (22)

where C0 =
√

2
12 is the volume of a regular tetrahedron. Thus, with the variable

change (21), the 3D optimization problem becomes a 1D optimization problem
such as the unique value to look for is h3T⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find h3T , T ∈ Tn that minimizes the cost function

F (h3T ) = C0

∑
T∈Th

3ps1T s
2
2T |λ3|ph2p+3

3T dT

under the constraint NT ′
h

= C−1
0

∑
T∈Th

∫
T

1
s1T s2

2T

1
h3

3T

dT

(23)

Introducing the following notations

C1T = 3pC0s1T s
2
2T |λ3|p, C2T = C−1

0

1
s1T s2

2T

and γT =
1

h3
3T

. (24)

The minimization problem can be then written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find γT , T ∈ Tn such that minimizes the cost function

F (γT ) =
∑

T∈Th

C1T γ
− 2p+3

3
T dT

under the constraint NT ′
h

=
∑

T∈Th

∫
T

C2T γT dT

(25)

which is equivalent to the following min-max problem

minγT maxβ L(γT , β) = F (γT )− β
[
NT ′

h
−

∑
T∈Th

∫
T

C2T γT dT
]
. (26)

The solution of this min-max problem is given by

∂L
∂γT

= 0 ⇒ −2p + 3
3

C1T γ
− 2

3 (p+3)

T + β

∫
T

C2T dT = 0 (27)

∂L
∂β

= 0 ⇒ NT ′
h
−

∑
T∈Th

∫
T

C2T γT dT = 0. (28)
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From (27) we get

γT =

[
2p+3

3 C1T

β
∫

T
C2T

] 1
2
3 (p+3)

. (29)

and substituting the expression of γT in (28) we obtain

β
1

2
3 (p+3) = N−1

T ′
h

∑
T∈Th

{( 1∫
T
C2T

) 1
2
3 (p+3)

∫
T

C2T

[2p + 3
3

C1T

] 1
2
3 (p+3)

dT
}
. (30)

From the definition of the third equation of (24)

h3T =
( 1
γT

) 1
3

=

[
β

(2p+3)
3 C1T

∫
T

C2T dT

] 1
2(p+3)

(31)

We finally get the optimal value of h3T and then h1T and h2T thanks to expres-
sion (21) . �

Remark 1. We can get the same proof for d > 3, and that by using a recurrence
argument. The generalized form of the theorem can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hdT =

[
β

(2p+d)
d C1T

∫
T C2T dT

] 1
2(p+d)

hiT =
( d−1∏

k=i

skT

)
hdT , 1 ≤ i ≤ d− 1

(32)

where

C1T = C0d
p
( d−1∏

i=1

si
iT

)
|λd|p, C2T = C−1

0

1( d−1∏
i=1

si
iT

) and

β
1

2
d

(p+d) = N−1
T ′

h

∑
T∈Th

{( 1∫
T C2T

) 1
2
d

(p+d)

∫
T

C2T

[2p + d

d
C1T

] 1
2
d

(p+d)
dT

}
. �

We know now the optimal distribution of the element’s shapes and the stretching
directions that are given by the eigenvectors of the recovered Hessian as well as
the optimal metric that will be used to modify the background mesh. Both are
used as an input of the mesh generator tool in order to obtain a new (optimal)
mesh. The mesh generator used here and its parallelization will be described in
the following section.
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3 Parallel Mesh Generation

In this section, we review a parallel mesh generation and adaption procedure
based on a topological mesh generator. In the first part (3.1) we describe briefly
the sequential mesh generator MTC and then (section 3.2) we illustrate the
strategy adopted to parallelize this mesh generator.

3.1 Mesh Generation

MTC is a mesh generator developed by Thierry Coupez at the Ecole des Mines
de Paris, Center for Material Forming, Sophia Antipolis. It is based on the idea
to improve iteratively, an initial unsatisfactory mesh by local improvements.

MTC mesh generator re-meshes the initial mesh iteratively by a local mesh
optimization technique. This technique consists in local re-meshing of cavities
formed by small clusters of elements in order to increase the “quality” of the
elements of the cluster. In the re-meshing process, two principles are enforced:

• The minimal volume, which assures the conformity of the mesh, with no
element overlaps: let Ti(C) denote the i-th set of elements T filling the local
cavity. Following the minimum volume principle we choose as an optimal
(possibly not unique) re-triangulation of the cavity the one satisfying∑

T∈Ti(C)

|(V olume)(T ))| → min, (33)

where the minimization is done over a small set i = {1, . . . , I} of possi-
ble triangulations Ti(C) of elements (Fig. 2 right) connecting the nodes on
the border of the cavity, or other nodes like the cavity barycenter, with all
boundary faces.

Fig. 2. Local mesh optimization process in MTC
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• The geometrical quality Q(T ), which is evaluated for each element. If
the minimum of (33) is not unique, this criterion picks among all admissible
cavity re-triangulations the one improving the geometrical quality of the mesh
by improving the quality of the worst element of the triangulation.

While the former criterion assures the conformity of the mesh, if the initial
mesh was conforming, the latter handles improvements of element shape, size,
connectivity, etc., depending on the quality function Q(T ). Usually, the quality
function Q(T ) is a function of the geometry of the element T and the prescribed
background metric, which give together a measure for the element size and the
element form (aspect ratio). For further details see [2].

Fig. 3. Illustration of the strategy used to parallelize the mesh generator. From the
top to the bottom, we show the successive steps of parallel repartitioning and parallel
re-meshing by keeping interfaces unchanged.
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3.2 Parallel Mesh Adaption Procedure

The parallelism of the mesh generator MTC is performed by partitioning/
repartitioning the initial mesh into submeshes. The individual submeshes are
refined/derefined or adapted to an error estimator by using sequential MTC
techniques. In order to achieve mesh conformity and correctness, the interface
faces between the submeshes should be subdivided the same way in all submeshes
that share them to avoid the non conforming points throughout the process. For
this reason, we have chosen to keep interfaces unchanged during the local (inside
each subdomain) re-meshing and then to move the interface inside the domain
in order to enable re-meshing in a next phase. Figure (3) shows this strategy ap-
plied to a simple 2D mesh with 6 submeshes partitioned onto 6 processors. The
partitioning/re-partitioning of a mesh is performed in parallel using a generic
graph partitioning that is extended and customized for FEM computations. This
software was developed as part of the DRAMA project [7].

4 Numerical Results

Using the anisotropic adaption technique described in Section 2 and 3, we study
the evolution of the error regarding the number of mesh elements on analytical
functions, in two and three dimensions. The global a posteriori error estimator
defined in (9) is used here to construct an optimal mesh with respect to the L2

error estimator. The global error estimator becomes then:

η = {
∑

T∈Γh

(ηT )2}1/2 (34)

4.1 2D Analytical Cases

Let us consider the following function

f(x, y) = tanh(100y− 50 + 20sin(−4x+ 4))), (x, y) ∈ Ω = [0, 1]× [0, 1] (35)

We represent on Fig.4 (left) the analytical function f defined on a square of
size [0, 1]×[0, 1]. The Hessian of the solution is then built by means of a double L2
projection technique. With a number of elements equal to 2000 the minimization
process leads to a new size distribution and the metric tensor generates a new
adapted mesh described on Fig.4 (right). The final anisotropic mesh obtained is
aligned with the analytical solution. We are now interested in the convergence
of the L2 global estimator regarding the number of elements in the mesh. For
this function, a convergence of order 2 is reached Fig.5.

4.2 3D Analytical Case

We choose now a more complex function in 3D in order to check the efficiency
of our adaption technique.
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Fig. 4. Visualization of the function f (left) on the adapted mesh (right)

Fig. 5. Evolution of the L2 error vs. the number of elements in the mesh for a 2D
analytical test case

h(x, y, z) = tanh((x+ 1)20(y− 0.5)9z), (x, y, z) ∈ Ω = [0, 1]× [0, 1]× [0, 1] (36)

We represent on Fig.6 (left) the analytical function h defined on a cube of size
[0, 1] × [0, 1] × [0, 1] and, after the mesh adaption strategy, the resulting mesh
is depicted in Fig.6 (right). The number of elements targeted is of 100000. As
in 2D case, the mesh emphasizes well with the solution of the analytical func-
tion. Moreover, we overcome with success the difficulty occurring in the corners.
Indeed, the steep change of directions in the corner regions may be cause of ele-
ment distortions. We can show that, with this more complex analytical solution
and in 3D, we also reach a convergence of order 2 in what concerns the L2 error
(Fig.7).

4.3 Dynamic Adaption Flows

In this paper, we apply our mesh adaption technique to simulate complex
multiphase problems involved in manufacturing processes like Water-Assisted
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Fig. 6. Visualization of the function h (left) on the adapted mesh (right)

Fig. 7. Evolution of the L2 error vs. the number of elements in the mesh for a 3D
analytical test case

Injection Molding (WAIM). The simulation of the process needs an accurate
description of the water evolution. The anisotropic strategy aims at improv-
ing multiphase flow computations by allowing a better description of physical
parameters that characterize strongly heterogeneous flows. Flow equations are
solved by considering heterogeneous incompressible Navier-Stokes equations cou-
pled with the heat equation. The water is supposed a newtonian fluid whereas
the polymer is considered non newtonian: its viscosity described by WLF and
Carreau Yasuda laws, respectively, for the dependency on the temperature field
and on the shear rate.⎧⎪⎪⎨⎪⎪⎩

ρ∂v
∂t + ρ∇v · v −∇ · (2ηε(v)) +∇p = ρg

∇ · v = 0
ρ = 1Ωwaterρwater + (1− 1Ωwater)ρpolymer

η = 1Ωwaterηwater + (1− 1Ωwater)ηpolymer

(37)
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where ρ,η,v,p,g represent respectively the density, viscosity, velocity, pressure and
gravity fields. We denote by ρwater, ηwater, ρpolymer, ηpolymer the density and
viscosity of the water and the polymer. The Navier Stokes equations are solved
with a mixed finite element formulation. We consider a linear and continuous
velocity enriched spatial discretization (P1+/P1).

⎧⎪⎪⎨⎪⎪⎩
ρC( ∂T

∂t
+ −→v · −−→∇T ) − ∇ · (k

−−→∇T ) = f on Ω×]0, tn[
T (−→x , t) = Timposed on Ω×]0, tn[
T (−→x , t = t0) = T0(

−→x )
η(T, γ̇) (CarreauY asuda/WLF ) Computation of the thermodependent viscosity

(38)

We follow the polymer/air and water/polymer interfaces with two Level Set
functions [12]. The Navier Stokes equations will provide us the velocity and
pressure fields and this same velocity will transport the Level Set functions
whose zero iso-values represent the interfaces. Therefore, a good description of
the interfaces depends on the accurate resolution of the coupled problem. The
Level Set strategy applied here is based on a new approach that allows to keep
an unitary gradient for the Level Set function without regularizing it periodically
with an Hamilton-Jacobi Equation [12].

2D dynamic adaption flows

We apply our adaptive strategy on 2D dynamic flows. We aim to simulate the
WAIM process on a 2D cavity. We impose at the entrance of the cavity a constant

(a) (b) (c)

(d) (e) (f)

Fig. 8. Evolution of the polymer/air and water/polymer fronts during the water as-
sisted injection process
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(a) (b)

Fig. 9. Zoom in the mesh

velocity field of 0.1m.s−1 in order to be close to the industrial process and to
fill the cavity in two seconds. During the first time of the simulation only the
polymer is in the cavity Fig.8 (a). Then we change the boundary conditions
for the Navier-Stokes equations and we impose a water velocity of 0.2m.s−1

at the same entrance. Thus, the water pushes the polymer outside the cavity
(Fig.8 from (b) to (f)). The mesh adaption strategy is applied on a reconstructed
Level Set function(combination of the polymer/air and water/polymer Level
Set functions) and the number of elements aimed is of 20000. Notice that the
interface is well captured thanks to anisotropic mesh refinement around the
interface, whereas the isotropic region is derefined in order to satisfy the number
of elements constraint.

A zoom in the mesh Fig.9 shows us the accuracy of our method.

3D industrial Water Assisted Injection Molding case

The aim of this section is to study the efficiency of our adaptive strategy on an
industrial 3D WAIM process Fig.10. So as to achieve our simulation we extend
to 3D space the coupled system described on section 4.3. Few seconds before
the water injection the cavity is already filled with the polymer. For this specific
simulation the adaption strategy is applied on the water/polymer Level Set
function(and not as in the 2D dynamic case on the two Level Set functions).

Fig. 10. Water Assisted Injection Molding Cavity
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(a) (b)

(c) (d)

Fig. 11. Evolution of water/polymer fronts during the water assisted injection process

During the water injection and regarding a certain percentage of injected water
a new mesh is generated dynamically.

The simulation is run onto 16 processors and we fix a constraint of 10 millions
of elements. A cut of the mesh allows to depict the water tracking inside the
cavity at different time of the simulation Fig.11. The mesh follows dynamically
the evolution of the water. The adaption process allows an accurate description
of the water vein and a considerable gain of CPU time, since, far from the
water/polymer front, the size of the elements increases. Therefore the number
of unknowns of our system is dramatically reduced.

5 Conclusions

We have presented a dynamic parallel mesh adaption procedure. It is based
on the definition of an anisotropic a posteriori error estimator, the search of the
optimal mesh (metric) that minimizes the error estimator and the use of the serial
mesh generator (MTC) in a parallel context. The parallelization strategy consists
in balancing dynamically the workflow by repartitioning the mesh after each
re-meshing stage. The numerical 2D and 3D applications show that the proposed
anisotropic error estimator gives an accurate representation of the exact error.
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It was shown also, that the optimal adaptive mesh procedure provides a mesh
refinement and element stretching which appropriately captures interfaces for
industrial injection polymers problems. Finally, the anisotropic adapted meshes
provide a highly accurate solutions that are often better than those obtained on
globally-refined meshes and at a much lower cost.
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locale. In Revue européene des éléments finis 9(4), 403–423 (2002)

3. Coupez, T., Digonnet, H., Ducloux, R.: Parallel meshing and remshing. Appl.
Math. Modelling 25(2), 83–98 (2000)

4. Mesri, Y., Alauzet, F., Loseille, A., Hascoet, L., Koobus, B., Dervieux, A.: Contin-
uous metric for computational fluid dynamics. CFD Journal 16(4), 346–355 (2008)

5. Tam, A., Ait-Ali-Yahia, D., Robichaud, M.P., Moore, M., Kozel, V., Habashi,
W.G.: Anisotropic mesh adaptation for 3D flows on structured and unstructured
grids. Computer Methods in Applied Mechanics and Engineering 189(4), 1205–
1230 (2000)

6. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204,
633–665 (2005)

7. Basermann, A., Clinchemaillie, J., Coupez, T., Fingberg, J., Digonnet, H., Ducloux,
R., Gratien, J.M., Lonsdale, G., Maerten, B., Roose, B., Walshaw, C.: Dynamic
load balancing of finite element applications with the DRAMA library. Appl. Math.
Modelling 25(2), 83–98 (2000)

8. Mesri, Y., Digonnet, H., Guillard, H.: Mesh Partitioning forParallel Computational
Fluid Dynamics Applications On a Grid. In: Finite Volumes for complex applica-
tionsIV, pp. 631–642. Hermes Science Publisher (2005)

9. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori
error estimator. Part 1. The recovery technique. Int. J. Numer. Meth. Eng. 33,
1331–1364 (1992)

10. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteri-
ori error estimator. Part 2. Error estimates and adaptivity. Int. J. Numer. Meth.
Eng. 33, 1365–1382 (1992)

11. de Cougny, H., Shephard, M.: Parallel volume meshing using face removals and
hierarchical repartitioning. Comp. Meth. Appl. Mech. Engng. 174(3-4), 275–298
(1999)
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Summary. This paper presents a procedure for computing fluid-structure interaction
problems when the boundaries of the domain undergo large displacements. The algo-
rithm is based on both mesh motion and mesh adaptation techniques. More specifically,
we use a node repositioning algorithm based on an elastic analogy together with a mesh
adaptation procedure based on local mesh modifications [1]. This paper also includes a
new technique for eliminating sliver tetrahedra. Some computational results are finally
presented that include statistics on mesh quality measures.

1 Introduction

This paper deals with the issue of computing fluid-structure interaction (FSI)
problems with large displacements of the structure. The most common way of
dealing with FSI is to adopt an Arbitrary Lagrangian Eulerian (ALE) formula-
tion of the fluid equations. ALE formulations allow to take into account small
motions of the nodes in the fluid caused by the displacement of the structure.
This approach suffers from obvious limitations as node repositioning cannot al-
ways provide a valid mesh when significant displacements or deformations of the
structure are considered.

One way of addressing this problem is to remesh the entire domain when the
displacements of the structure are too large to be handled [2, 3]. In this work,
we rather use local mesh modifications [1, 4, 5, 6] both to optimize the quality
of the tetrahedra and to comply a mesh size field. This approach is globally
advantageous compared to global remeshing:

• Local solution projection procedures can be built in a way that ensures local
conservation [4],

• The mesh remains unchanged in large parts of the domain,
• Local mesh modifications can be performed in parallel, enabling transient

adaptive simulation to run on parallel computers [5].

There exist a small number of other approaches to handle large mesh defor-
mations, among which the sliding mesh techniques [7]. Compared to local mesh

� Fonds de la Recherche Scientifique (FRS-FNRS), Belgium.
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modifications, they have the disadvantage of requiring a flux computation at
the interface and working with non coinciding meshes. The overset grid meth-
ods [8] are also developed in the literature but require grid assemblies and donor
cell search processes. The local mesh modification technique has a unique mesh
and a single prescribed boundary motion, which leads to a conceptually simple
method and robust mesh movements [5].

Transient adaptive computations using local mesh modifications have already
been applied to transient multiphase flow simulations in [9]. In this previous
work, the mesh was adapted in order to capture the interface between two fluids,
described by a level set function. In this paper, we extend the method to FSI
problems.

In this context, two new issues have to be addressed. The first issue is the for-
mulation of the mesh motion problem. In FSI, only the motion of the boundaries
of the domain is prescribed. Typically, some kind of elastic analogy, possibly with
a variable stiffness [10], is used to extend this motion inside the domain. Here,
we do not make the assumption that the boundary motion is small or that the
volume of the domain remains unchanged. An elastic approach does not give any
guarantee on the validity of the mesh for large displacements. Even when the
motion is limited, ill-shaped elements are produced in the process. This is the
second issue. A new efficient procedure is presented that enables to eliminate all
ill-shaped elements that are inevitably produced during the mesh motion.

The remainder of this paper is organized as follows: the first section introduces
the different edge size fields. Section 3 describes the set of local mesh modification
operators while section 4 presents the ill shaped elements elimination algorithm.
In section 5, we recall the principles of the elastic analogy for mesh motion
and discuss the choice of local element stiffness. The global procedure is then
described in section 6. Section 7 presents some numerical results.

2 Mesh Size Field

The aim of the mesh generation process is to build elements of controlled shape
and size. Mesh generators are usually able to adapt to a so called mesh size field
(see for instance [11, 1]). An isotropic mesh size field is a scalar function δ(x, t)
that defines the optimal length of an edge at position x of the domain and at
time t.

We typically define the non-dimensional length Ltr
e of edge e as

Ltr
e (t) =

∫
e

δ−1(x, t)dl. (1)

The quantity Ltr
e represents the number of subdivisions of edge e that are nec-

essary for having an edge that has exactly the right size with respect to the size
field.

There are lots of ways to define a size field: some are based on rigorous error
estimation procedures [12] but there are lots of heuristics. For example, it is often
considered that mesh size should be smaller near boundaries: when dealing with
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viscous flows, a large part of the vorticity is created near the walls, when dealing
with solid mechanics problems, stress concentration are usually located near the
boundaries.

We define d(x, t) as the distance to the closest boundary at time t. This
distance can be computed in place using the Approximated Nearest Neighbor
Algorithm [13]. A first mesh size field δ1(x, t) is computed as follows:

δ1(x, t) = δsmall
1 + α1(x, t)(δ

large
1 − δsmall

1 ),

where

α1(x, t) =

⎧⎪⎨⎪⎩
0 if d(x, t) ≤ dmin

1
d(x,t)−dmin

1
dmax
1 −dmin

1
if dmin

1 < d(x, t) < dmax
1

∞ if d(x, t) ≥ dmax
1

with δlarge
1 and δsmall

1 a large and a small desired mesh sizes, dmax
1 and dmin

1

two field values that define the zone of refinement. An example of use of δ1 is
presented on figure 1.

Fig. 1. Mesh adapted using the distance to boundaries

Other size fields δ2(x, t), δ3(x, t), . . . can be defined:

1. mesh sizes prescribed at model vertices and interpolated linearly on model
edges;

2. prescribed mesh gradings on model edges (geometrical progressions, ...);
3. mesh sizes defined on another mesh (a background mesh) of the domain;
4. mesh sizes that adapt to the principal curvature of model entities.

The size field δ(x, t) is computed, at time t, as the minimum of all size fields. It
is usually bounded by upper and lower values of mesh sizes.

In an ideal mesh, each edge has an adimensional length Ltr
e = 1. This ideal

situation cannot be attained in practice. In the adaptation procedure one has to
decide whether an edge is acceptable, i.e. find a range [Llow, Lup] for which an
edge is considered to have a good size. Then a long edge has a size Ltr

e > Lup

and a short edge has a size Ltr
e < Llow.

In [1], the authors show that choosing a too narrow range for acceptable edge
sizes may lead to infinite loops between splits and collapses. In § 6 and § 7, we
show the influence of this interval on the mesh quality and on the number of
infinite loops.
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3 Local Mesh Modifications

The three basic local mesh modifications are the edge split, the edge collapse and
the edge swap. Other operators like face swap and some compound operators
are also used in this work.

There are two ways of dealing with long edges. The first one consists in tagging
every long edge of the mesh. Then, every tetrahedron of the mesh is subdivided
using a template that is function of the number of edges that have been split.
The second manner consists in splitting all tetrahedra surrounding a long edge,
and then proceed to the next edge. The latter approach has been used because it
is simpler (only one template has to be defined), more robust (no Steiner point
has to be introduced) and (surprisingly) more efficient. Moreover, we have found
out that both methods lead to meshes with elements of similar qualities. The
edge split operator is depicted on figure 2.

(a) (b)

Fig. 2. Edge split operation: (a) initial cavity, (b) cavity after the edge split

When a short edge is found, an edge collapse is applied. The edge collapse
operator (see figure 3) removes an edge and all its bounding elements from the
mesh by merging its two extremities at one of their locations.

(a) (b)

Fig. 3. Edge collapse operation: (a) initial cavity, (b) cavity after the edge collapse

The edge swap consists in remeshing the cavity surrounding the edge with
the aim of improving the worst element shape in that cavity. Figure 4(a) shows an
edge to be swapped that is surrounded by five tetrahedra. Figures 4(c), (d) and
(e) depict three of the five possible configurations after the swap. The retained
configuration is the one that has the best minimal element quality in the cavity.

The face swap removes a face and replaces it by an edge, leading to the
creation of three tetrahedra instead of two. This operation can be seen as the
inverse edge swap with n = 3.

The face collapse operator can be seen as the compound of and edge split
and an edge collapse. The operation is depicted on Figure 5. One of the edges of
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(a) (b) (c) (d) (e)

Fig. 4. Edge swap operation: (a) initial cavity with n = 5, (b) mean surface that is
going to be triangulated, (c),(d) and (e) three possible configurations after the swap

(a) (b) (c)

Fig. 5. Face collapse operation: (a) initial tetrahedron, (b) split of an edge of the
concerned face, (c) collapse of the new edge on the new vertex

the face is split and the resulting new edge is collapsed on the new vertex. This
operation is particularly well suited to eliminate an ill-shaped element that has
a face with a small ratio area/edge lengths.

The double edge split collapse compound operator consists in splitting
two edges of a tetrahedron and then collapsing the edge joining the two new
vertices. This operator is used when a tetrahedron with a small volume has two
edges nearly intersecting. The operation is depicted on Figure 6.

(a) (b) (c)

Fig. 6. Double edge split + edge collapse operation: (a) initial tetrahedron, (b) situa-
tion after the edge splits, (c) situation after the edge collapse

4 Sliver Tetrahedra Handling

A tetrahedron is said to be a sliver when it has a small volume and no short edge.
Such a tetrahedron can be classified in one of the two categories [14] depicted
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(a) (b)

Fig. 7. Classification of the sliver tetrahedra: (a) type I, (b) type II

on figure 7. Type I slivers are tetrahedra in which two edges almost intersect. In
type II slivers, one vertex is very close to its opposite face. The determination
of the sliver type is important because it gives a useful information about the
best local mesh modification that can be applied in order to eliminate it. The
projection algorithm presented in [1] is used in this work to determine the type
of sliver.

In FSI, when the mesh motion solver is pushed to its limits, it inevitably
generates slivers near the boundaries undergoing a motion. In [1], an algorithm
selecting the local mesh modifications to be applied was proposed to eliminate
most of them. In this work, we propose an extension to this algorithm that
eliminates more slivers.

A new sequence of mesh modification operations is proposed in Table 1. The
operations are sorted with respect to their average efficiency to eliminate slivers
of type I and II. The efficiency measure that we have used takes into account
both the rate of success of eliminating slivers and CPU time consumption of the
given operator. The rates of success of the different operations have been deduced
from various test cases. Some of them are presented in section 7. We notice that
the vertex motion is the very last solution as it is highly probable that the
tetrahedron becomes a sliver again after the next step of the boundaries motion.
The target location for the motion is computed with the method proposed in [15].

Note that those sequences are designed to be part of the sliver elimination
algorithm inserted in the global adaptation procedure presented in section 6.
Other sequences could be more efficient if the global procedure was modified.

In this work, we consider that eliminating the slivers is more important than
enforcing locally the length criterion, which means that an operation that can
eliminate a sliver or at least improve the local quality is performed, even if it
creates long or short edges. The long or short edges will be eliminated later on
by the global procedure but only if they do not create a sliver tetrahedron (see
section 6.2).

The construction of the list of sliver tetrahedra is made by computing the
quality of every element of the mesh. The quality measure is chosen to be the
cubic mean ratio [16], defined by

η3 = 15552
V 2(∑6

i=1(Li)2
)3 , (2)
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Table 1. Sequence of local mesh modifications attempted to eliminate a sliver

Sliver type Priority level Local mesh modification

I 1 Split one of the two key edges
2 Collapse one of the edges of the tetrahedron
3 Split both key edges and collapse the new interior edge
4 Split one of the key edges and collapse the new vertex
5 Swap one of the two key edges
6 Relocate a vertex

II 1 Collapse one of the edges of the tetrahedron
2 Collapse the key face
3 Swap any of the edges bounding the key face
4 Swap the key face
5 Relocate a vertex

with V the volume of the element and Li the length of the ith edge of the
element. The 15552 factor is set to scale η3 such that it ranges from 0 to 1. Its
value is 1 for an equilateral tetrahedron and 0 for a flat tetrahedron. An element
is considered as a sliver if its quality is under a certain threshold Tsliver . In all
simulations presented in this paper, Tsliver is set to 0.01.

5 Mesh Motion Solver

In FSI problems, the structure imposes its motion to some of the boundaries of
the fluid domain. Moving only the boundary nodes leads to the generation of ill
conditioned tetrahedra. A way to circumvent partially this issue is to relocate
the nodes of the volume using a linear elasticity analogy [17, 6].

A linear elastic problem is solved every time the mesh is moved. Here, we
use the approach of [10] in which a stiffness alteration based on the Jacobian
of the elements is used to stiffen the smaller elements. The corresponding finite
element formulation is written as follows. Consider the vector of displacements
of the nodes yh ∈ Sh, where Sh is the piecewise linear nodal finite element
space. The modified energy of deformation of a tetrahedron e submitted to a
displacement yh (with the corresponding strain and stress tensors ε and σ) is
written as:

1
2

∫
e

[
ε(yh) : σ(yh)

]e
Je

(
J0

Je

)χ

dv, (3)

where χ is the stiffening parameter and J0 a fictious volume constant over the
mesh.

Figure 8 illustrates the influence of χ. With χ = 0, we observe ill shaped
elements near the walls. The elastic solver fails to achieve the mesh deformation
with positive volumes of the elements if a motion of the cube of more than 0.1×h
where h is the size of the cube is imposed. With χ = 1 and χ = 2, a motion of
1.0× h can be attained without any particular problem. In the χ = 2 case, the
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Initial mesh χ = 0.0 χ = 1.0 χ = 2.0

Fig. 8. Mesh around a cube and its deformations for various values of χ

elements are very well preserved around the cube but the quality falls outside of
the refined zone. The choice of χ = 1 seems to be a good compromise and has
been used in all the computations presented in this paper.

6 Global Mesh Modification Procedure

Our FSI procedure has two different stages: the node repositioning stage and the
mesh adaptation stage. The node repositioning step does not imply any change
in the mesh topology. As it does not need to reallocate the resources for the
storage of the topology, the solution or any data, it can be performed often at
a reasonable computational cost, that is, each time a displacement is prescribed
at the interface between the fluid and the structure. Moreover, the node reposi-
tioning is explicitly taken into account in the ALE formulation of the governing
equations and does not need any mesh to mesh interpolation. In the second
step of the procedure, the mesh is adapted using the local mesh modifications
presented in section 3 and the global size field presented in section 2.

6.1 The Mesh Adaptation Algorithm

The aim of the adaptation procedure is twofold. First, the adimensional size of
all edges of the mesh have to lie in the interval [Llow, Lup]. Then, the quality of
the resulting mesh has to be optimal. Minimal quality criterions can be expressed
for instance in terms of a minimal quality for every element and/or a minimal
mean quality of the elements.

The mesh adaptation procedure can be described as follows:
Do {

• Collapse short edges i.e. edges that have lengths Ltr
e < Llow.

• Do an edge swap loop: loop over all edges and compute the minimal quality
of the elements surrounding the edge. The quality is given by the cubic mean
ratio (equation 2). If the quality is lower than a given threshold Tswap, try to
find a swap configuration. Apply the swap if it improves the minimal quality
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in the cavity and if it does not create a long or a short edge. The threshold
Tswap is fixed to 0.1 in all the simulations presented in this paper.

• Eliminate sliver tetrahedra with the algorithm described in section 4.
• Split long edges i.e. edges that have lengths Ltr

e > Lup.

} While the mesh is modified.
The collapse loop is performed first in order to avoid memory peaks. Indeed,

the number of nodes decreases during this loop. As the edge swap loop is costly, it
is performed just after the coarsening loop, with the minimum number of nodes.
The sliver region elimination can then be performed without having to compute
any element shape, as all element qualities are computed at the previous step.

6.2 Infinite Loops

There are a few ways in which the adaptation procedure can degenerate in an
infinite loop between two or more configurations.

If the interval of tolerance for the length of the edges is not large enough,
an infinite loop between split and collapse operations can appear. Due to the
heuristic nature of the mesh adaptation, we cannot guarantee that such a loop
will never appear, even for a large interval. For that reason, a maximum number
of iterations is imposed in the global procedure. The edge length interval should
then be carefully chosen in order to strongly limit the number of infinite loops
without being too far from the unit mesh. More detailed results are presented
in section 7.

Another possibility of having an infinite loop is illustrated in Figure 9, in
which an edge split is followed by an edge collapse and an edge swap. This is
possible because the goal of the edge split and collapse operators is to respect
a criterion on edges length while the edge swaps tend to improve the quality of
the tetrahedra. A way to eliminated such a scenario is to forbid an edge swap if
it creates a long or short edge.

Finally, the operators used in the sliver regions handler can also create a set
of complex infinite loops. This possibility can be avoided if any operation that
creates a sliver tetrahedron is forbidden. Of course, as an exception, we allow
the replacement of a sliver by a better sliver.

(a) (b) (c) (d)

Fig. 9. Infinite loop between an edge swap, an edge split and an edge collapse: (a)
initial cavity, (b) cavity after the split, (c) cavity after the collapse, (d) cavity after the
swap, identical to (a)



222 G. Compère, J.-F. Remacle, and E. Marchandise

7 Computational Results

Our adaptation procedure has been evaluated on three test cases. The quality
of the meshes, the elimination of the sliver tetrahedra and the evolution of the
number of nodes are presented in the first and the second cases. The third test
case is a fluid-structure interaction computation with a very large motion of one
or two spheres in a fluid at rest.

7.1 Cylinder and Tube

This test case consists in the penetration of a cylinder in a tube, the diameters
of the objects being quite close. The initial geometry and mesh are shown in
figure 10. The cylinder has a radius of 0.9 and a length of 3.0. The tube has
the same length with an internal radius of 1.0 and an external radius of 1.2.
The initial distance between the two objects is 1.0. The two objects move with
a velocity of 1.0 for the cylinder and −1.0 for the tube. The end of the test is
fixed at time 4.0, when the objects are completely separated and the distance
between them is 1.0.

Fig. 10. Cylinder and tube test case: initial geometry and mesh

A global edge length of 0.6 is prescribed on the whole domain and both objects
are equipped with a local size field. The parameters of the local size fields for
the cylinder and the tube are{

dmin
cyl = 0

dmax
cyl = 1.0

{
δsmall
cyl = 0.1
δlarge
cyl = 0.6

{
dmin

tube = 0
dmax

tube = 1.0

{
δsmall
tube = 0.4
δlarge
tube = 0.6

For an interval [Llow, Lup] set at [0.5, 1.4], the number of nodes ranges from about
23.500 to 33.000 during the adaptation. This is sufficient to get representative
data and statistics about the mesh quality and the sliver elements handling.

A time step of 0.01 has been chosen for this test case. It corresponds to a
relative motion of the objects of 0.2dmin

cyl at each time step.
The mesh aspect obtained at different times with a time step of 0.01 and an

interval [Llow, Lup] set at [0.5, 1.4] is shown in figure 11.
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Fig. 11. Mesh aspect at different times with ∆t = 0.01, Llow = 0.5 and Lup = 1.4

Table 2. Tube and cylinder test case: statistics about sliver tetrahedra handling

Successes New sliver Failures Success rate (%)

Type I (547)

All operators 541 1 5 98.9
Edge collapse 244 3 300 44.6
Edge split 346 20 181 63.3
Double split+collapse 210 11 326 38.4
Face collapse 279 13 255 51.0
Edge swap 306 17 224 55.9
Vertex relocation 504 10 33 92.1

Type II (308)

All operators 306 1 1 99.4
Edge collapse 119 2 187 38.6
Face collapse 155 1 152 50.3
Edge swap 202 5 101 65.6
Face swap 112 6 190 36.4
Vertex motion 292 1 15 94.8

Sliver tetrahedra handling

In order to get more information about the efficiency of each mesh modification
applied in the sliver region elimination, we have run the adaptation procedure
in which the slivers handling algorithm is enhanced with a routine that tests
all operations individually on each sliver before going in the normal algorithm
of elimination. This routine has no influence on the results, but provides the
statistics shown in table 2. The first columns indicates the number of sliver
tetrahedra that the operators can eliminate without creating a new sliver. The
second column shows the number of situations in which the operator can only
eliminate the sliver by creating another sliver with a better quality, while the
third column shows the number of slivers that could not be eliminated or for
which a worse sliver would appear. The rate of success of the operator (not
including the cases in which a new sliver is created) is indicated in the last
column.
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Fig. 12. Cylinder and tube test case: comparison between intervals [Llow, Lup]: (a)
evolution of the mean quality of the mesh and (b) the number of nodes

Table 3. Tube and cylinder test case: comparison between intervals [Llow , Lup]: number
of infinite loops

Interval [0.4, 1.0] [0.4, 1.4] [0.5, 1.2] [0.5, 1.4] [0.5, 1.6] [0.5, 2.0]

Infinite loops 400 0 400 81 0 0

We can see that combining all operators do not lead to a total elimination of
the slivers but provides a very good rate of elimination. The vertex repositioning
looks attractive but we observed that a lot of slivers eliminated by a repositioning
become slivers again once a global node motion is applied. For type I slivers, the
edge split is very efficient if we notice that it is a very fast operator compared to
the edge swaps. Note that those results are influenced by the fact that the sliver
elimination is done after the edge collapse and edge swap loops and before the
edge split loop.

Mesh quality and infinite loops

A particular result that we observe in our simulations is that the mean quality
of the mesh depends on the boundaries of the interval [Llow, Lup]. Figure 12 (a)
shows the evolution of the quality for various intervals, figure 12 (b) shows the
evolution of the number of nodes in each case, while table 3 shows the number
of time steps in which an infinite loop was created.

We can see that the condition Llow < 0.5Lup is not sufficient to avoid infi-
nite loops. Indeed, there is an infinite loop at each time step with the intervals
[0.4, 1.0] and [0.5, 1.2] while some infinite loops appear with [0.5, 1.4]. We would
then recommend to use an interval with a similar range than [0.4, 1.4] or [0.5, 1.6].

We also observe that the quality is dependent on the boundaries of the interval.
If we compare the intervals [0.4, 1.4] and [0.5, 1.4], the quality seems to be better
with the largest Llow. If we look at the results for [0.5, Lup], we can see that the
quality decreases to a smaller value when Lup is bigger. These two observations
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lead to the conclusion that the quality tends to a bigger value if the interval is
smaller.

In order to get the best mean quality without running into infinite loops,
a compromise has to be found on the size of the interval. The smaller interval
which do not lead to infinite loop should be used. From the set of intervals tested
here above, our choice would turn towards [0.4, 1.4] or [0.5, 1.6].

7.2 Worm Screw

The second test case is a worm screw whirling inside a cylinder. It has been
chosen to demonstrate the capabilities of the adaptation procedure on relatively
complex geometries.

Figure 13 shows the geometry and the initial mesh of the domain at time
0. The domain is bounded by a worm screw of diameter 4.94 and length 15.6
turning with an angular speed of 1.0, and a fixed cylinder of diameter 5.2 and
length 16.2. The computation ends when a complete turn has been operated, i.e.
at t = 2π. A time step of 0.02 is chosen.

Fig. 13. Worm screw: initial geometry and mesh

The maximum size on the whole domain is set to 1.0, while a size field with
the following parameters is prescribed at every wall:

dmin
1 = 0 dmax

1 = 0.4 δsmall
1 = 0.2 δlarge

1 = 0.4

The interval [Llow, Lup] is set to [0.5, 1.6]. With these parameters, the number
of nodes ranges from 125.000 to 155.000 during the computation.

Figure 14 shows the aspect of the mesh at times 4.0 and 6.0.
The evolution of the mean quality is shown in figure 15 (a). The cubic mean

ratio tends to a value close to 0.40, which is quite similar to what was observed
in the previous test case with the same interval [Llow, Lup]. The distribution
of the quality in the final mesh is shown in figure 15 (b). The evolution of the
number of nodes is drawn on figure 15 (c). It stabilizes around 155.000.

The statistics about the elimination of the sliver tetrahedra are shown in
table 4. Every sliver is eliminated and most of them are eliminated at the first
attempts.
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(a) (b)

Fig. 14. Worm screw: cuts in the mesh at times 4.0 and 6.0
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Fig. 15. Worm screw: (a) evolution of the mean cubic mean ratio, (b) distribution of
the quality in the final mesh, (c) evolution of the number of nodes

Table 4. Worm screw: statistics about sliver tetrahedra handling

Applied (no sliver) Applied (new sliver)

Type I (1532)

Edge split 1182 0
Edge collapse 239 0
Double split+collapse 15 1
Face collapse 18 0
Edge swap 4 1
Vertex relocation 72 0
Remaining 0

Type II (1521)

Edge collapse 1430 0
Face collapse 33 1
Edge swap 17 0
Face swap 1 0
Vertex motion 38 1
Remaining 0
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7.3 Spheres Falling in a Fluid

In this test case, the mesh adaptation procedure is applied to a fluid-structure
interaction solver. The problem solved implies the motion of one or two spheres
falling in a fluid.

The fluid is governed by the incompressible Navier-Stokes equations. The
equations are discretized in a dual finite elements / finite volumes formulation.

The motion of the sphere is computed with the Newmark method and the
coupling is achieved with a CSS procedure [18] equipped with sub-iterations
cycles.

Single sphere

For this computation, a single sphere is immersed in the fluid. We fix the param-
eters of the fluid so that the Reynolds number Re is equal to 1 at equilibrium.
Due to the gravity, the sphere accelerates until the gravity is exactly balanced
by the drag force and the Archimede’s force. We fix the mass of the sphere such
that the theoretical velocity at equilibrium is 1.

Figures 16 shows the evolution of the velocity and displacement of the sphere
as well as the evolution of the mesh quality. We notice that the velocity tends
to 1 as expected and that the quality decreases slowly so that the loss along the
computation is not significant.
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Fig. 16. Single sphere test case: (a) evolution of the displacement, (b) velocity and (c)
mean quality of the mesh

Two spheres

In the next computation, the motion of two vertically aligned spheres are inves-
tigated.

The evolution of the displacements and the velocities of the spheres are shown
in figures 17 (a) and (b). We observe that from the time 1.5, the upper sphere
is aspirated by the flow around the first one. Eventually, the spheres touch and
the computation stops.

The cut of the computational mesh is represented on figure 18 for different
times as well as the pressure field.
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Fig. 17. Two spheres test case: (a) evolution of the displacements and (b) velocities
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Fig. 18. Two spheres test case: mesh and pressure field at different time steps

8 Conclusion

A procedure to handle large deformations of a mesh in FSI problems by nodes
movement and local mesh adaptation was presented. The procedure is robust
and can handle complex geometries with very large deformations of the domain.

For that purpose, a node repositioning technique with a selective treatment
for the elements previously applied for two-dimensional meshes was applied for
three-dimensional meshes.

A new adaptation procedure has been proposed in which an efficient handling
of the sliver tetrahedra is included. The procedure achieves a good quality for the
mesh and complies a mesh size field. Important parameters of the procedure like
the boundaries of the interval [Llow, Lup] were studied with a set of computations.
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In particular, some clues are given to choose them by looking at the quality,
number of nodes and production of infinite loops.

Finally, mesh deformation tests and fluid-structure computations have been
performed in order to show the potential of the presented approach.
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Summary. We present a new approach for filling arbitrary holes in Finite Element
(FE) models composed of independent meshes which are commonly used in Computer
Aided Engineering (CAE). During the preprocessing of an FE model for fluid struc-
ture simulation a closed structure hull is required in order to subsequently generate
a volume mesh representing the fluid. Today’s complex CAE models include thou-
sands of holes that need to be effectively processed. The widespread algorithms mostly
fail the special requirements in this context as they can only process holes within a
single mesh or smooth surfaces without feature lines. Extending these features into
the filling mesh is important for both the visual quality as well as the simulation re-
sults. The presented approach handles these cases and automatically detects ordinary
holes, e.g. with topological defined boundary. Additionally, holes with more complex
boundaries, e.g. defined by several independent meshes, can be specified interactively
by the user. Our hole quantification enables the user to automatically close the vast
majority of holes and substantially accelerates this preprocessing step. Furthermore,
the presented meshing algorithm offers extensive control to gain satisfying results for
the described use case.

1 Introduction

Growing standards for new industrial products require the close collaboration of
different numerical simulation disciplines during virtual prototyping using multi-
physics solvers. One example is the combination of computational fluid dynamics
and structural dynamics simulation. In order to allow the interaction between
structure and bounded or surrounding fluid the different properties of a mixed
CAE model need to be represented by capable finite elements and their interface
areas have to be coupled. Some application fields of such models are ship simu-
lation, acoustic analysis of a power train or a whole car passenger compartment.
To complete the CAE model for the latter case based on an existing structure
model the fluid volume has to be meshed by 3D finite elements in a preprocessing
step. A tetrahedral mesher requires a watertight bounding structure. Generally
this is not given because today’s car body models consist of hundreds of inde-
pendently meshed car body parts (see Fig. 1) which are connected to each other
by special finite elements.
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Fig. 1. FE models generally consist of many independently meshed parts that provide
arbitrary holes due to unmodelled parts as well as constructive cut-outs

In the application we consider a fluid mesh is generated using a hexahedral
volume growing approach. The user specifies a seed point inside the structure
model that surrounds the fluid volume. The volume mesh extends with a specified
minimal cell size in all directions until it will be stopped by any intersecting
structure. Therefore, all holes in the surrounding structure that are at least as
large as the minimal cell size need to be closed to prevent the generation of fluid
cells outside the fluid volume. Until now those holes had to be found visually by
the user or they were detected after the volume has grown to the outside. These
preprocessing steps took several days. Our approach allows for cutting down on
this processing time significantly by providing the potential for processing the
majority of those holes automatically.

Aside from ordinary holes inside a structural mesh, such as constructive cut-
outs, the CAE models also contain holes with complex boundaries, e.g. composed
and defined by more than one continuous finite element mesh. These holes, for
example, may result from missing model parts which are not available in the
current structural model, e.g. the front shield or doors. Whereas the former type
of holes can be detected automatically, the latter need to be defined interactively
by the user. We describe a method to define holes effectively and an algorithm
that allows the meshing of detected and defined holes in consideration of require-
ments included by the application area in CAE modelling. A hole classification
facilitates the meshing automation to a large extent which leads to a significant
speed-up of the overall preprocessing step.

2 Related Work

Holes in meshes are a very common problem in several parts of visualization.
They often arise in datasets derived from scanned geometry where data is missing
or as polygonization artefacts during isosurface extraction. Hence, there is a wide
range of methods – some follow a very general approach, others are tailored to
suit more special cases. All these methods are mainly developed with closed,
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oriented 2-manifold meshes in mind. In contrast to holes in scanned geometry
or resulting from surface reconstruction, holes in CAE models usually are not
erroneous parts in the model but intended constructive cut-outs or unmodelled
parts and thus may spread over numerous independently meshed parts. Thus,
the meshes involved are not necessarily oriented and 2-manifold and especially
are not closed surfaces. However, some steps in the workflow require a watertight
model in some parts. Therefore, these gaps and holes have to be closed.

The related algorithms can be split into two main categories: Volumetric ap-
proaches and geometry-based techniques. The volumetric methods split the re-
gion around a hole into inner part and outer part, usually based on the volumetric
hull. Hence, the boundary layer defines the missing surface. In [5] the model is
converted into volume representation by a signed distance function and a diffu-
sion process is applied. Thus, the function is extended through the volume until
it spans all holes which can be meshed subsequently. Additional constraints have
to be added to avoid unintended merging of surfaces. Tailored to repair meshes
from range scans, the quality of the resulting surface reconstruction is not suffi-
cient for CAE models.

A very promising algorithm to fill complex holes was presented in [8]. So-
called atomic volumes are generated by space decomposition and determined to
be either completely inside or outside the model, based on a graph representation
of the volume structure. Additionally, different topological filling styles can be
chosen by the user. Even though this is a very powerful method, it does not fit
the special needs of CAE models consisting of numerous independently meshed
parts. The same holds for the method presented in [10]. There, the holes are filled
using a context-based method: The characteristics of the surface are analysed
and parts of the mesh determined to fit the region around the hole are copied
into the hole and thus fill it iteratively. Although this gives impressive results
for surfaces resulting from erroneous surface sampling, it is not applicable to our
scenario, due to the reasons mentioned above.

Radial basis functions and the resulting implicit surface are used e.g. in [2] and
[3]. This approach was extended in [4] to recover sharp feature lines in holey areas
using an iterative and time-consuming error reduction step. Yoo [14] presents a
method capable of handling large polygon models. Domain decomposition is used
to solve the problems locally and an implicit surface is defined going through the
hole. The final mesh results from a combination of smoothing and refinement
scheme together with marching cubes.

Altogether, these methods do not fit too well the needs for filling holes in CAE
models. In this context geometrical approaches are more promising, described in
the following.

In [1] an early method for closing gaps in CAE models is presented. Neverthe-
less, only stitching and filling of small holes is performed. Newer methods are far
more flexible. In [13] an algorithm based on moving least squares is presented,
reconstructing a locally smooth surface. This limitation makes the approach
unsuitable for the more general shapes of holes in CAE models. An updated ver-
sion of this method was presented in [12] but the algorithm itself stayed mainly
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unchanged. The algorithm presented in [7] fills holes considering the curvature
of the enclosing mesh.

Another geometrical approach for filling holes in meshes is [11]. The algorithm
uses an advancing front method to close the holes incrementally. Usually, MLS
projection, evaluating the vertices’ neighbourhood to get a suitable projection
plane, is used to insert additional triangles at the front. A pro of this method
is that it is also applicable to noisy and unstructured data. By contrast, [6]
uses minimal surfaces to fill arbitrary and not necessarily plane holes. Using
dynamic programming an ideal solution for the entire problem is computed.
This approach holds the advantage of being applicable to arbitrary holes as well
as being independent of the surrounding mesh and its characteristics. On the
other hand, minimal surfaces do not always meet the requirements of FE models.

Nevertheless, the methods in [6] and [11] turned up to be most promising to
be adapted to our problem and thus were used as a base of our solution. We go
into more detail about it in the following sections.

3 Preliminaries

In the first step of the complete hole filling process the present holes in a model
have to be identified. Before we explain the detection process for holes we first
want to clarify the meaning of a hole in the scope of this work. Two classes of
holes can be distinguished exemplified in Fig. 2:

A topological hole is a hole that can be identified by topological properties,
i.e. by searching a loop of boundary edges (see Fig. 2(a)). A boundary edge in a
mesh is an edge that is adjacent to only one element.

A semantic hole is a hole that, in general, can not be identified by topological
properties. Reasons for that may be, that the hole spans over several independent
meshes or that it is not made up by boundary edges, e.g. a cut-out in a thick-
walled part. An example of a semantic hole resulting from an unmodelled part
is depicted in Fig. 2(b), the selection mechanism for semantic holes is described
in Sec. 4.

Topological holes can easily be found, so the detection process can run auto-
matically once it is started. They can be found by searching a boundary edge and
tracing connected boundary edges until a closed loop is found. This process is
repeated until all edges of the mesh have been processed. Alternatively, the user
can interactively select a seed boundary edge to start the detection. In case the
meshes may have T-joints or boundary vertices that are part of several boundary
edges, the detection algorithm has to deal with these special cases additionally.

If the mesh is not closed the described algorithm will also detect the outline
as a hole, as it applies to the above definition of a hole. Either a test has to be
applied to sort out boundaries automatically or the user has to sort out these
false holes by selection after the detection process has ended.

In most cases, semantic holes can not be identified automatically. Holes of
this class are e.g. unmeshed parts or constructive openings (see Fig. 2). In the
most complex cases these holes may appear by a certain configuration of several
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(a) Topological holes are
enclosed by a continuous
mesh.

(b) Semantic hole (yellow curve) en-
closed by several independent meshes
(coloured).

Fig. 2. In contrast to topological holes, semantic holes may not be detected auto-
matically if they do not provide a topological boundary – like this opening between
a passenger compartment and a car trunk (yellow curve) – and need to be defined
manually. The various colours define a separate mesh each.

independent meshes without any boundary edges at all, so that only the user
can identify the presence of a hole by looking at the complete model. Semantic
holes that span over several meshes but still consist of boundary edges can
be detected if information about the connectivity of the meshes is provided.
Algorithms using sophisticated heuristics may also be able to detect some of the
semantic holes that do not contain boundary edges, however they are error-prone
and it is unsure whether they produce satisfactory results when being applied
to a model consisting of hundreds of independent meshes or even whether they
will terminate at all. Thus, the user needs the possibility to manually define a
loop of edges that can be used as the hole boundary, regardless whether these
edges are boundary edges of the mesh or not.

Once all holes have been identified, they have to be closed by an appropriate
patching mesh. This mesh either may be connected with the surrounding mesh
or may be defined as a new and independent mesh. This procedure is described
in Sec. 4.

The following requirements shall hold for the meshing algorithm patching the
hole:

• Geometric features, such as constructive edges or design engineered curves,
in the surrounding mesh should be preserved.

• If neighbourhood information of boundary edges is missing (e.g. at gaps) the
algorithm still should produce acceptable results.

• The algorithm must provide interactive influence on the shape of the patching
mesh, e.g. whether it shall smoothly blend into the surrounding mesh or not.
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4 Definition of Semantic Holes

Topological holes and some of the semantic holes can be detected automatically,
but, as described in the previous chapter, complex semantic holes require user
interaction.We chose a compromise between a moderate effort for the user and
decent speed of the definition process. The user has to select few nodes on the
mesh, whereas the paths in between are calculated by a greedy algorithm, to run
as straight and short as possible. Paths along feature lines or boundary edges are
favoured by the algorithm. The most important functionality is the definition of
semantic holes across several meshes, detailed below.

The path between two selected nodes that lie on the same mesh is chosen to
run as straight and short as possible along element edges as mentioned above. In
case the next selected target node vt belongs to a different mesh an additional
test is introduced and potential connecting node pairs are retrieved: Utilizing
a bounding volume hierarchy, the minimum distance between the precedent se-
lected path node vs and the target mesh is calculated. If this distance is below
a given threshold value, the nearest node on the target mesh is queried, again
using the bounding volume hierarchy. This node vj2 and the last node along the
path on the current mesh vj1 are then a potential connecting node pair between
the two meshes (see Fig. 3).

To ensure an optimal connection, all valid connection candidates are stored
and the one fitting best the users’ expectations regarding the path run is chosen
based on three criteria:

1. The angle ρ enclosed by the vector dt (from the start node vs to the target
node vt) and the vector dj (from vs to the first connecting node vj1) should
be as small as possible, so that the resulting path runs as straight as possible
towards the target node.

2. The path length ‖dj‖ from the start node to the first connecting node is
preferred to be as short as possible.

3. The node pair distance ∆j should be as short as possible.

vs

ρ

dj

dt

∆j

vj1

vj2

vt

Fig. 3. Criteria for an ideal connection between separate meshes: 1) The angle ρ
enclosed by the straight connection dt = (vs, vt) and the connection to the candidate
node dj = (vs, vt). 2) The distance ‖dj‖ to the connecting node vj1 and 3) The distance
∆j = ‖vj2 − vj1‖ between the candidate node pair.
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Fig. 4. Selection of a semantic hole: Red
squares indicate user-selected nodes, the
red line indicates the automatically gener-
ated path in between

The angle ρ is the primary crite-
rion as it is also the most intuitive
one. However, there still may be cases
where a better angle does not result
in a good path, e.g. if the chosen node
lies on a completely different part of
the mesh which has a slightly bet-
ter angular deviation. Therefore, the
second criterion is applied. The third
one is least important criterion as it
at best has aesthetic impact. Never-
theless, if the rating for several node
pairs according to the criteria above
is equal, ∆j is used to choose the best
pair.

Figure 4 gives an example of a
user-defined selection of a semantic
hole spanning over several indepen-
dent meshes: The red squares mark the nodes defined by the user, the red line
represents the automatically generated selection path in between and thus the
border of the semantic hole.

5 Patching the Holes

The numerous small and simply shaped holes in the CAE models are usually
plane bound and thus, satisfactory patching can be applied automatically, with-
out any need of user interaction. Therefore, we adapted the approach [6], briefly
described in Sec. 2, for filling these small holes with minimal surfaces.

Nevertheless, the more complicated shaped holes and especially semantic holes
cannot be closed satisfactory with this algorithm as constructive features have
to be conserved and perpetuated into the filling mesh. For these constellations
a second approach using an Advancing Front Method was implemented and
adapted to the needs of CAE meshes, as described in the following sections. In
case the hole is too weirdly shaped for that method to be applied with moderate
user interaction, the previously mentioned minimal surface algorithm is used to
patch the hole – maybe imperfectly but sufficiently.

5.1 Filling Holes Using an Advancing Front Algorithm

For more complex shaped holes, especially those with feature lines to be perpet-
uated, another approach with supplementary user influence was needed in order
to gain more satisfactory results.Therefore, we adapted and extended an exist-
ing Advancing Front Method (AFM) [11] in order to create a patching mesh to
fill the holes. Advancing Front Methods mesh an area in an iterative manner by
inserting new nodes and elements at the borders (the so called front) of the area.
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This way the front advances into the inside of the area until it is closed. The ba-
sic concept of AFMs is pretty simple and advanced functionality and heuristics
can easily be added without having to reimplement the whole algorithm. Thus
these methods offer an easy possibility to be extended to suit a certain domain
of problems, as in our case.

For simplicity, an edge in the following section always denotes an edge being
part of the advancing front – if not stated otherwise. Without loss of generality,
the presented algorithm creates a triangulation. It can be extended to create
quadrilateral elements, desirable if the resulting mesh was used for FE simulation
and not just as a volume delimiter as in the present case.

Basic Concept

The method as described in [11] consists of two basic steps, outlined below,
denoted as makeConvex and addVertices :

α
α

α φ α > φ

Fig. 5. The basic steps of the Advancing Front Method: Connecting adjacent edges (a)
to make the front piecewise convex, and inserting new vertices to propagate the front (b)

• makeConvex searches for two adjacent edges that enclose an angle α smaller
than a certain threshold value φ. In that case a new edge is introduced that
completes those two edges to a triangle (see Fig. 5a) . Before committing
the new triangle, a test is performed to assure that no other triangles are
intersected, thus creating illegal geometry.
This step is repeated until no adjacent edges enclose an angle smaller than φ.

• addVertices adds new nodes inside the hole and connects them with the
current front in order to create new triangles and to make the front smaller
(see Fig. 5b). For each edge the new node is placed along the perpendicular
bisector of the edge. In order to fit the surrounding mesh the MLS Projection
and a biquadratic polynomial is used to calculate the final position of the
node on the surface.

These two steps are executed alternately until no more front edges exist and
hence the hole has been closed.
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Fig. 6. Inappropriate meshes resulting from interpolation with the MLS projection
method [11, 12]

β

(a) Placement of a new node along a
feature edge (red).

(b) Completely recovered feature at the miss-
ing edge of a box.

Fig. 7. Handling of feature lines during vertex insertion

Two problems arise from the method if applied as described: Enclosed fea-
ture lines are removed in the makeConvex-step and (nearly) perpendicularly
aligned hole borders result in inappropriate meshes, as the MLS projection in
the addVertices-step extends the patching mesh too far towards the surrounding
mesh border elements (see Fig. 6).

In order to solve these problems, the following changes have been made to the
original algorithm :

• During the makeConvex-step it is tested, whether the shared node of two
adjacent edges is a feature node, to avoid the cutting of feature lines.

• Instead of using MLS projection, new nodes in the addVertices-step are at
first simply placed in the plane of the adjacent element. The bending of the
mesh is applied later and the angle is a user-defined parameter.

• New nodes at feature lines are placed along the feature line in order to per-
petuate this important information.

The first extension simply introduces an additional test in which for two
adjacent edges the angle β between the element normals of the adjacent elements
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is considered (see Fig. 7(a)). If this angle is larger than a threshold angle γ, a
feature line has been detected and the two edges must not be closed by a triangle.
The further extensions are more complex and will be described in the following
sections.

5.2 Extensions to the Algorithm

Inserting Vertices with Bending Angle and Feature Line Handling

For edges that are not adjacent to a vertex on a feature line, a new node is
placed along the perpendicular bisector of the edge. This vector is the result
of the cross-product between the adjacent element normal and the edge itself
and thus lies in the plane of the adjacent element. In order to prevent, noise in
the mesh to is carried on or even increased, a user-defined support is applied.
Therefore, also the bidirectional neighbouring elements are used to calculate the
direction in which the new node is placed. These neighbours are weighted with
weights wi using a function similar to a Gaussian distribution:

wi = 1√
2π

e
1
2 i, i = 0..n− 1

The support could be as large as the whole front, which however does annul
the local approach of the algorithm and raises the computational complexity
significantly. Due to the support, a slight smoothing is applied to the front
which leads to a more robust algorithm.

In case an edge is adjacent to a feature node, this edge is treated special:
Instead of placing a node relative to an edge, it is placed along the feature
edge incident to the feature node (see Fig. 7(a)). The result of this method is
exemplified in Fig. 7(b).

User-defined Bending Angle

After the new nodes have been placed, their positions need to be optimized
in order to gain a satisfactory result. Without further treatment the algorithm
would only work well for cases, where the hole borders are aligned in such a
way, that their advancing fronts grow towards each other, e.g. for completely
flat holes. Else, the problems shown in Fig. 6 can not be resolved. For more
complex holes it is required that the patching mesh bends, either to blend well
into the surrounding mesh or to meet the user expectations – which may also
be, that the connection between the patching and the surrounding mesh shall
only be C0 continuous, e.g. when closing an open box.

The bending of the mesh is introduced by a rotation of the new nodes around
the edge, to which a new node has been placed relative to (see Fig. 8). For feature
nodes the axis is perpendicular to the feature direction, to align the rotation with
the feature line. The new nodes do not simply bend by the given angle, but their
positions are optimized relative to each other, so that the new front is as short
as possible (resulting in a quasi-minimal area triangulation). The user-defined
angle is an upper limit for the actual rotation of each node.
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In order to optimize the position of each node, the neighbours are taken
into account. Each node is rotated by at most the given angle to minimize the
distance to its neighbours, i.e. the node is as close as possible to the average of
the neighbours. Just as with the calculation of the growing direction described
in section 5.2, a support is used. The node rotation is repeated until it converges
towards a stable situation.

Fig. 8. Example of node rotation to
optimize position. Depending on the
neighbourhood, the new node vnew

could e.g. rotate downwards (vnew′ ) or
upwards (vnew′′ ).

However, two problems occur using
this approach: First, if many nodes are
collinear, the local approach fails to op-
timize the node positions for the com-
plete hole, as any movement of a node
raises the distance to its neighbours (see
Fig. 9). In fact, changes from other nodes
will propagate, however only after a very
large amount of iterations. The second
problem is, that for complex holes with
borders that are initially not oriented to-
wards each other, front parts may miss
each other as they grow, leading to either
bad and unwanted results or even to un-
solvable situations. Thus, for each node a
point on the opposite part of the front is
additionally used in the computation pro-
cess. Therefore, a plane normal to the re-
spective edge is placed through the node.
The intersection point of this plane with
the opposite part of the front is then con-
sidered as an additional neighbour (see Fig. 10). For concave bound holes special
care has to be taken to avoid the use of intersection points lying behind a node.
The opposite point is weighted by distance and the maximum distance where
this point still has influence is the user-defined parameter maxDistance. The
weight w then simply is calculated as

w =
maxDistance− distance

maxDistance

with maxDistance− distance being cropped into the range [0,maxDistance].

Node and Triangle Validation

After the nodes have been rotated, they need to be inserted into the patching
mesh along with the new triangles. First, nodes that are too close to each other
become merged into a single node to avoid delicate situations and the appearance
of cracks in the patching mesh. Then, the new triangles are tested to be valid,
i.e. they must not intersect or encroach other triangles. It is also important, that
new triangles are not too close to other ones without having nodes merged, as
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Fig. 9. Problems occurring at collinear nodes: The node vnew2 does not move as the
average neighbour vavg2 lies at the same position. Only the corner node vnew1 is able
to move to a new position vnew′

1
, close to the average neighbour vavg1 .

Fig. 10. Using the opposite point vopp on the advancing front helps collinear nodes to
bend correctly. Without that vnew would not be able to move, as the average vavg1 lies
at the same position. The new average vavg2 lies further inside the hole and enables
the node to move to position vnew′ .
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this also may lead to degenerated triangles or inappropriate situations in later
steps of the algorithm.

To improve the intersection test, we adapted the concept of fences, as de-
scribed by Schreiner et al. [9]. Fences are perpendicular extensions to an edge
which are inserted for each front edge as auxiliary geometry. A test, whether a
new triangle encroaches other boundary parts can now be implemented as an
intersection test of the new triangle against the fences of nearby edges. The min-
imum distance of the node to the fences of nearby edges is computed to check
whether a new node lies too close to other edges. If this distance is below a
certain threshold value T , the test fails and the new node is rejected.

The height of the fences is important for their efficient use. If they are too
small, front parts will still encroach each other, if they are too large, the test
might fail wrongly if fences from uninvolved parts of the front are intersected.
Schreiner et al. propose an error metric which, however, can only be used during
remeshing, where an original mesh is present the deviation can be calculated
against. As in our applications there is no original data in the hole area, we use
a factor of the average edge length of the hole boundary and a factor of the step
size at which the front advances is used for the distance threshold T .

After all tests have been passed, the new triangles are committed and the
front is updated with the new boundary edges.

Initial Mesh Bending and Adjusting Edge Lengths

When closing holes with perpendicular oriented hole borders (e.g. an open box),
the local approach would implicate a problem: Even if the user sets the bending
angle to the maximum, the mesh will not bend down completely to close the
hole evenly, due to the fact, that at some angle the nodes lie optimally to each

(a) Meshed without initial
bending.

(b) Meshed with initial
bending.

Fig. 11. Effect of user-interaction on bending: Meshing without (a) and with initial
bending (b), causing the hole to be meshed flatly
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(a) Mesh with gradual ad-
justment of edge length.

(b) Mesh with forced adjust-
ment of edge length.

Fig. 12. Effect of user-interaction edge length adjustment: Gradual (c) and forced (d)
edge lengths

other. However, the local approach is not sufficient for a real global optimization
resulting in a new minimum border length (see Fig. 11(a)).

But even if it worked correctly, another problem remains: Often, the user
wants the connection of the patching mesh with the original mesh to be only C0

continuity but the patching mesh itself to have an overall smooth gradient. Using
a large angle would not result in the expected surface, but in a quasi-minimum
surface with possibly sharp bends as the new nodes might bend more or less
freely during the optimization of their positions. Therefore, an option for an
initial maximum bend is provided. In the first iteration step, it allows the mesh
to bend freely and align in such a way, that the front parts point towards each
other. After that, the algorithm is normally executed with the given parameters.
The bending is gained by again using an opposite point of the front for each new
node when optimizing the node positions. This point however is not weighted
by distance but with a fixed, large weight to ensure that it is weighted stronger
than all other neighbouring nodes. The result can be seen in Fig. 11(b).

Another important property that can be influenced by user interaction is the
edge length of the new triangles. By default, the algorithm creates a triangulation
with roughly the same tessellation as the surrounding mesh. This is satisfactory
for most cases, however can be unnecessary. If the only requirement is a closed
hole to be used as a volume boundary, there is no need for the mesh to have a
fine tessellation. Especially for large holes, reducing the number of new triangles
can additionally have a significant impact on the time needed to mesh a hole.

Therefore, two options are provided to adjust the edge lengths of the patching
mesh. Either, the edge length is adjusted gradually, starting with the initial edge
length of the hole boundary. This results in a visually smooth connection of the
surrounding and the patching mesh (see Fig. 12(a)) and avoids gaps between
the patching mesh and the enclosing one. The other option immediately forces
the adjustment of the edge lengths by merging adjacent edges (or splitting single
edges) until the desired length is gained (see Fig. 12(b)). This introduces a certain
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error which however is no problem for the volume growing process as long as the
emerging gap is small enough, so that a volume element does not fit through.

6 Results

The hole definition interaction mechanism as well as the meshing algorithm
described above have been implemented and evaluated with several CAE car
models. In order to reduce the need of interaction as far as possible the user
can apply different filters that classify holes for their minimum or maximum
size, their flatness and their location. These filters allow to reduce the number
of holes that need to be inspected by the user to less than 20% of the already
filtered holes. Furthermore, convenient interaction mechanisms enable the user
to review these holes. Since the meshing of even bigger holes is done in a few
seconds the user can vary the control parameters if the created mesh did not
meet the requirements. If any hole with a complex shape cannot be closed in
one step because the generated mesh differs too much from the missing part this
hole can be partitioned into multiple but less complex semantic holes which then
can be closed (see meshed hole for missing trunk deck in Fig. 13).

It turned out that the overall process for hole detection, hole meshing and
volume mesh generation now can be done in hours instead of days as before.
For example, in a plain car body model without chassis consisting of 463 inde-
pendent parts 3359 holes have been detected. Since we are able to specify filters
for the minimum hole size (which equals the minimum size of the volume mesh
hexahedra) and the hole position, the number of holes that need to be meshed
could be reduced to 248. Our flatness criteria allowed to close 201 of them au-
tomatically. Only 47 holes had to be inspected interactively by the user before

(a) Manual hole partition (thick lines) to
optimally close a car trunk.

(b) Automatically closed car trunk.

Fig. 13. Car trunk meshed smoothly (a) by definition of three semantic holes that
were meshed subsequently. The different shades of blue denote independent meshes of
the CAE model. (b) shows the same hole but filled automatically.
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Fig. 14. The flatness classification of holes allows to automatically mesh the vast
majority of all holes without any user interaction. In this case only 1 of 48 holes inside
the engine hood required user interaction.

(a) Mesh generated for semantic hole man-
ually defined in Fig. 4.

(b) Meshed hole between engine compart-
ment and centre console.

Fig. 15. Examples of automatically filled semantic holes (green meshes)
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they could be closed, two of them needed to be partitioned as exemplified in
Fig. 13. An example of a car part with both, automatically meshed holes and
holes that require user interaction for ideal meshing is given in Fig. 14.

Another strong benefit of the presented method is the definition and filling of
semantic holes. Beside the car trunk shown in Fig. 13 examples of filled semantic
holes are given in Fig. 15. Figure 15(a) shows the automatically meshed hole
selected previously in Fig. 4 which is enclosed by various independently meshed
car parts. The generated geometry is depicted in green. The automatic meshing
of a more complex shaped semantic hole is demonstrated in Fig. 15(b).

7 Conclusion

We presented a process to fill holes in FE models both, automatically and with
user interaction. Topological holes in the meshes can be detected and closed au-
tomatically, still giving the user the possibility to influence the meshing method
if desired. Semantic holes cannot be detected automatically as they span over
several separate meshes and therefore are ignored by other approaches. We pre-
sented a method to define these holes interactively in a simple and time-saving
way by the user. Once defined, these holes can be either filled automatically or
more specifically according to the user’s intention, whereas the algorithm still
keeps in mind the special claims of meshes in CAE models.
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Summary. In geometrical modeling, one is often provided a description of a surface
that is defined in terms of a triangulation, which is supported by a discrete number of
nodes in space. These faceted surface representations are defined to be C-0 continuous,
and therefore in general have slope and curvature discontinuities at the triangle sides,
unless the tessellation is planar. Unfortunately, analytical and computational methods
often require a surface description that has well-defined and smoothly-varying gradients
and curvatures; in general spline surfaces possess such properties. Described herein is
a process for generating a cubic spline surface that approximates, to within a user-
specified tolerance, a given tessellated surface that may be non-convex or multiply-
connected. The method combines a local least-squares technique for specifying knot
properties as well as an adaptation technique of selecting the necessary knot spacings.
This new technique is first described along a curve for illustrative purposes. It is then
expanded to the case of the general surface. A reparameterization technique that is
required for surfaces with non-smooth parameterizations is described next. Computed
results for two configurations are then shown.

1 Introduction

1.1 Background

Creating spline fits of general data is a subject that has received much attention
over the years. In fact, there are many books devoted to spline generation and
applications[1, 2]. In most of the spline fitting literature, it is assumed that data
is known at a specified number of knots, and the spline is constructed so as to
pass through the knots and such that it has a specified level of smoothness (most
frequently C-2 continuity).

There has been limited literature concerning the generation of splines that fit,
in a least-squares sense, a set of data that are not located at the knots[3, 4, 5, 6].
In these cases, the knot locations and/or values can be modified to both mini-
mize the distance between the resulting spline and the data, and to guarantee
a specified level of smoothness. These techniques were developed primarily for
cases with a larger number of data points than spline knots. Unfortunately, all
these techniques are only presented with one independent parameter. Also, if
the data are clumped (i.e., there are portions of the parameter’s domain that
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contain no data points), the only way to apply these schemes is to move the
knots to the regions where the data exist.

The extension of these techniques from a curve (one independent parameter)
to a surface (two independent parameters) is not straightforward as there are
a few other concerns that must be addressed. First, efficient spline evaluation
techniques always operate on rectangular grids of knots. Therefore the ability
to place knots is restricted; the only degrees of freedom that are available are
the values of the dependent variables at the knots (as well as perhaps the total
number of knots in each grid direction). Second, surfaces in general can be non-
convex and can contain an arbitrary set of holes. Therefore along any constant
parameter line there are likely to be gaps, which must be dealt with in an
appropriate manner.

1.2 Problem Statement

The problem here is to create a spline surface that approximates, to within a
user-specified tolerance, a surface that is defined in terms of a tessellation. In
particular, assume that the surface to be fitted is defined in terms of N nodes,
at which the space coordinates xn, yn, and zn (n = 1, . . . , N) are known. Also
known at each of the nodes are two parametric coordinates, un and vn, which
are defined prior to the execution of this algorithm. The nodes are connected
into a tessellation that is defined in terms of T triangles, which are each defined
in terms of its three nodes, n1t, n2t, and n3t, (t = 1, . . . , T ) as well as its three
neighboring triangles t1t, t2t, and t3t; triangle sides that are at the edge of the
surface or which bound a hole within the surface have no neighbor. There is no
assumption here that the surface is convex; additionally the surface can contain
any number of arbitrarily-shaped and sized holes.

The objective then can be stated as: find the set of uniformly-spaced knots,
ûi,j and v̂i,j (i = 1, . . . , I and j = 1, . . . , J) and their corresponding space
coordinates (x̂i,j , ŷi,j , and ẑi,j) that can be used to define a cubic spline surface.
The cubic-spline surface should be such that the error associated with evaluating
the spline at each of the surface’s nodes (en) is within the user-specified tolerance
etol. The definition of the node errors is given by

en =
[
(x̃n − xn)2 + (ỹn − yn)2 + (z̃n − zn)2

]1/2
(1)

where x̃n, ỹn, and z̃n are the values that come from an evaluation of the spline
at each of the nodes (un and vn).

The problem has been stated in simple terms: given a set of triangles (with
(x, y, z) and (u, v)), return a spline surface. The following are just some of the
practical applications:

Topological Editing. The Boundary Representation (BRep) that is produced by
modern CAD systems is both a function of the configuration and the model-
ing operations used by the CAD operator. Several modern tools have adopted
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the concept of a quilt, in which the faces in the original BRep are merged
into quilts (or super-faces). One of the requirements of this merge operation
is the ability to create an analytic representation of the merged faces; in
fact, the generation of a spline surface for the merged faces is the driving
motivation for the work described in this paper. It allows for the formation
of a new BRep that stands on its own, where analytic representations of the
geometry exist for each entity.

Converting a triangulation to a BRep. Sometimes the geometry of a configura-
tion is only available via a legacy (triangular) representation. The ability to
segment a triangulation, parameterize the segments, produce spline approx-
imations, and then trim the resultant surfaces are all necessary techniques
for converting a triangulation into the analytic representation that some
analytical/computational tools require.

Retriangulation. The given triangulation may not be appropriate for 3D mesh-
ing or analysis. CAD systems can provide triangulations in conjunction with
the BRep or they may be the result of a quilting operation. More impor-
tantly, if the source is a triangulation but the quality is not appropriate,
then the tessellation will need to be reconstructed. Many quality surface tri-
angulation schemes require knowledge of both the space coordinates (x, y, z)
as well as parametric coordinates, (u, v). Additionally, many of these tech-
niques require smoothly-varying surface slopes and curvatures (if the actual
geometry is smooth). A spline surface that is fitted to the original surface
naturally provides such a mechanism.

Multidisciplinary Coupling. One of the keys to multi-disciplinary analysis, such
as fluid/structure interaction, is the transfer of analysis data on the surface
between disciplines. Direct transfer of data from one analysis’s grid nodes
to the other’s is not a well defined operation because the nodes are gener-
ally not co-located. If a smooth approximation to the analysis data can be
constructed and tied to the analytic surface, then the transfer can be made
simply. Therefore, given a surface parameterization and a scalar or vector
field at the nodes, the goal is to provide an interpolant for the field data on
the surface. This requires the same algorithms as described in this paper,
but instead of (x, y, z), field values are used in the fitting process. The end
result can be used to interpolate these quantities at a specific (u, v) on the
surface and therefore onto the other discipline’s mesh nodes.

Behavioral Morphing. The analysis of geometric shapes that change in response
to the physical phenomena being modeled is a challenging problem. An obvi-
ous example is a structural member under stress, but the motivating example
here is in turbomachinery, where the analysis is performed hot (i.e. at tem-
perature and up to rotational speed) but the manufactured part (in the CAD
system) is cold. Given a parameterization that defines the surface for an in-
dividual face in the BRep, it is possible to transform the given displacement
field (however it is supplied) into an interpolating function, as described
above, based on the surface’s (u, v) space. It is then simple to create a new
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surface that is displaced from the original surface; (x, y, z) = f(u, v) just be-
comes (x, y, z) = f(u, v) + g(u, v) where g is the displacement interpolating
function.

1.3 General Approach

The proposed solution to this problem is given by:

1. Pick a 2× 2 array of knots (ûi,j , v̂i,j) that surrounds the parametric coordi-
nates in the original tessellated surface.

2. Find the space coordinates at the knots that minimizes, in a least-squares
sense, the errors between each of the nodes and their spline counterparts.

3. If the maximum error if less than a user-specified tolerance, STOP.
4. Otherwise

a) refine the number of knots in the i direction and then re-execute the
least-squares algorithm (and its error)

b) refine the number of knots in the j direction and then re-execute the
least-squares algorithm (and its error)

c) keep the knots (from a or b above) that have the smaller maximum error
and repeat back to step 3.

1.4 Roadmap

Each of these steps is described below. This paper begins with a derivation of
the proposed scheme along a curve (i.e., only one parametric coordinate, u), in
order to both analytically and graphically describe the algorithm. Sample results
of the basic algorithm are shown and the need for smoothing is highlighted; the
smoothing formulation used here is then presented and more sample results are
shown.

The section that follows re-derives the scheme for a surface with two para-
metric coordinates (u and v). The two-dimensional scheme can result in a very
large sparse matrix; the technique used to solve the system is described. This
section also concludes with some sample results.

One of the limitations of the proposed technique is that it requires that the
provided (u, v) parameterization be relatively smooth. A section that shows what
happens when you do not have smoothness, the method used to regularize the
parameterization, and the resulting approximation follows.

Sample results for a two configurations follow. The paper concludes with a
summary of the scheme and its benefits.

2 Spline Approximation for a Curve

In this section, the basic scheme is derived for the case of a curve in space
that is defined in terms of one parametric coordinate, u. Although this result
is sometimes useful by itself, it is presented here to simplify the algebra and so
that a graphical interpretation of the results can be readily made.



Generation of Spline Approximations to Tessellations 253

2.1 Ferguson Splines

A Ferguson spline is a special form of a piece-wise cubic spline that was popular-
ized by D. Ferguson[7]. In particular, consider a spline fit of one space coordinate
x as a function of u. The characteristics of the Ferguson spline are:

• the spline is defined by a uniformly-spaced set of knots ûi (i = 1, . . . , I) so
that ûi − ûi−1 = constant.

• as with all piece-wise cubic splines, the spline has C-2 continuity throughout;
• the particular flavor of Ferguson splines used here has natural end conditions

(that is, the curvature vanishes at the end points û1 and ûI . (In general,
Ferguson splines for which the end slopes are prescribed can be generated,
but are not considered here); and

• the spline creation process finds and stores the slopes (X̂i) at each of the
knots.

Given the above, the cubic in each interval i to i + 1 can be written as

x̃ = Ãx̂i + B̃x̂i+1 + C̃X̂i + D̃X̂i+1 (2)

where the basis functions are given by

Ã = 1− 3s̃2 + 2s̃3 B̃ = 3s̃2 − 2s̃3

C̃ = s̃− 2s̃2 + s̃3 D̃ = −s̃2 + s̃3

and where s̃ = (ũ − ûi)/(ûi+1 − ûi) is the fractional distance of ũ between ûi

and ûi+1.
To set up the spline, we want to make the curvatures match at the interior

knots. Using the above, this can be written as

3x̂i−1 − 3x̂i+1 + X̂i−1 + 4X̂i + X̂i+1 = 0 (i = 2, . . . , I − 1) (3)

The natural end conditions imply that the curvature vanishes at the endpoints.
This can be written

3x̂1 − 3x̂2 + 2X̂1 + X̂2 = 0 (4)
3x̂I−1 − 3x̂I + X̂I−1 + 2X̂I = 0 (5)

The above I equations form a linear set for the X̂i with a given set of x̂i. The
resulting matrix equation is tridiagonal, it can be solved in O(I) time.

2.2 Least-Squares Problem

In the above technique, it was assumed that the knot values x̂i were known and
we had to find the slopes X̂i that yielded C-2 continuity. In this section, we do
not a priori know the knot values and thus have to find the x̂i as well as the X̂i.

Assume that we are given the desired number of knots, I. The first step is
to define a vector of knot coordinates, ûi, that are both evenly spaced and such
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all the un fall between û1 and ûI . If we define a small buffer, b, to ensure that
the spline always interpolates (and never extrapolates), then the above can be
written

û1 = umin − b(umax − umin)
ûI = umax + b(umax − umin)

where

umin =
N

min
n=1

un and umax =
N

max
n=1

un

For all cases shown here, b = 0.10.
Combining these, we finally get

ûi =
[
(1 + b)(I − i)− b(i− 1)

I − 1

]
umin +

[
(1 + b)(i− 1)− b(I − i)

I − 1

]
umax (6)

The sum-squared error can then be defined (using Eq. 1) as

E =
N∑

n=1

e2
n =

N∑
n=1

[
(Anx̂in + Bnx̂in+1 + CnX̂in + DnX̂in+1)− xn

]2

(7)

where in in the knot immediately preceding un so that ûin ≤ un < ûin+1. Also,
An = 1− 3s2

n + 2s3
n, where sn = (un − ûin)/(ûin+1 − ûn).

To minimize E, we force the I partial derivatives, ∂E/∂x̂i to vanish

∂E

∂x̂i
=

N∑
n=1

2(Anx̂i + Bnx̂i+1 + CnX̂i + DnX̂i+1)Fn = 0 (8)

where

Fn =

⎧⎨⎩An if ûi−1 ≤ un < ûi

Bn if ûi ≤ un < ûi+1

0 otherwise

The above I equations can be rearranged into the form

S1x̂i−1 + S2x̂i + S3x̂i+1 + S4X̂i−1 + S5X̂i + S6X̂i+1 = S7 (9)

with the shorthands

S1 ≡
∑

n∈nmi

AnBn S2 ≡
∑

n∈nmi

B2
n +

∑
n∈npi

A2
n

S3 ≡
∑

n∈npi

AnBn S4 ≡
∑

n∈nmi

BnCn

S5 ≡
∑

n∈nmi

BnDn +
∑

n∈npi

AnCn S6 ≡
∑

n∈npi

AnDn

S7 ≡
∑

n∈nmi

Bnxn +
∑

n∈npi

Anxn
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where nmi is the set of nodes for which ûi−1 ≤ un < ûi and npi is the corre-
sponding set when ûi ≤ un < ûi+1.

We can now form a large matrix equation from Eqs. 3 to 5 and Eq. 9, which
can be written in the general form[

M1 M2

M5 M6

] [
x̂

X̂

]
=

[
R1

0

]
(10)

Here the sub-matrices M1, M2, and R1 are taken directly from Eq. 9 and sub-
matrices M5 and M6 are taken from Eqs. 3 to 5. The resulting matrix equation,
which is quite sparse, can be solved in any convenient manner.

2.3 Numerical Solution

The above algorithm can be applied to a sample data set that was obtained by
taking a constant-v-parameter cut through one of the surfaces of an example
configuration. The original triangulation for the example surface is plotted in
the (u, v) plane in Fig. 1, with the selected cut at v = 2 shown by the horizontal
line. Fig. 2(a) shows the x(u) data along this cut as a series of circles. One can

0.0 2.0 4.0 6.0 8.0
0.0

2.0

4.0

6.0

u

v

Fig. 1. Prescribed triangulation for a test configuration. The horizontal line shows the
cut used in Figs. 2 and 3. This triangulation is the result of merging 13 faces in an
original BRep.
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(d) I = 9, E = 78.3642

Fig. 2. Spline approximations along a curve without smoothing (µ = 0)

note three regions in which data is defined; the gap in the middle comes from
the shape of the outer boundary of the triangulation whereas the smaller gap
near the right comes from the rectangular hole in the triangulation.

The first approximation, shown in Fig. 2(a), has only two knots, resulting in
a spline that is simply a straight line. The caption of the figure states that when
the number of knots, I is 2 the sum-squared error, E, is about 200; clearly this is
not a good approximation. In part (b) of the figure, the number of knot-intervals
was doubled (taking I from 2 to 3); here the fit is visually much better and the
error has decreased to a little more than 1/2. When I = 5 the fit is about as
good as before. Unfortunately when the number of knots is increased to I = 9
the spline becomes worse, with wild oscillations present. A careful look at the
figure shows that the oscillation occurs in the region where there is insufficient
data to support the spline. In other words, in the vicinity of the oscillations,
the number of degrees of freedom in the spline knots is locally greater that the
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number of nodes for which an error is being minimized. Also, examination of
the matrix equation 10 reveals that there are some rows that are not diagonally
dominant (and in fact can become degenerate).
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Fig. 3. Spline approximations along a curve with smoothing (µ = 0.001)
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2.4 Smoothing

To fix the above, there are two modifications to the basic least-squares equations
that appear to be necessary. First for interior knots, it has been found useful to
add a very small amount of Laplacian smoothing to the least-squares equations.
In particular, adding

µ

(
−x̂i−1 + 2x̂i − x̂i+1 −

1
2
X̂i−1 +

1
2
X̂i+1

)
(i = 2, . . . , I − 1)

to the i-th Eq. 10 has been found to work very well, where µ is a very small
parameter (here taken to be µ = 0.001). Note that in regions where there exists
enough data for least-square minimization, these smoothing terms are negligible.
However in regions where there are no nodes (that is, both nmi and npi are
empty sets), the smoothing restores the diagonal dominance in the matrix.

The other modification is associated with the knots at the ends of the spline.
At those knots, the above smoothing cannot be used since there is not an out-
board knot. For these cases, it has been found sufficient to transfer the natural
end condition associated with the Ferguson splines to the first inboard knot. For
example, if the first rows of M1, M2, and R1 are all zero, we can change that
equation to a zero-curvature condition at the inboard knot, or

3x̂1 − 3x̂2 + 2X̂1 + 4X̂2 = 0 (11)

A similar modification is added in the case where the last row of M1, M2, and R1

are all zero, which occurs when there are no nodes between the last two knots.
Fig. 3 shows the results of applying this scheme, with smoothing, to the nodes

that was shown previously in Fig. 2. Note that as more knots I are added,
the shape of the spline better approximates the shape of the node data. Note
in particular how smooth the spline is in the region that does not contains
any nodes. Also shown in the figure is the sum-squared error, E, which clearly
decreases as the number of knots increases.

3 Spline Approximation for a Surface

The extension of the above techniques from a curve to a surface is straightfor-
ward, but algebraically tedious. In this section, the most important aspects of
the extension are discussed.

Surfaces are defined in terms of two parametric coordinates, u and v. Hence the
knots at which the spline data is known form a uniformly-spaced two-dimensional
array; the parametric coordinates at the knots are thus ûi,j and v̂i,j , where
i = 1, . . . , I and j = 1, . . . , J . The knot values of the dependent variables are
x̂i,j , ŷi,j , and ẑi,j ; for illustrative purposes, only x̂i,j will be considered here.

3.1 Ferguson Splines

Creation of a Ferguson spline for a surface involves the determination of the
slopes in both parametric directions, X̂u

i,j and X̂v
i,j , as well as the cross-

derivatives X̂uv
i,j . In practice when all the knot values x̂i,j are known, the slopes
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X̂u
i,j are found by applying Eqs. 3 to 5 independently along each constant j

line; then an analogous technique for finding X̂v
i,j is used independently along

each constant i line. Finally, the cross-derivatives X̂uv
i,j can be found by applying

Eqs. 3 to 5 along constant i lines to the X̂v
i,j found previously (or alternatively

by fitting X̂u
i,j along constant j lines).

The evaluation of a Ferguson spline at (ũ, ṽ) is performed using a two-
dimensional form of Eq. 2, where there are now 16 basis functions that are
polynomial functions of s̃ (the fractional distance of ũ between ûi and ûi+1) and
t̃ (the fractional distance of ṽ between v̂j and v̂j+1) .

3.2 Least-Squares Problem

The least-squares problem for finding the x̂i,j that minimize the error E is also
conceptually straightforward.

First, the parametric coordinates at each of the knots, ûi,j and v̂i,j , are found
by independently scaling the u and v via equations similar to Eq. 6. Note that
the sums used here are over all nodes. Then an equation that is analogous to
Eq. 9 is formed, where the sums are over the set of nodes that are in the four
quadrilateral cells that surround (i, j). Next, a large, sparse matrix equation⎡⎢⎢⎣

M1 M2 M3 M4

M5 M6 0 0
M7 0 M8 0
0 0 M9 M10

⎤⎥⎥⎦
⎡⎢⎢⎣

x̂

X̂u

X̂v

X̂uv

⎤⎥⎥⎦ =

⎡⎢⎢⎣
R1

0
0
0

⎤⎥⎥⎦ (12)

is formed. Here, the sub-matrices M1 to M4 and R1 are written directly from
the analog of Eq. 9. The second set of sub-matrices (M5 and M6) come from
the spline-fit of x̂ in the i-direction (which yields X̂u). In a similar way, the
third set of sub-matrices (M7 and M8) come from fitting x̂ in the j-direction.
Finally, M9 and M10 come from splining X̂v in the i-direction. Note that since
the spline data x̂i,j are not known prior to generating the least-square fit, the
spline generation process requires that all three spline-generation sweeps be done
simultaneously.

Smoothing is added as above, by adding the Laplacian operator

µ(4x̂i,j − x̂i−1.j − x̂i+1.j − x̂i,j−1 − x̂i,j+1)

+
µ

2
(−X̂u

i−1,j + X̂u
i+1,j − X̂v

i,j−1 + X̂v
i,j+1)

to the matrix equation (as above). Finally, if any of the boundary knots (i = 1,
or i = I, or j = 1, or j = J) have a degenerate equation in the matrix (because
the are no nodes in the cells adjacent to the knot), the natural end condition is
applied at the adjacent inboard knot (for example, at (2, j)).

The above matrix equation is rather large, but is very sparse. In fact each of
the sub-matrices M is pentadiagonal. To see how large the matrix is, consider
the generation of a 65 × 17 array of knots, which results in a square matrix



260 J.F. Dannenhoffer III and R. Haimes

that contains almost 20 million elements, fewer than one-half percent of which
are non-zero. Clearly forming and solving the full matrix is unacceptable and
thus sparse-matrix methods must be used. Here, the sparse-matrix data storage
format and the bi-conjugate gradient solver described in [8] are used. The only
delicate part of using this sparse-matrix technique is the direct creation of the
matrix in sparse-matrix form.

4 Overall Algorithm

The above section describes the technique used to find the knot data, x̂i,j , for
a spline that matches, in a least-squares sense, the data values prescribed at
the nodes, xn. Since in general we want to generate fits for all three space
coordinates, (x, y, z), the above technique can be applied successively to xn, yn,
and zn. However, the objective is to find the knots that result in splines that
are within a user-specified tolerance, etol, of the knot data. Above, a general
technique is outlined; this section expands on that description.

As mentioned above, the method starts out with a 2 × 2 array of knots; the
technique described above is then applied with I = 2 and J = 2 and the error
at each node, en, is computed for each space coordinate. The maximum of all
these errors

emax =
N

max
n=1

(ex
n, e

y
n, e

z
n)

is compared with the tolerance, etol to determine if the knot set is sufficient.
This coarse knot grid turns out to be sufficient for cases in which the tessellated
surface is planar.

If emax is larger than etol, then we do not have a sufficient number of knots.
In this case, two refinements are made:

• First the number of knot intervals in the i-direction is doubled, or Inew ←
2I − 1. The least-squares algorithm is executed on a Inew × J grid and the
maximum resulting error, called eI , is computed.

• Next the number of knot intervals in the j-direction is doubled, or Jnew ←
2J − 1. The least-squares algorithm is executed on a I × Jnew grid and the
maximum resulting error, called eJ , is computed.

The grid of knots with the smaller error becomes the new set of knots. For
example, if eI < eJ , then the new grid will be Inew × J .

If the error associated with this new grid (just computed) is smaller than etol,
the overall procedure terminates; otherwise the process is repeated until either
a sufficient grid is found or until a maximum grid size is reached; in practice,
the latter does not happen if the specified tolerance is reasonable. For all the
cases shown here, etol is set to 10−4 of the largest dimension (in (x, y, z)) of the
surface.

4.1 Improvements in the Parameterization

After exercising the above on over 2500 surfaces taken from both test and real-
world configurations, it was found that the above algorithm sometimes results in
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a set of knots that exhibit large oscillations; other times, the algorithm produces
good results within the trimming curves of the surface, but exhibits unwanted be-
havior beyond the surface’s trimming curve, indicating that the spline would not
be suitable for extrapolating a small distance beyond the edge of the surface.
(This extrapolation might be needed for an algorithm such as surface-surface
intersection.) Careful examination of these cases showed that this unwanted
behavior was always associated with nearly-infinite slopes in the underlying pa-
rameterization.

Clearly the answer to this is to reparameterize so that these nearly-infinite
slopes are eliminated. For a curve, this reparameterization is fairly easy to ac-
complish through stretching. Unfortunately, this reparameterization for a surface
is not quite as straightforward.

Stated simply, the objective of the reparameterization is to make the spacings
of the nodes in parametric (u, v) space to be proportional to the node spacing in
terms of the space coordinates, (x, y, z). Here we have adopted the reparameter-
ization proposed by Floater[9]. The first step is to find the mean value weights
at each node due to its neighbors. For a triangle side between nodes n1 and n2,
the mean-value weight is given by

wn1,n2 =
tan(α/2) + tan(β/2)

dn1,n2
(13)

where α is the angle at node n1 in the triangle to the left of side [n1, n2], β is
the angle at node n1 in the triangle to the right of side [n1, n2], and dn1,n2 is
the distance between the nodes. All of these angle and distance calculations are
made using the space (x, y, z) coordinates.

Next two sparse matrix equations are formed. For each interior node in the
surface, we can write

un

∑
m

wm,n +
∑
m

(wm,num) = 0 (n = 1, . . . , N) (14)

vn

∑
m

wm,n +
∑
m

(wm,nvm) = 0 (n = 1, . . . , N) (15)

The parametric coordinates at boundary nodes are not allowed to move. These
equations are solved using the sparse-matrix, bi-conjugate gradient technique
mentioned above.

Fig. 4(a) show the tessellation that was provided; it was formed by projecting
the nodes on a fuselage surface in the spanwise direction; that is un = xn and
vn = yn. Note how the parameterization is squeezed near the top and bottom
edges due to the fact that the surface is nearly parallel to the x − z plane. A
vertical cut was made through the parameterization at u = 3 and the corre-
sponding spline fit of z(v) is shown in part (b). Notice the oscillations that arise
due to the nearly infinite slope, dz

dv , at the ends (which correspond to the top
and bottom of the vertical cut).

The above reparameterization technique was then applied, resulting in the pa-
rameterization in part (c) of the figure. Since the nodes on the surface were orig-
inally placed such that the spacings between adjacent nodes was approximately
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(c) reparameterized surface tessellation.
The triangles near the bottom and top are
more isotropic than before.
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(d) improved spline approximation along
u = 3 for the reparameterized tessellation

Fig. 4. Effect of reparameterizing a surface

constant, the reparameterization results in approximately-constant parametric
spacings. The spline technique applied on this new parameterization is shown in
Fig. 4(d). Here the oscillations have been eliminated and the error between the
resulting spline and the nodes is negligible. Application of this reparameteriza-
tion to the entire test suite shows that all the oscillations were eliminated.

5 Computational Examples

The spline generation scheme proposed here has been applied to over 100
configurations, comprised of over 2500 surfaces. Figs. 5 and 6 show two of these
configurations. The BRep produced by the CAD systems, along with CAPRI’s[10]
tessellation is shown in part (a) of each figure. Shown in part (b) of each figure is
the grid of knots that were automatically produced by this scheme. One can clearly
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(a) BRep with given tessellation

(b) BRep with grid of knots for each surface

Fig. 5. Test case 1, consisting of 17 surfaces (which were created by merging the original
82 faces in the Parasolid part). Note that the curved back surface is the surface used
in Figs 1 to 3.
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(a) BRep with given tessellation

(b) BRep with grid of knots for each surface

Fig. 6. Rocket launch vehicle, consisting of 40 surfaces (which were created by merging
the original 83 faces in the Pro/ENGINEER part)
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that most of the knots match the original configuration to within the specified tol-
erance, which was set to 10−4 times the configuration size. One can also see the
extrapolation beyond the edges of the configuration that is necessary in order to
have a rectangular grid of knots for each surface; this is especially apparent for-
ward of the wing, canard, and empenage leading edges in Fig. 6. The total CPU
time needed for the two cases was 4.3 and 49.9 seconds, respectively, on a Mac-
Book-Pro with a 2.6 GHz Intel Core 2 Duo processor running under OSX 10.5.

6 Summary

A new process for generating a cubic spline surface that approximates, to within
a user-specified tolerance, a given tessellated surface that may be non-convex
or multiply-connected is described. The method combines a local least-squares
technique for specifying knot properties as well as an adaptation technique of
selecting the necessary knot spacings.

This new technique is fully described along curves, with all necessary equa-
tions. It is then extended to the case of the general surface; here the key equations
are given together with an explanation as to how to derive the other equations
by extending the curve method. Also, a reparameterization technique that is
required for surfaces with poorly-defined parameterizations is described.

The new technique has been applied to over 100 configurations, composed of
over 2500 surfaces. In all cases, the method was able to find spline approxima-
tions that were within the user-specified tolerance. Computed results for two
configurations are shown.

The development of this technique was motivated by the need to create an
approximation for surfaces that were created by merging other surfaces. How-
ever, this technique has wider applicability, such as to support retriangulation
of surfaces, multi-disciplinary coupling, and behavior morphing.

Note that the development here used Ferguson splines as the approximating
function, which are a subset of general NURBs. Therefore this technique provides
a natural way for generating a NURB representation of a tessellated surface.
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Abstract. Solid assembly meshing has all of the same “dirty geometry” induced issues
as single part meshing but also has the difficulty associated with generating a confor-
mal mesh between solids where solid-solid interfaces are not obvious. Mesh generators
usually don’t have CAD assembly constraint information to identify interfacing solids
and must therefore rely on geometric proximity to deduce these interactions. “Slop”
in the positioning and alignment of parts in the assembly makes automatically discov-
ering the interfaces and generating a conformal mesh at the interfaces very difficult.
Most of the efforts in this area resort to some sort of discrete representation to deal
with these issues losing the capability to do further solid modeling engine operations
often necessary for all-hexahedral meshing. This paper presents a method for defining
the non-manifold interfaces between volumes in an assembly required for generating a
conformal mesh while maintaining the original solid modeling engine format.

1 Introduction

Conformal assembly meshing is a common requirement for finite element anal-
ysis of complex assemblies of solid parts. However, the solid model assemblies
provided as input for mesh generation often contain inaccuracies or sloppiness
resulting in a lack of clean or clear interfaces between adjacent volumes. Without
clear definitions of the interfaces between adjacent volumes it is very difficult to
generate a conformal assembly mesh.

In some cases small modifications can be made to individual volumes in the
assembly to improve the mating interfaces between volumes but in general this
will not work because of the global nature of modifying B-rep models composed
of non-facet based surfaces. As a result, most efforts to solve this problem have
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energys National Nuclear
Security Administration under contract DE-AC04-94AL85000.
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been made in some kind of a faceted representation whether it is a faceted rep-
resentation of the input solid model or in the generated mesh itself (if the mesh
is tetrahedral). In either case, very local modifications can easily be made to the
facets for the desired effect. The drawback, however, of going to a faceted repre-
sentation is the loss of the ability to do subsequent Boolean-type solid modeling
operations on the volumes of the assembly. For tetrahedral meshes this may not
be necessary, but for all-hexahedral meshing there is often decomposition of the
volumes that is required prior to applying meshing algorithms. Therefore, it is
desirable to be able to define the interfaces between adjacent volumes required
for a conformal mesh and still be able to do solid modeling operations on the
volumes for decomposition.

This work describes a “tolerant imprinting” capability and supporting tools
that allow the definition of a clean interface between adjacent volumes in an
assembly without having to go to a faceted representation. The result is the
ability to stay within the solid modeling engine representation throughout al-
lowing downstream solid modeling operations such as volume decomposition.

Section 2 will discuss related work in this area. Section 3 will describe con-
formal assembly meshing. Section 4 will discuss the difficulties in generating
conformal assembly meshes. Section 5 will describe imprinting and its role in
facilitating conformal assembly meshes. Section 6 will describe the tolerant im-
printing algorithm. Section 7 describes some tools for determining the appropri-
ate tolerance to use when tolerant imprinting. Section 8 will give some examples.

2 Related Work

White et al. [1] presented an algorithm that facets the bounding curves of the
original surfaces at the interface of two volumes and generates an intersection
graph between the two sets of facets using a user-specified tolerance. The result-
ing intersection graph defines the topology of the interface surface(s). “Virtual
geometry” is used to represent the resulting interface surfaces and appropri-
ate imprints on those surfaces. One advantage that White’s approach has in
common with the authors’ approach is that by modifying the geometry to be
meshed (as opposed to meshing the geometry and then modifying the mesh to
make it conformal) the modifications are done only once and then multiple mesh
instances can be generated for the modified geometry as opposed to doing the
modifications each time a mesh is generated. A drawback of White’s approach
is the inability to do solid modeling engine operations on the geometry after the
“virtual geometry” is applied.

Chouadria and Veron [2] showed an approach that works on polyhedral as-
semblies. The interfaces between adjacent polyhedral volumes were automati-
cally discovered given a user-specified tolerance and then appropriate interfaces
were generated by imprinting the interface faces onto one another. The adjacent
polyhedral volumes were finally stitched up to the generated interface to create
a non-manifold assembly. Although a related work, it does not help solve the
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problem of obtaining a non-manifold assembly while maintaining the original
solid modeling format.

Various commercial codes advertise the ability to generate conformal solid
assembly meshes [3, 4, 5]. However, the details of how this is accomplished are
proprietary. Despite the apparent advancements in the area of commercial con-
formal tetrahedral assembly meshing there does not appear to be a solution for
hexahedral meshing.

3 Conformal Meshes

In a conformal finite element mesh of an assembly, the solid-solid interface be-
tween two volumes is represented by a set of faces such that each face on the
interface is a sub-element of the two adjacent solid elements corresponding re-
spectively to the two volumes. Figure 1 A shows a conformal mesh and figure 1
B shows a non-conformal mesh of two volumes. Having a conformal mesh avoids
the need for contact elements or additional constraint equations that must be
solved with the analysis. This generally reduces the compute time when running
an analysis. For some types of analysis, the lack of appropriate contact element
algorithms may prevent achieving a solution without a contiguous mesh.

One approach to achieve a conformal assembly mesh is to define a non-
manifold representation of the assembly model in which adjacencies between
parts in the assembly are explicitly represented as shared or “merged” topology.
The B-rep solid for each part contains a topological face representing the coin-
cident boundary region of each part. To merge these two parts, a non-manifold
representation of the combined parts is created and the two faces are replaced
with a single shared face. Child entities of the two faces are also merged so that
edges and vertices that bound the face are shared between the two parts.

During mesh generation, the shared face will be meshed before the volume
meshes are created. Since the face is referenced by both volumes, the mesh on
the shared face will be used in each volume mesh, resulting in a contiguous or
conformal mesh. Figure 2 shows the shared mesh on one of the assembly volumes.

Fig. 1. Conformal and non-conformal assembly meshes
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Fig. 2. Shared mesh between two volumes

It will be helpful here to discuss the requirements for merging to occur. At
a minimum, the two topological subtrees to be merged must match exactly.
Faces to be merged must have the same number of loops; corresponding loops
must have the same number of edges; and corresponding edges must have the
same number of vertices. Given such a topological match a merge can be forced,
regardless of the geometric shape if desired. However, merging is usually only
performed when the corresponding geometrical entities - the surface for each
face, the curve for each edge, and the coordinates for each vertex - lie within a
specified tolerance. This tolerance is referred to as the merge tolerance.

In general, the matching topology does not exist in an assembly where merg-
ing should occur between adjacent parts. To generate this topological match, a
boolean imprint operation is used. The imprint operation is discussed further in
Section 5.

The imprinting and merging approach described here is used in the CUBIT
mesh generation software [6] to achieve conformal meshes. Other approaches to
achieve a conformal mesh are mesh merging and mesh mirroring. Mesh merg-
ing can be manual, where the user is responsible to make the meshes match
and merge the required nodes, or automatic, where an algorithm determines
edge swaps and node insertions to make the meshes conformal. Mesh mirror-
ing requires an imprint similar to mesh merging, but instead of a non-manifold
data structure underlying the mesh, the mesh is mirrored to the corresponding
geometry of an adjacent part such that the resulting mesh is conformal (see [1]).

4 Problem Definition

4.1 Assembly Models

Assembly models from a CAD system are typically represented with a B-rep solid
model, or a reference to a solid model, for each part in the assembly. To position
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these parts within the assembly, a transformation matrix is kept for each part to
maintain the transformation from the local coordinate system of the part to the
global coordinate system of the assembly. The transformation matrix is often
calculated from a set of mating relationships that define the position of a part
with respect to other parts in the assembly. In calculating the transformation
from the given mating relationships, each part is treated as a rigid body and the
relationships are used to constrain the six degrees of freedom of the body.

In the general case, assembly constraint information is insufficient to capture
the adjacencies within an assembly model. For example, if one face of part A
should mate with two separate but coplanar faces of an adjacent part B, only
one mating constraint between the face of part A and one of the coplanar faces
of part B will be defined. The other mating constraint would be redundant and
is generally not created by the user. Determining adjacencies therefore requires
a calculation using geometric proximity to find all solid-solid interfaces in the
assembly.

4.2 Problems with Solid-Solid Interfaces

Since assembly modelers focus on rigid-body positioning of parts and not on
modeling the adjacencies between parts, it can be challenging to produce a model
where the adjacencies are captured cleanly. Slight overlaps or gaps can easily
occur between parts, or adjacent parts can be slightly misaligned. Gaps between
parts may also be the result of excluding welds or adhesives from the assembly
model. These situations can cause problems in the proximity calculation.

When an assembly model is translated from one format to another, differ-
ent tolerances used by different modeling software can also cause problems. If
an assembly is modeled in software that uses a large tolerance, corresponding
geometry may lie within tolerance and be considered coincident. However, if
this same model is translated into another modeler that uses very tight toler-
ances, geometry considered coincident by the first modeler may now lie outside
of tolerance in the second modeler.

Model simplification for analysis purposes can also lead to problems in the
solid-solid interfaces of the assembly. The assembly model may contain details
which are geometrically accurate, but represent too much detail for the desired
analysis. The analyst may simplify the model, which again can introduce inac-
curacies or approximations in the solid-solid interfaces.

5 Imprinting

Merging has been described as a way in CUBIT to create a non-manifold rep-
resentation of an assembly model for conformal meshing. The merging of two
surfaces requires that the surfaces and their children entities (curves and vertices)
match both topologically and geometrically. Imprinting is a common process for
introducing topology (vertices and curves) from one entity onto another and is
provided by most solid modeling engines. Figure 3 shows two adjacent volumes
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Fig. 3. Imprint example: A) two adjacent blocks, B) adjacent surfaces on blocks, C)
exploded view of adjacent surfaces, D) exploded view of surfaces after imprint

and their overlapping surfaces. The surfaces lie right on top of each other but
the boundaries of the surfaces don’t match. By imprinting the surfaces (or vol-
umes) onto one another curves are introduced into the larger surface creating a
geometric and topological match between two of the surfaces as seen in Figure 3
D. After the imprint the two matching surfaces can be merged into one surface
that is shared between the two volumes.

Imprinting is a solid modeling operation that uses a tolerance provided by the
solid modeling engine. CUBIT’s default solid modeling engine uses a tolerance
of 1e-6 during imprinting. This tolerance is used to determine what should or
should not be imprinted during an imprint operation. If the two volumes in
Figure 3 had a gap between them that was larger than 1e-6 no imprinting would
have taken place. Similarly, consider the two volumes in Figure 4 A that are
misaligned by a very small amount. The adjacent surfaces between the volumes
have a distance of zero between them so they are candidates for imprinting but
depending on the size of the misalignment the results of the imprint operation
will differ (see Figure 4).

Fig. 4. Misalignment example: A) misalignment less than 1e-6, B) imprint result, C)
misalignment greater than 1e-6, D) imprint result
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The tolerance used when imprinting guarantees two things: 1) that entities will
only be imprinted onto one another if they are within the imprint tolerance and 2)
no features smaller than the imprint tolerance will be introduced into the model
during the imprint operation. When considering an assembly in CUBIT (using
the default solid modeling engine) this means that volumes must be within 1e-6
of one another to be imprinted and volume misalignments greater than 1e-6 will
result in imprints and possibly sliver entities with size equal to the misalignment.
Assembly constraints in CAD packages are often much looser than 1e-6 which
can result in imprinting nightmares. For this reason “tolerant imprinting” has
been developed.

6 Tolerant Imprinting

Tolerant imprinting is a combination of functionality provided by CUBIT and
imprinting functionality provided by the solid modeling engine it uses. From the
user’s perspective tolerant imprinting is identical to regular imprinting in behav-
ior except that it provides the user with a modifiable tolerance to be used during
the imprinting process. This allows the user to set the imprint tolerance to be
greater than the 1e-6 value provided by the solid modeling engine. As a result the
user can set the imprint tolerance to match more closely the gap/misalignment
sizes in his assembly and get the desired imprinting results.

The tolerance used in tolerant imprinting is the user-modifiable “merge tol-
erance” in CUBIT. Analogous to the way the solid modeling engine uses 1e-6 to
determine what should or should not be imprinted CUBIT uses its merge tol-
erance value set by the user to decide what should or should not be imprinted.
The tolerant imprinting algorithm has three main parts: 1) imprint vertices onto
curves, 2) imprint curves onto surfaces, and 3) imprint vertices onto curves again.

6.1 Imprint Vertices onto Curves

The first step in the algorithm is to imprint curves with vertices. The algorithm
will first search for all pairs of curves that overlap by at least merge tolerance.

Fig. 5. Overlapping curve criteria
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Fig. 6. T-junction criteria

Overlapping in this case means that the curves lay on top of one another spatially
and have an overlapping region at least merge tolerance long (see Figure 5).
Once these pairs are found each curve is imprinted by the vertices of the other
curve where applicable. A common split curve operation provided by the solid
modeling engine is used. “T” junctions (see Figure 6) between curves are also
found and appropriate imprints are made there as well.

6.2 Imprint Curves onto Surfaces

The second part of the algorithm imprints curves onto surfaces. The algorithm
will search for all pairs of surfaces that overlap within merge tolerance. Overlap-
ping surfaces are defined as surface pairs that lay on top of one another spatially
within merge tolerance and which have an overlapping region with area of at
least merge tolerance squared. Once the overlapping surface pairs are found each
curve from one surface is imprinted onto the other surface and vice versa. This
part of the algorithm takes advantage of an api from the solid modeling engine
that “tolerantly” embeds a curve into a surface. The advantage of using this api
is that it will automatically lengthen/shorten the curve (within a specified toler-
ance) to match up with existing topology in the surface. In actuality it doesn’t
change the length of the curve but treats it as tolerant so that it can attach to
existing topology in the surface. The default solid modeling engine in CUBIT
provides this type of functionality but it would need to be implemented in CU-
BIT if the tolerant imprinting algorithm were ported to another solid modeling
engine that didn’t have this functionality.

It should be noted that when considering the curves to be imprinted onto
a surface curves from one surface that are “overlapping” with curves in the
other surface are excluded from the imprint operation as they have already
been imprinted in the first step. One potential implementation would be to not
do the first imprint overlapping curves step described above and just rely on
the tolerant embed functionality to imprint the overlapping curves during the
imprint overlapping surfaces step. However, the authors found that the tolerant
embed functionality provided by the solid modeling engine was not robust in
doing this and as a result the first step of imprinting overlapping curves is used.
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Fig. 7. Circular surface fitting tangentially inside a square surface

6.3 Imprint Vertices onto Curves Again

Finally, overlapping curves are once again imprinted in order to catch any re-
maining vertex-curve imprints that need to take place because of imprinting
curves onto surfaces. One might expect that this final step is unnecessary. How-
ever, there are some geometry configurations that cause new vertices to be intro-
duced during the “Imprint Curves Onto Surfaces” step that were not introduced
during the first “Imprint Vertices Onto Curves” step and that subsequently need
to be imprinted onto curves. One such configuration is a circular surface that
fits tangentially into a square surface (see Figure 7 A). Vertices at the tangent
locations are not introduced during the first “Imprint Vertices Onto Curves”
step because the curves are not overlapping within tolerance. During the “Im-
print Curves Onto Surfaces” step the curve of the circular surface is imprinted
onto the square surface creating breaks in the curves of the square surface at
the tangent locations. However, because the curves on the square surface are
outside the circular surface they are not imprinted onto the circular surface so
the circular curve does not get split. This requires the final “Imprint Vertices
Onto Curves” step. The result is shown in Figure 7 B.

Just as regular imprinting will not introduce features smaller than 1e-6, tol-
erant imprinting will not introduce features smaller than merge tolerance.

7 Determining a Good Merge Tolerance

Determining an appropriate merge tolerance is the main key to effectively using
tolerant imprinting. Too small a merge tolerance will result in missed imprints
and too large a merge tolerance will result in unintended imprints. Unfortunately,
automatically determining a merge tolerance for a given assembly is difficult
without a user in the loop. Because of the variations in gap and misalignment
sizes within a given assembly it is difficult to automatically determine what
volumes should or should not be “touching.” Therefore, in most cases the user
needs to specify the merge tolerance after an examination of the assembly. Below
are some important characteristics to consider when examining an assembly and
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Fig. 8. Ambiguous merge example

a proposed process implemented in CUBIT to aid the user in determining a
suitable merge tolerance.

7.1 Smallest Feature Size

The smallest feature size in the model helps to limit how large the merge toler-
ance can be. If the merge tolerance is larger than or on the order of the smallest
feature size there can be ambiguities as to what should be merged between two
volumes. For example consider the geometry configuration in Figure 8. The vol-
ume on the right contains vertex A. The volume on the left has a small feature
near vertex A. Depending on the size of merge tolerance it will be unclear which
vertices on the left volume could possibly be merged with vertex A. Merging
will only allow one of the vertices from the volume on the left to merge with
vertex A but there may be more than one candidate vertex based on the value
of merge tolerance. To avoid these types of ambiguities merge tolerance should
not be as large as the smallest feature the user wants resolved in the mesh.
If gaps/misalignments in the model require a merge tolerance larger than the
smallest feature the model really needs to be cleaned up with tighter assembly
constraints or small features need to be removed.

Because of the potential ambiguities described above it is important to first
know the size of the smallest feature you want to represent in the assembly. CU-
BIT provides tools for either finding the n smallest features in the model or for
finding all of the features with a size less than some user-specified feature. When
first becoming familiar with the model the user does not usually know a small
size to specify so finding the n smallest features is very useful. This tool looks for
proximities between different topological entities (vertex, curve, surface) within a
given volume instead of just looking for “small curves” or “small surfaces.” This
was deemed a more general search. It is also important to note that this search
is done on a per-volume basis; it is not a tool for finding proximities between
two volumes. Figure 9 shows an example of the tool. In this example Vertex 42
and Curve 57 were found to be 0.254 units apart and are highlighted in orange
in the graphics window. The user can select results from the search and zoom to
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Fig. 9. Find smallest features tool

them quickly to determine which small features are intentional in the model and
which ones need to be removed (sliver entities, etc.). Looking ahead to tolerant
imprinting it is important to remove all features that are smaller than merge
tolerance to eliminate any ambiguities when merging. Obviously, the user won’t
know the merge tolerance at this point but he can look at the small features
that are in the model and remove any that are considered unnecessary for the
analysis.

7.2 Merge Tolerance Estimator

Once the smallest feature size is established CUBIT provides a tool for auto-
matically estimating the merge tolerance given the smallest feature size. This is
useful in giving the user a starting point for the merge tolerance that can then
be fine tuned. The estimator relies on there being a fairly consistent average
gap/misalignment between volumes in the assembly. Obviously, this does not al-
ways hold true under which circumstances the estimation is not very good but in
most cases there is a natural value at which most of the merging can take place
in the model and after which not many new merges will take place. This can be
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Fig. 10. Plot of number of merges vs. merge tolerance

seen in the plot in Figure 10 of values calculated from a real assembly containing
about 900 volumes. The horizontal axis plots increasing merge tolerance values
and the vertical axis plots the number of merges that would take place at that
merge tolerance. Where the plot flattens out is usually a good guess of where
the merge tolerance should be. The automatic estimator generates data similar
to that in Figure 10 for the assembly and picks off a value where the plot starts
to flatten out. To reiterate, this is only a rough estimation but usually gives a
good starting point for the user.

7.3 Proximate Features

After an approximate merge tolerance has been decided upon either by the user
or by the automatic estimator it is prudent to examine the assembly to see if
the merge tolerance will be suitable to capture all of the desired merges. CUBIT
provides a tool for doing this examination. The user can define a range around
merge tolerance and search for entity-entity proximities in the assembly that fall
within the range. For example, if the estimated merge tolerance was 0.005 the
user could look at a range above merge tolerance, 0.005 to 0.05, to see if there are
any entity pairs in that range that he would want to merge but that wouldn’t
because they are out of merge tolerance. Similarly, he could then look at the
entity-entity proximities below merge tolerance, in the range 0.0005 to 0.005
for example, to see if there are some entities that would merge that really he
wouldn’t want to merge. In this way the user can fine tune what merge tolerance
should be to capture the desired merges.

Figure 11 shows an example of the tool used to search a range for entity-entity
proximities. Again, the tool allows the user to quickly zoom in on entity pairs
to determine if merge tolerance should be adjusted.

Once the merge tolerance has been fine-tuned the user can run tolerant im-
printing and then merging.
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Fig. 11. Tool for determining merge tolerance

8 Example

The real benefit of the tolerant imprinting capability is the time saved in prepar-
ing a non-manifold assembly. Depending on the sloppiness and size of the as-
sembly it can easily take days and even weeks to manually modify the assembly
to have clean interfaces between adjacent volumes. Following is an example of
the impact of having tolerant imprinting.

This example is of an AF&F (arming fusing and firing) assembly consisting of
240 volumes. This example is an Official Use Only model so pictures of the assem-
bly are not included. The assembly is very compact in nature with a high number
of volume-volume interfaces. This model is also considered quite “sloppy” in that
many of the interfaces are out of tolerance when using the default imprinting
tolerance of 1e-6. Two runs were made, first with regular imprinting and merg-
ing and then with tolerant imprinting and merging. Table 1 shows the results.
The results show the time required during the imprinting step and the resulting
number of overlapping surface pairs after imprinting and merging. An overlap-
ping surface pair indicates two surfaces that did not merge correctly during
the merge process. Overlapping surface pairs are usually resolved by the user
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Table 1. AF&F data

manually fixing the model so that the merge can take place. As can be seen in
the results tolerant imprinting takes much longer to run. However, after running
tolerant imprinting there are only 2 overlapping surface pairs to fix manually.
Regular imprinting and merging resulted in 169 overlapping surface pairs that
would each have to be analyzed and resolved manually. The time required to do
this would easily outweigh the extra time required to run tolerant imprinting.

9 Conclusion

This paper has described the tolerant imprinting capability and other tools that
can be used to generate a non-manifold representation of a volume assembly
while maintaining the native solid modeling format of the assembly. This has
the advantage of allowing the user to do subsequent solid modeling operations
on the assembly (such as decomposition) to facilitate meshing. The real benefit
of the tolerant imprinting capability is the time saved when the user does not
have to modify the individual volumes in the assembly to define clean interfaces
between adjacent volumes. An example of using tolerant imprinting on a complex
assembly was given showing this potential time saving.
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Abstract. This paper describes an automatic method for generating analysis models to be 
meshed with finite elements of more than one dimension, known as mixed dimensional models. 
Mixed dimensional models offer much reduced analysis times, while not compromising simula-
tion accuracy to the same extent as fully dimensionally reduced models composed of 2D ele-
ments stiffened using beam elements, which are currently utilised in the aerospace industry. 
The techniques described make possible the automatic generation of mixed dimensional models 
directly from CAD, allowing for rapid iteration during early design. 

1   Introduction 

Fully detailed CAD models are often unsuitable for direct analysis. Analysis models 
can be produced from CAD using a simplification or transformation process such as 
defeaturing, in which small details are suppressed, or dimensional reduction. This 
paper will refer to all such transformations as ‘idealisation’. The current idealisation 
method of choice in the aerospace industry is to create a stiffened shell model; where 
the mid-faces of the thin sheets in a component are shell meshed, and beam elements 
added to ensure the model has the appropriate stiffness. This reduces the original solid 
geometry to a collection of thin sheets, and is known as dimensional reduction since 
the model is now represented by entities of lower manifold dimension. 

It has been demonstrated elsewhere [1] that it is beneficial to idealise thin walled 
structures for finite element analysis, especially during the early stages of the design 
process, since idealised models can be analysed more quickly because the number of 
degrees of freedom in the model is reduced. Most commercial finite element pre-
processors constrain the continuum elements used to mesh thin regions to have lateral 
dimensions similar to the thickness of the region such that a large number of very small 
elements are required for large thin sheet regions. When a thin sheet region is approxi-
mated using its mid surface the thickness of the region does not constrain the size of shell 
elements used to mesh it. This means much larger elements can be used, which greatly 
reduces the number of elements, and therefore the number of degrees of freedom in the 
model. It has also been shown that shell elements are more accurate and have better nu-
merical conditioning in thin sheet regions when compared to continuum elements. 

Although stiffened shell models are extremely efficient to analyse, they do not have 
the ability to appropriately model the behaviour in areas with complex geometrical de-
tail. Also, the preparation of these analysis models is extremely time consuming.  
According to industrial sources the idealisation process can take several months for 
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some components. The quality of the idealisation is dependent on the skill of the analyst 
who creates it. It is their engineering judgment which is used to determine the section 
properties used for stiffeners, and how to treat local features e.g. fillet radii.  Stiffened 
shell models are usually constructed from scratch, and as such are independent of the 
CAD model of the component. This hinders current ambitions for a fully integrated 
design process and prevents rapid iterative changes to a design. 

This paper presents an alternative method of idealisation in which 3D models of the 
geometrically complex regions in the component are preserved, while the thin walled struc-
tures are identified and dimensionally reduced to their mid faces. The mid faces can then be 
shell meshed, while the complex regions are meshed using 3-dimensional elements.  

Although these models are more computationally expensive than stiffened shell 
models, they have the ability to appropriately model the behaviour in the complex 
regions, while still offering considerable savings in analysis time over a fully 3D 
analysis model. Using the procedures in this paper, models of this kind can be created 
automatically. Coupling methods to ensure accurate results at the interface between 
the regions of differing dimension are also discussed. 

2   Existing Research and Capabilities 

[2] introduces an approach for creating mixed dimensional idealisations from solid 
models based on dividing a body into simple solids, and then selecting the solids with 
a thickness less than set value to dimensionally reduce to their mid-face. [3] presents a 
similar approach, but uses a different technique for creating the mid-faces. The proce-
dures in both of these papers use the absolute thickness of a region to determine if it is 
thin, without taking account of the associated lateral dimensions. This can result in 
thin regions with small lateral dimensions being inappropriately dimensionally re-
duced, but regions with a thickness above the target value being retained as solid, 
even though their lateral dimensions are suitably large for the region to be dimension-
ally reduced. In this paper a relative measurement known as aspect ratio (AR) is used 
instead of absolute thickness limits. Aspect ratio is a measure of the size of a region’s 
lateral dimensions relative to its thickness. 

The requirement for integrated model idealisation has led to the inclusion of geo-
metric idealisation and dimensional reduction tools in commercial finite element 
analysis pre-processors becoming more common. Many pre-processors offer “mid 
surface extraction” tools, allowing the user to extract the mid surface from a solid 
part, or from between two opposite faces.  Some of the more advanced tools also have 
the ability to extract a surface from a group of user defined surfaces. 

The idealisations offered by such tools can be inappropriate. Figure 1(a) shows a 
part and (b) the same part with the mid surface calculated using a commercial CAD 
package in grey. Clearly the calculated mid surface does not accurately represent the 
part. Indeed it is not obvious what form the mid surface should take in the vicinity of 
the change in thickness. Problems also exist for “T” shaped sections, where the faces 
from which the mid surface are to be extracted are ambiguous. When used on sections 
such as this many programs will produce an incorrect or incomplete idealisation.  An-
other issue is that the idealisation tools cannot usually be used for regions within a 
part, and will reduce all of a component where perhaps only some regions are suitable 
for idealisation. In Figure 1 a full 3D analysis would be required at the change in  
section to model the complex local stresses that occur in such regions.  
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(a)                                                               (b)

 

Fig. 1. Part body and part body with idealisation 

The aim of the research presented in this paper is to automate the preparation of 
idealised 3D-2D mixed dimensional models from a 3D CAD model. This will allow 
the advantages of appropriate idealisation to be realised without the risk and expense 
of preparing the simplified models manually. 

3   Mixed Dimensional Models 

Figure 2 and Figure 3 respectively show a 2D aero engine casing profile and a 3D CAD 
model of an aero engine exhaust casing, along with their mixed dimensional idealisations. 

For the 2D model the dimensionally reduced entities are shown as lines; the entities 
which are not dimensionally reduced are shown as faces. In Figure 3, the dimensionally 
reduced mid-faces are shown in light grey and the detail features are shown in dark grey. 

Critical aspect ratio (CAR) controls how large the lateral dimensions of a region 
have to be relative to its thickness before it is considered suitable for dimensional 
reduction. Figure 4 shows the effect of varying critical aspect ratio on the dimensional 
reduction of the aero engine casing profile.  As the critical aspect ratio is reduced the 
amount of the model which is dimensionally reduced increases.  An increase in the 
amount of the model which is dimensionally reduced corresponds to a further reduc-
tion in analysis time; but possible increase in analysis error. 

 

Fig. 2. Complex planar face and its mixed dimensional approximation 

 

Fig. 3. Complex solid model and its mixed dimensional approximation 
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Fig. 4. Variation in critical aspect ratio 

4   The Medial Axis Transform (MAT) 

The medial axis transform (MAT) or medial object (MO), originally proposed by [4],  
is a property of geometric shape and is the underlying technology used in the proce-
dures described in this paper to determine where the thin regions occur. The medial 
axis is a skeleton-like representation of geometric shape comprised of a set of geomet-
ric entities which are created by tracing out the centroid of the maximal inscribed disc 
as it rolls around the interior of a surface, Figure 5 (a); or of the maximal inscribed 
sphere as it rolls around the interior of a solid, Figure 5(b). 

These geometric entities plus the associated radius function form the medial axis 
transform, which is a complete, unambiguous representation of the original shape. 

The 2D MAT (Figure 5 (a)) is made up of medial edges and medial vertices. The 
edges are swept out by the centre of an inscribed disc that touches the face boundary in 
two places. Medial vertices occur where the disc touches in three places or more. Radius 
information is stored at each point on the medial axis, this is the radius function men-
tioned above. The 3D MAT (Figure 5 (b)) is a non-manifold collection of medial faces, 
edges and vertices. It is often referred to as the Medial Object or MO since it does not 
resemble an axis as the 2D case does.  A medial face exists where the inscribed sphere 
is in contact with the boundary of the solid at two distinct points, as is the case for 
sphere A in Figure 5 (b) Since the inscribed sphere is defined by four quantities, the x, y 
and z coordinates of its centre plus the radius, the sphere centre has two degrees of free-
dom and therefore sweeps out a surface.  Medial edges occur between medial faces 
where the inscribed sphere is in contact with the boundary at three distinct points, as in 
sphere B in Figure 5 (b). Medial vertices bound medial edges and occur where the me-
dial sphere is in contact with the boundary at four distinct points, as is the case for 
sphere C in Figure 5 (b). Degenerate edges or vertices can occur where the inscribed 
sphere is simultaneously in contact with more than the minimum number of points on 
the boundary, for example where the inscribed sphere moves along the neutral axis of a 
square prism. The inscribed sphere radius reduces to zero at a convex edge of the model. 
A medial face where this occurs is sometimes known as a medial flap, Figure 5 (b). Me-
dial edges and vertices can also be caused by curvature contact between the inscribed 
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(a) (b) 

Fig. 5. The medial axis transform; (a) The 2D medial axis with inscribed discs on a medial edge 
and at a medial vertex. The region represented by the disc on the medial edge is shown in grey; 
(b) The 3D medial axis with inscribed spheres on a medial face (A), on a medial edge (B) and 
at a medial vertex (C). 

sphere and the boundary, for example where the sphere moves along the axis of a 
cylinder or terminates in a spherical surface, [5].   

The set of object boundary entities the medial disc is in contact with as it traces 
each medial entity are known as its defining entities. 

The TranscenData Europe Ltd implementation of the MAT [6], commercially 
available as the Medial Object Toolkit within the CADfix software, was used for the 
work outlined in this paper. 

5   Dimensional Reduction of 3D Models 

Thin sheet regions in solid bodies have large lateral dimensions relative to their thick-
ness. The identification of thin sheets occurs in two steps. The first step eliminates all 
medial faces which are definitely not thin. The remaining medial faces, which may 
represent thin sheets of material suitable for dimensional reduction, are referred to as 
candidate medial faces. Candidate medial faces are defined by two object faces and 
are not medial flaps. For the thin walled example component shown in Figure 6 the 
candidate medial faces are shaded in Figure 7. The enlarged section of Figure 6 shows 
the complete medial axis, with additional medial flaps we wish to ignore, while  
Figure 7 shows only the seven candidate faces. 

 

  

Fig. 6. A thin walled component, with 3D 
medial axis 

Fig. 7. Candidate thin faces 
 



286 T. Robinson et al. 

5.1   Insetting and Aspect Ratio 

It is necessary to inset the proposed interface between the thin sheet and detail feature 
into the thin region to allow the complex stress contours which occur adjacent to de-
tail features to be modelled using continuum elements. It is not possible to accurately 
model the complex behaviour in these regions using reduced dimensional elements. St 
Venant’s principle [7] suggests that insetting the interface between the thin and com-
plex regions into the thin region by a distance of the order of the region thickness is 
sufficient to capture the localised complex stresses in linear stress analysis problems. 

Figure 8 (a) shows the bending stress for a section of a component which has traverse 
shear loading applied at one end. Figure 8 (a) shows the linear variation in stress contours 
through the sheet thickness at a mixed dimensional interface which has been inset by one 
thickness. In the model in Figure 8 (b) the interface has not been inset, and the resulting 
nonlinear variation in stress through the thickness at the 3D side is obvious. The stress 
contours are also not continuous between the top surface of the plate and the adjacent 3D 
surface. It is worth noting that even for the model where there is no inset the result is still 
accurate at a distance of one thickness from the mixed dimensional interface. 

To effect insetting in 3D, an offset or shelling operation is carried out on the boundary 
of the thin regions. Shelling can be achieved by calculating the 2D MAT on  a 3D medial 
face, and using the 2D radius function to create an offset profile. This offset profile can 
then be extruded through the thickness (i.e. projected onto the two defining faces of the 
medial face on which the offset profile lies) and used to slice the model into a cellular 
solid, as well as serving as the boundary for the mid-face representing the thin region. 

Above, the bold black outline is a candidate 3D medial face that is possibly thin. The 
solid it represents is not shown. The solid lines in the interior are the 2D MAT of the 3D 
face. The dashed outline is the offset geometry, which will be extruded perpendicular to 
the 3D face and used to split the solid. Note that at convex corners of the face, the two 
offset edges found in that corner meet exactly on the 2D MAT, and that the 2D medial 
radius at these points is equal to the offset distance (OS). For concave corners, an arc 
can be inserted, since this is always equidistant from the concave vertex. 

This process alone is not sufficient to determine if a medial face represents a slen-
der region, since candidate faces may contain regions which differ in their suitability 
for dimensional reduction. 

 

  
(a) Interface inset by one thickness. Linear 
stress distribution through thickness. 

(b) No inset at the mixed dimensional inter-
face. Non-linear stress distribution through 
thickness. 

Fig. 8. Modelling the interfaces between thin sheets and details 
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Fig. 9. Offset geometry to effect insetting in 3D 

Figure 10 shows, from left to right, an example 3D solid, the single candidate me-
dial face identified as possibly thin, and the resulting dimensional reduction (created 
using extruded offset geometry as just described). The narrow section does not have 
large lateral dimensions and should not be reduced; however the remaining section of 
the face is still suitable for reduction. The aspect ratio is not a property of the whole 
thin region, and must be calculated at a finer granularity. 

The offset geometry is modified by using the 2D MAT to identify regions of suit-
able lateral dimension. Points are identified on the 2D MAT where the medial radius 
is equal to (CAR/2 + OS) x D3D. Such a point is shown in Figure 11 (b) using a hol-
low black circle,  and represents the region of the medial face which will have lateral 
dimensions equal to CAR x thickness after the insetting. 

The touching points of these points are created on the defining edges. Vertices are 
created to represent the endpoints of a spline at the insetting of the touching points, 
depicted in Figure 11 (b) using filled black circles. A further spline control point 
(filled grey circle) is created at a distance of CAR/2 x D3D from the radius threshold 
point (hollow black circle), positioned between the end points. Figure 11 shows this 
point on the medial edge, but this need not be the case. 

Figure 11(a) shows the treatment of a concave corner. This is part of the offset al-
gorithm itself as opposed to corner rounding. Figure 11 (b) shows an example of the 
process for a convex corner region. The spline is represented by a dashed black line.  The 
inset touching points are used to trim the inset edges. The remainder of the inset edges 
and the splines are used to create edge loops, which are extruded into cutting faces for 
partitioning as well as being used to form mid-faces. Figure 11 (c) shows a section of an 
example medial face. The resulting offset geometry is shown in Figure 11 (d).  

 

 

Fig. 10. Desirable/undesirable dimensional reduction in 3D 
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(a) Concave corner (b) Convex corner.  Inset touching points 
as solid black circles.  Hollow black circle 
where 2D medial radius = (CAR/2 + OS) 
D3D. Filled grey circle at vertex on me-
dial flap.  Spline in dashed black line. 

  
(c) Profile in black, MAT in black dotted 
lines, inset edges in grey, concave radius in 
dashed grey line, Splines in dashed black 
line, black dots where radius = (CAR/2 + 
OS) x D3D. 

(d) Profile in black, and outline of new 
mid-face in dashed black lines. 

Fig. 11. Creating an appropriate medial face 

 
Variables used in Figure 11 are as follows: 

CAR  – Critical aspect ratio (see Figure 4) 
D3D – 3D Medial radius (thickness of the region to be reduced) 
OS – Offset factor (multiplier applied to D3D to determine inset  

    distance) 
 

Although this process is referred to as corner rounding, it is not restricted to operation 
solely in the corners of the face. The defining entities of the medial edge on which the 
radius threshold point lies can be used to identify any two pieces of the offset geometry 
that can be bridged with a spline. In this way, narrow face regions that widen at both ends 
can be trimmed away as shown in Figure 12. In the top diagram is a dotted outline of the 
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Fig. 12. Eliminating thin necks 

offset geometry without corner rounding. In the bottom diagram is the result of corner 
rounding, showing the spline end points as circles, and the radius threshold points as boxes. 

For an example on a 3D part, see Figure 14. 
Rounding corners has the added benefit of easing the derivation of coupling equa-

tions at the 3D-2D interface, by removing sharp changes of direction in the cut faces 
(they all meet tangentially). 

Using the rich information imparted by the 2D MAT, the desired insetting is 
achieved, while also calculating a useful aspect ratio measure for the 3D case, and 
creating tangential cut surfaces. 

5.2   Creating the Cellular Model 

In 3D a cellular model is created by extruding the offset geometry for each thin sheet 
mid face onto the defining faces of the region. The resulting cut faces are shown 
dashed in Figure 13 (c). The resulting cellular model (Figure 13 (d)) is a non-manifold 
solid, with the cut faces shared between neighbouring cells. 

Figure 13 (c) and (d) and Figure 14 below also provide an illustration of the proc-
ess described in Figure 11, in which the portion of the model above the central rib is 
considered to have too low an aspect ratio, and the opposing sides are bridged, creat-
ing two thin regions. 

The mid-face representing the thin sheet region is also stored with the model as an 
attribute of the appropriate cell. Suppressing the thin sheet solid cells will result in a 
mixed dimensional model where the mid faces represent the thin sheet regions.  Sup 
pressing the mid-faces and not the solid cells will result in the entities required for a 
detailed analysis model, but with the possibility of meshing the thin sheet solids using 
more efficient mesh structures than in the complex regions. Examples of alternative 
meshing techniques in the thin regions include using P-elements [8] or thick shell 
elements [9]. Anisotropic solid meshing is also an option (in which the elements have 
large lateral dimensions compared to thickness). 
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(a) Solid (b) Medial Axis, with 2D MAT on thin faces 

   
(c) Cutting faces (d) The cellular solid 

Fig. 13. 

 

Fig. 14. Mixed dimensional model 

6   Mixed Dimensional Coupling  

To analyse mixed dimensional models coupling is required at the interfaces between 
elements of different dimension. It is the coupling equations that transfer the behav-
iour at one side of the mixed dimensional interface to the other. Most finite element 
pre-processors include mixed dimensional coupling tools, but many do not achieve 
accurate results. This section summarises previous successful research on this topic.  

Many coupling techniques are inaccurate, which is demonstrated by the spurious 
stresses that occur at the mixed dimensional interfaces when they are utilised.  These 
techniques are inaccurate because the majority of them are derived by considering the 
relative displacements of the nodes on either side of the interface.  

The accurate coupling of regions of different dimension has been investigated by [10, 
11, 12]. The approach adopted by these authors assumes the stress through the thickness 
adheres to the conventional strength of materials theories in dimensionally reduced  
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regions i.e. that in-plane loading and/or plate bending causes stress which varies linearly 
through the thickness, whilst out-of-plane shear forces cause shear stress which varies 
parabolically through the thickness.  It is the ability to determine the distribution of 
stress through the thickness of the plate that allows a more accurate coupling technique 
to be derived.  St Venant’s Principle [7] suggests the stress in a body will assume this 
distribution as the distance from a detail feature becomes large relative to thickness.   

McCune introduced the procedures for coupling solids and shells (3D-2D) [10], 
Monaghan extended it to 3D-1D coupling [11] and Shim automated the procedure for 
3D-2D models and for laminates of multiple materials [12].  The underlying principle 
of these techniques is to equate the work done on the boundary of the reduced dimen-
sional side of the mixed dimensional interface to the work done by the stresses on the 
full dimensional side.  Equation 1 shows the equation which equates the work done on 
both sides of a 1D/2D interface. The stresses on the 2D side of the interface are writ-
ten in terms of forces and moments on the reduced side under the assumption that the 
mixed dimensional interface is within the slender region where the stresses are given 
by plate theory.  P, Q and M are the axial force, shear force and bending moment re-
spectively, as shown in Figure 15. u, υ and θ are the associated beam displacements, 
where as U and V are the continuum displacements. 
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This allows the forces and moments to be eliminated, resulting in multipoint con-
straint equations relating the displacements and rotations of the reduced dimensional 
side to the displacements on the 2D side (equation 2 below). 
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In practical terms this is achieved by writing multipoint constraint equations 
(MPCs) for each node on the reduced dimensional side of the interface, relating each 
degree of freedom for that node to the degrees of freedom of the nodes adjacent to it 
on the full dimension side of the interface. 

The 3D-2D case is described in [12], and is not reproduced here since it is signifi-
cantly more complex. 

Figure 16 shows the spurious stresses occurring at the mixed dimensional interface 
when the example model from Figure 8 is coupled using the techniques in a commercial 
FEA package.  The results shown in Figure 8 (a) are for a model coupled using the work 
described above.  

 

Fig. 15. A mixed dimensional interface 
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Fig. 16. Model coupled using element in commercial FEA package 

7   Face Grouping 

The procedures which have been described are only valid for simple topologies. Mod-
els which have more complex topology complicate the interpretation of the medial 
axis transform information. Here, the meaning of “complex” refers to the presence of 
additional edges and vertices between faces that join tangentially, for example score 
lines/points for load application, referred to hereafter as composite faces. When ideal-
ising models with composite faces, individual thin sheet regions may be represented 
by multiple medial entities, none of which are appropriate for dimensional reduction 
in their own right. A method is required for determining if a region can be reduced 
which is modelled using multiple medial entities. 

To assess the suitability of a group of medial entities which represent the same region 
to dimensional reduction, the aspect ratio of the entire region is considered.  For models 
with composite faces it is assumed that two medial entities define the same region if they 
are adjacent and have a similar thickness. For a group of adjacent medial entities, if 
[(Max(D) – Min(D)) / Max(D)] is small (<0.05) they are said represent the same region.  
Min(D) and Max(D) refer to the min/max medial radius values taken across all faces in the 
group. As before, entities which meet the criteria are labelled candidate medial entities. 

Groups of medial entities which are determined to represent the same region are com-
bined to create composite medial entities.  Figure 17 (a) shows a profile in which the hori-
zontal region is represented by five medial edges.  There are two composite medial edges in 
 

ME 1 ME 3ME 2 ME 5ME 4

 

Fig. 17. (a) Dirty profile geometry and (b) candidate medial edges  
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Fig. 18. (a) A solid model with composite faces and (b) candidate medial faces in grey 

the model shown in black, one comprised of one vertical candidate edge, and one com-
prised of the five horizontal candidate edges (ME1 to ME5).  The aspect ratio of a compos-
ite medial edge, calculated using the combined length of the edges and the diameter of the 
maximal inscribed disc used to trace any of the edges, is used to determine whether the 
region represented by the composite entity is suitable for dimensional reduction. 

For the 3D model shown in Figure 18 there are four candidate medial faces; one in the 
vertical section, and three in the horizontal.  This model has two candidate composite me-
dial faces, one in the vertical member comprised of one candidate medial face, and one in 
the horizontal member comprised of three candidate medial faces. To dimensionally re-
duce the component the 2D MAT has to be computed for each composite medial face. 

8   FE Models and Results 

The results presented in this section are taken from [1], included here for completeness. 
As part of the VIVACE Framework 6 European project [13] the mixed dimen-

sional modelling procedures were used on a gas turbine engine component, the CAD 
model of which is shown in Figure 19 (a). A mixed dimensional model was compared 
to a densely meshed 3D model of the component used as the reference model, and a 
stiffened shell model, Figure 19 (b). 

For the reference model an unstructured tetrahedral mesh was created; with curva-
ture sensitive meshing used to provide smaller elements adjacent to complex features.  
The mixed dimensional geometry was created for a critical aspect ratio of 10; and the 
mixed dimensional interface was inset by the local thickness of the region.  Two dif-
ferent mixed dimensional models were created using the same mixed dimensional 
geometry, but using different meshing techniques. For the first model, MD1, thin 
sheets of material, Figure 19 (d), were shell meshed and the remainder of the model, 
Figure 19 (c), was meshed using tetrahedral elements.   

When the thin sheets of material were removed from casing, roughly half of the 
remaining solid was made up of long slender solids where one dimension was much 
longer than the other two.  For the second mixed dimensional model, MD2, the long 
slender solids were isolated and meshed by extruding a triangular mesh along their 
length, creating wedge elements.  The wedge elements are shown in middle grey in 
Figure 19 (e). Also shown in Figure 19 (e) is the shell mesh used for the thin sheets, 
in light grey, which were the same for MD1 and MD2.  The unstructured tetrahedral  
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(a) The component model (b) Stiffened shell model (c) Solid in mixed dimen-
sional solid 

 
 

(d) Mid-faces in mixed dimen-
sional model 

(e) Close up of mesh.  Shell elements in lights grey, 
wedge elements in middle grey and tet elements in 
dark grey. 

Fig. 19. Modelling the aero engine component (intermediate engine casing) 

elements used for the remainder of the model are shown in dark grey. A modal analy-
sis was carried out for all models.  A static analysis was carried out for the 3D model 
and the mixed dimensional model MD2.  

8.1   The Modal Analysis 

A modal analysis is used to study the dynamic properties of a component when it is sub-
jected to a vibration.  A finite element analysis will return the frequency of vibration and the 
corresponding mode shape.  A free-free modal analysis was carried out for each model, 
during which the first 40 modes of vibration were calculated, and the frequencies of the 
elastic modes compared.  As frequency is dependent upon mass it is common practice to 
adjust the density applied to an idealisation so that its mass is correct, which for this investi-
gation meant that it was the same as the 3D model. The mixed dimensional model had a 
mass difference of 0.2% compared to the solid model, and due to the small difference its 
density was not altered.  The stiffened shell model had a mass difference exceeding 1.5%; 
therefore the density applied to the model was reduced from 2700 kg/m3 to 2660.7 kg/m3. 

The computational efficiency is represented in this paper by the number of degrees of 
freedom (DoF) in the model.  Unfortunately as each of the analysis models was created 
by different project partners, and analysed using different tools, a comparison of analysis 
times for the models is not meaningful.  A summary of the results is shown in Table1. 

At 9.4 million degrees of freedom the 3D model was extremely large, and at the 
limit of what was achievable using the available workstations.  As well as being time 
consuming to analyse, a component model of this size cannot feasibly be used in the 
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analysis of an assembly. The number of degrees of freedom in the stiffened shell 
model was three orders smaller than for the 3D model, and although an exact com-
parison of analysis times is not possible, the analysis time was reduced from in excess 
of 10 hours for the 3D model to less than 1 minute. Given this magnitude of the re-
duction in model size, the results for the stiffened shell model were surprisingly accu-
rate; however this has to be offset by the considerable time taken to create the model, 
and the uncertainties in the approach.   

The 60% reduction in degrees of freedom for mixed dimensional model MD1 was 
smaller than expected given that approximately half of the model was thin sheets and 
dimensionally reduced; however it is important to notice that there remain a lot of very 
small tet elements in the long thin regions which bound the thin sheets. The small tets 
were addressed in MD2 in which these long thin regions were sweep meshed, allowing 
the size of the model to be reduced to 8% of the size of the 3D model. 

The mode shapes were the same for each of the models for all of the elastic modes 
of vibration. The mixed dimensional model MD2 had an average difference of 3.2% 
relative to the 3D model, which was less than half the 8.5% calculated for the stiff-
ened shell model. The maximum difference in MD2 relative to the 3D model (8.2%) 
was less than the average difference for the stiffened shell model. The stiffened shell 
model had a maximum difference of 18%. 

Clearly mixed dimensional models offer a significant advantage over stiffened 
shell models in terms of accuracy; whereas the stiffened shell models have considera-
bly fewer DoF, and are therefore faster to analyse than mixed dimensional models. 
The reduction in analysis time, estimated to be less than one minute for the stiffened 
shell model compared to 30 minutes for the mixed dimensional model, has to be con-
trasted with the preparation time. The preparation of the stiffened shell model is be-
lieved to have taken in excess of two weeks, compared to the preparation of the mixed 
dimensional model which it is believed will take under half a day when the proce-
dures have been properly implemented. Clearly when preparation time is considered 
mixed dimensional modelling offers significant advantages. 

Table 1. Modal analysis data and results 

 3
D  

M
D1 

M
D2 

Stiffened 
shell 

Degrees of freedom (millions) 9
.4 

3.7 0.7 0.04 

DoF (% of 3D)  40 8 0.5 
Mean modal frequency (% diff. to 3D)  1.3 3.2 8.5 
Max modal frequency (% diff. to 3D)  4.2 8.2 18 

8.2   The Static Analysis 

A static analysis is used to determine the equilibrium state of a part under a non-
dynamic load. A static analysis was carried out for the 3D model and the mixed dimen-
sional model MD2. A static analysis was not completed for MD1 as it was deemed to 
have too many degrees of freedom to be an acceptable approximation. The analysis con-
sisted of clamping the face of one of the flanges, arrowed in Figure 20 (a), and applying 
a circumferential displacement of 0.1mm to the face arrowed in Figure 20 (b). The  
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constraints, imposed using a cylindrical coordinate system, were ur = 0mm, uθ=0.1mm 
and uz = 0mm. After the analysis the resultant torque on the face which had been dis-
placed was measured. It is worth noting that both of these flanges are missing from the 
stiffened shell model, so if it was to be analysed in the same way the boundary condi-
tions would also have to be approximated. 

The results for the 3D model and the mixed dimensional model were compared. 
The resulting torque in the mixed dimensional model is 5.9% higher than in the 3D 
model. For both the static and modal analyses the mixed dimensional model had a 
higher stiffness than the 3D model. 

Ur= 0mm 
U = 0mm 
Uz= 0mm 

Ur= 0mm 
U =0.1mm 
Uz= 0mm  

(a) clamped face (b) displaced face  

Fig. 20. 

9   Discussion 

Stiffened shell models offer low analysis times, with reasonable global accuracy. This 
paper presented mixed dimensional modelling as an alternative, offering better accuracy 
than the stiffened shell model while retaining a significant reduction in analysis time 
over a full 3D model. The ability to create models of this type automatically enables 
rapid iteration during the design process. 

The underlying technology for the procedures in this paper is the 3D medial axis 
transform which remains a topic of research in its own right. Although significant 
progress has been made in recent years, a robust implementation is not commercially 
available. The complex regions in the model, at the junctions where different solids 
meet, are the most difficult regions in which to compute the medial axis. The easiest 
are the medial faces which lie between two object faces. Fortunately it is the latter, 
easier to produce medial faces, which are required for the procedures outlined in this 
paper. Even though a robust implementation of the 3D MAT is not available at the 
time of writing, the information provided by the implementations that do currently 
exist is sufficient for the procedures in this paper. 

The consequence of the medial axis failing to compute in a particular region is that 
the lack of medial information will stop the region from being dimensionally reduced, 
and the idealisation will not be as complete as it should be. This will have a detrimental 
effect on analysis time, but will not adversely affect the accuracy of the idealisation. 

Even today’s most powerful workstations have a limit to the number of degrees of 
freedom that can be successfully analysed, meaning it is not always possible to use a 
suitably dense mesh in the complex regions of the part to accurately model their be-
haviour. An alternative use offered by 3D-2D mixed dimensional modelling is that by 
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reducing the number of degrees of freedom used to model the simple regions, more 
elements can be used to model the complex regions, providing more accurate results, 
while still remaining within the computational limits of the workstation. 

Sometimes when the thin sheets of material are removed from a component the re-
sult is made up of long slender solids. This was demonstrated for the gas turbine en-
gine component in Figure 3. A lot of elements can be required to mesh these regions 
due to the small element size imposed by the small lateral dimensions of the solid, and 
the constraint on element aspect ratio for unstructured tet meshing.  A significant ad-
vantage can be achieved by appropriately meshing these regions using anisotropic ele-
ments, with greater dimensions along the length of the solid than on its cross section.  
This meshing structure can be achieved by stretching elements along the length of the 
solid, or by sweeping a mesh of the cross section along its length, with a large distance 
between where the layers of nodes are placed. This meshing structure requires the con-
straint on element aspect ratio to be removed. [14] discussed the identification of the 
“tubular” regions in a model, which are similar to the long slender solids. 

An alternative approximation is to reduce these long thin regions to their midline 
and mesh them using 1D beam elements.  If beam elements were used to model these 
long solids the global model would become a 3D-2D-1D mixed dimensional model.  
Appropriate mixed dimensional coupling would be required for this type of model.  
The coupling requirements would be greatly simplified if the 3D cells representing 
complex regions were replaced with 0D inertias, forming a 2D-1D-0D model, which 
would be more efficient still. 

10   Conclusions 

In this paper procedures have been described which can be used to create mixed di-
mensional idealisations from 3D CAD models suitable for finite element analysis. 

Regions in a model are suitable for dimensional reduction when: 

• In 3D the lateral dimensions are large relative to the thickness  
• In mixed dimensional modelling: 
• Medial axis transform information can be used to identify the regions suitable 

for dimensional reduction. 
• Regions suitable for dimensional reduction can be idealised using the medial en-

tity representing the region. 
• Cellular models provide a suitable representation in which a detailed model and 

its structural idealisation can coexist. 
• Mixed dimensional models can be created automatically, removing the need for 

a skilled analyst, and reducing model preparation time. 
• Mixed dimensional modelling does not require a full 3D MAT.  Any procedure 

which identifies the medial faces of thin sheet regions is acceptable. 
• Finite element analysis is faster for a mixed dimensional model than for a solid 

model, and although stiffened shell models are faster still, their preparation time 
is much longer and they are subject to modelling errors. 

• The increased analysis time required to analyse a mixed dimensional model 
compared to a stiffened shell model is acceptable, given the higher accuracy 
achieved and much lower preparation time. 
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Summary. When conducting a finite element analysis, the total number of degrees of freedom 
can be dramatically decreased using finite elements such as beams and shells. Because of geo-
metric complexities, entire models (or portions of models) must be meshed using volume ele-
ments in order to obtain accurate simulation results. If however some parts of these models fit 
the description of shells or beams, then a mixed-dimensional model containing shell, beam and 
volume elements side by side can be used. This approach can significantly reduce the time 
needed to mesh and solve the system. Unfortunately, problems arise when trying to connect 
elements of different dimensions in part due to the incompatible degrees of freedom and the in-
dependently created meshes. This paper presents a solution to these problems based on the gen-
eration of a compatible mesh composed solely of basic elements and without the requirement of 
constraint equations.  

Keywords: mixed-dimensional analysis, model reduction, mesh, shell elements, beam elements. 

1   Introduction 

When conducting a finite element analysis (FEA) the engineer is often confronted with 
long calculation time or with a limit imposed on the number of elements. Dimensional 
reduction is one of the many techniques employed to reduce the computing time and/or 
the number of elements. Using plate, shell or beam elements can considerably decrease 
the total number of degrees of freedom (DOF) without loss of accuracy. 

However, not all models are suitable for dimensional reduction. Indeed, portions of 
a model with a complex geometry must be simulated using volume elements. Some 
models, often structures, feature portions of their geometry which can be modeled by 
reduced-dimensional elements while other portions must be modeled using volume 
elements. Examples of these can be found in [1] and [2]. In these situations it is pos-
sible to use mixed-dimensional models which are models that contain more than one 
type of element. It is indeed possible to combine in a model shell and volume ele-
ments for example. The stiffness matrix has no restriction on the type of elements it 
can contain. 

These mixed-dimensional analyses combine the advantages of each type of ele-
ments, a reduced computing time and decreased number of nodes for 1D and 2D  
element types and the ability to mesh complex geometries with volume elements.  
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Another advantage is the ability to easily modify the model when evaluating design 
scenarios. For example, in an optimization process, if a shell thickness is modified, 
only one parameter needs to be changed in a mixed dimensional analysis while, in a 
full 3D analysis, the CAD model must be changed. 

Two major steps are needed to extract results from a mixed dimensional analysis. 
The first one is determining which component of an assembly, or which portion of a 
component can be modeled by using reduced dimensional elements. To make this task 
simpler and more automated, methods have been developed in order to determine 
automatically what can be reduced. The medial axis transform [3-5] and the work 
done by Chong in [2] are examples of the progress being made on this subject. Unfor-
tunately, this task usually referred to as geometric idealization is far from being fully 
automated and a lot of work remains to be done on this subject. In the work presented 
here, idealized models are built by the designer in a CAD system.  

Fig. 1 illustrates an example of a mixed dimensional model (or idealized model). A 
component is partly modeled by using 3D (volume) elements for complex geometry, 
beam elements for long and slender portions of the geometry and shell elements for 
portions of the geometry which can be accurately described by a face associated with 
a small wall thickness.  

The next step in the mixed-dimensional analysis process is to take the idealized 
model, mesh it and solve the resulting model to obtain analysis results.  

Unfortunately these analyses also face some problems, mainly at the interface be-
tween elements featuring different dimensions. In this paper, a zone where 1D 
(beams), 2D (shells) and 3D (volume) elements join is referred to as a dimensional in-
terface. We will demonstrate here how these problems can be overcome solely by 
generating a mesh featuring specific arrangements of classical 1D, 2D and 3D finite 
elements. This paper focuses on these arrangements when coupling shell elements 
with volume elements. 

 

Fig. 1. Example of a mixed dimensional model a) Original model b) Idealized model 

2   Problems with Mixed-Dimensional Analysis 

When trying to join elements featuring different dimensions, two major problems 
arise. The first problem is meeting requirements of mesh continuity across a dimen-
sional interface and the second is incompatible degrees of freedom (DOF) across a 
dimensional interface. 
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2.1   Mesh Continuity 

A mixed dimensional model is created in a CAD system as a group of parts modeled 
with various dimensions. The mesh generator sees these parts as different entities and 
meshes them independently. This results in an incompatible mesh at dimensional in-
terfaces. Even if the different parts are in contact with each other, if nodes are not co-
incident, these parts are not practically bounded together from a FEA perspective, 
which implies that the analysis will fail or that results will be inaccurate.  

Problems also arise when only some nodes are coincident while others are not.  
Fig. 2 illustrates this specific situation. A W-beam is modeled using three 2D faces. 
These faces are then meshed independently with shell elements. Nodes of each face 
are not always coincident with other nodes at the interfaces. In the process, coincident 
nodes are merged whereas many nodes at the interfaces are left unmerged. Of course, 
such a model leads to inaccurate results at the interfaces. High stress concentrations 
appear near merged nodes since the model represents a situation where faces in con-
tact are bounded together only at merged nodes locations. We will explain below how 
discontinuous binding between parts (with identical or different dimensions) can be 
avoided. 

 

Fig. 2. Examples of a mesh continuity problem, coincident nodes are merged while others are 
not 

2.2   Incompatible Degrees of Freedom 

The second major problem faced when using mixed-dimensional analysis is incom-
patible degrees of freedom (DOF) at a dimensional interface. Typical 3D elements 
only feature three DOF (3 translations) per node while shell elements typically feature 
five or six DOF per node (three translations and two or three rotations). 

Consequently, when coupling volume and shell elements, even if nodes of both parts 
in contact are merged, problems can still arise in some circumstances. Fig.3 illustrates a 
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straight line contact between a shell and a 3D volume. The forces applied on the shell 
induce a bending moment in the shell. This bending moment is transmitted trough the 
shell thanks to the shell’s rotational DOF. Nodes located at the straight line contact 
(common to shell and volume elements) bring about FEA modeling problems as volume 
elements do not “follow” rotations of shell element. Assembly of the stiffness matrix as 
is leads to a singular matrix or to inconsistent results. 

Thus, coincident nodes directly merged this way are akin to ball-joint links. Since 
in the FE model, the shell and volume intersect as a series of coincident nodes, the in-
compatibility between DOF results in a situation where the shell and volume are 
joined by a hinge.  

We will also explain below how this second type of inconsistency at a dimensional 
interface can be avoided. 

 

Fig. 3. A shell – volume intersection 

3   Alternate solutions 

Some techniques were designed to circumvent these problems. Shim [6] describes a 
way to couple shell and volume elements by adding constraints equations to the solver. 
These equations are based on equating the mechanical work for elements located on 
both sides of a dimensional interface and tend to overcome inconsistencies between 
DOF. Some FEA software feature functions used to couple shell and volume elements. 
These functions add constraints equations akin to those described above, but accuracy 
issues related to the use of this type of approaches have been outlined [7]. 

Another approach to overcome inconsistencies between DOF is to use volume 
elements with rotational DOF. Indeed, 3D elements have been designed, based on 
Allmans’s triangle with rotational DOF [8]. This triangle, designed for 2D analysis, is 
a quadratic element with only three nodes, each with 3 DOF (two translations and one 
referred to as a pseudo-rotation). Since then, many tetrahedron element types have 
been designed, based on the same principles [9]. Sze [10] has referenced a large num-
ber of such elements. It should be noted however that these elements are designed to 
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improve on the classical linear tetrahedral element and the additional rotational DOF 
is not designed with the intent of coupling elements of different dimensions. The use 
of this type of elements implies that the connection between beams or shells and solid 
elements is concentrated at one point or one line. Therefore, stress distributions in 
solid parts around these interfaces are completely independent of beam section shapes 
and shell thicknesses, which introduce significant inaccuracies. 

4   Prior Work 

Prior to the work presented here, a method was developed to couple beams and vol-
ume elements using only specific arrangements of typical 1D, and 3D FEA elements 
[11]. This method came from an adaptation and combination of two suggestions made 
by Craveur [12] and it results in solving both problems mentioned above (mesh conti-
nuity and incompatible DOF) through the two following steps: face splitting and add-
ing mini-beams.  

Face splitting aims at solving the mesh continuity problem with the objective of 
finding a solution that is independent from both the mesh generator and the solver. 
Therefore the best way to force the mesh generator to create nodes at correct locations 
is to use a technique which consists in splitting a face located at a dimensional inter-
face, in several pieces. This operation generates one or more faces that fill the space 
of the original face. This is done to add at least one vertex at the intersecting point be-
tween the beam and the volume. A standard Delaunay or advancing front unstructured 
mesh generator will then automatically place a node at the newly created vertex. In 
order to improve accuracy, the shape of face splitting is the same as beam’s section. 
This is illustrated in Fig. 4; a W-shaped beam intersects a volume at a specific loca-
tion represented by a point. Two small internal faces (colored in the figure) are cut in-
side the volume’s intersecting face. As it can be seen in Fig. 4, a vertex is located at 
the intersecting point with the beam, therefore insuring that the mesh generator will 
create a node at that location. 

Adding mini-beams aims at solving the problem of incompatible DOF. Beam ele-
ments called mini-beams are placed between the main beam’s node and nearby nodes 
on the volume’s boundary. While there is still the ball-joint effect explained earlier, 
the fact that these supplementary beams are linked with the main beam solves the 
problem. Of course, the mini-beams should not all be collinear (located along a 
straight line) which introduces a free rotation around this line. Theoretically, a non-
singular stiffness matrix can be obtained with only a few mini-beams and in the ex-
ample illustrated in fig. 4, this would mean adding only four mini-beams on top of 
each triangular edge touching the intersection point. Nevertheless, as will be ex-
plained just below, the distribution of mini-beams has been studied carefully and  
optimized in order to obtain analysis results that are as close as possible to the real 
connection’s mechanical behavior.  

No simple equation could be found to adapt the mini-beams’ elastic properties to 
the behavior of the beam’s section at the dimensional interface. Therefore, in an at-
tempt to improve accuracy, a great number of tests have been made to establish the 
best possible configuration with the layout of the mini-beams and their properties. 
However, no configuration was found to perfectly recreate the behavior in every  
circumstance. 
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Fig. 4. A beam-volume intersection. Two faces are cut in the original face and mini-beams are 
overlaid on top of them. 

 

Fig. 5. Local stress results (Von Mises) for an idealized part with several beam-volume inter-
sections 

Nonetheless, an acceptable solution was found when using mini-beams with infi-
nite stiffness. This hypothesis meets the Bernouilli-Euler beam element’s formulation 
which states that a beam’s section does not change under stress. 

To make the entire beam’s section rigid, mini-beams of infinite stiffness are laid on 
every edge of the mesh at the dimensional interface. In the example of fig. 4, this means 
that every triangle edge inside the two colored faces (obtained from the splitting face 
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process) is overlaid with a mini-beam of infinite stiffness. This effectively translates in 
faces of infinite stiffness. 

Fig. 5 illustrates a sample stress result on a model composed of four beams inter-
secting at odd angles. The geometry at the intersection of these four beams is modeled 
using 3D elements while most of the beams themselves are modeled using beam ele-
ments. Fig. 5 also illustrates how the specific case of hollow beams is processed. In 
fact, a specific scheme was developed in order to deal with beams of which neutral 
axis does not lie in the material of the beam, which is the case of most hollow beam as 
well as channel type beams. A supplementary mini-beam of infinite stiffness is used 
to link the node at the beam’s extremity and a random node on the face representing 
the beam’s section. This can be observed in fig. 5 at the intersection with the hollow 
square section. In this particular case no face splitting is required. 

5   Extension to Shell-Volume Intersections 

The method proposed in this paper aims at solving the same types of problems (mesh 
continuity and incompatibility of DOF) for shell-volume intersections. Thus, the work 
presented below is based on an extension of beam-volume intersections procedures to 
the case of shell-volume intersections. In the case of shell-volume intersections, di-
mensional interfaces are still processed following the two steps mentioned above 
(face splitting and mini-beams generation) but these steps are slightly modified.  

5.1   Step One: Face Splitting 

The aim of this operation is now to generate a common edge at the intersection be-
tween the shell and the volume. An example is illustrated in fig. 6 where a shell inter-
sects a volume on one of its faces. Face splitting consists in cutting two smaller faces 
along the intersection between the shell and the volume (colored in the figure). Like 
in the case of beam-volume intersections, the shape of splitting face is consistent with 
the shell’s section, which means the shell’s thickness. In the CAD software, two 
edges are situated at the dimensional interface, one belonging to the volume (on both 
smaller faces) and one belonging to the shell. These edges and their associated verti-
ces are merged to form only one edge. This results in a non-manifold model since this 
intersection edge features three adjacent faces. 

Once launched, the mesh generator will start by generating nodes on all vertices. 
Then it will mesh all edges of the model, including the common edge at the dimen-
sional interface, only once. Then, faces are meshed starting from the edges’ mesh and 
therefore the nodes located at the intersection are necessarily coincident between the 
volume and the shell.  

In some cases this procedure cannot be used directly in order to create a common 
edge between the shell and the volume. For example, this is the case when the inter-
section edge between the shell and the volume does not entirely lie on a single face 
bounding the volume. An example of this can be seen in fig. 7. A shell intersects a 
volume but the intersection edge lies at two different location and extends beyond the 
volume. 
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Fig. 6. The method applied to a shell-volume intersection. a) 3D Model b) Model after face 
splitting operation c) mesh with mini-beams (mini-beams and bounding triangles are repre-
sented using different colors also for clarity). 

 

Fig. 7. In order to obtain a series of common edges, the shell’s face has to be cut several times 

In this case, the mesh continuity problem remains even if volume’s intersection 
face is split correctly because the shell’s edge at the intersection cannot be merged as 
is with an edge on the volume’s boundary. 

Since the Application Programming Interface (API) we are using does not feature 
any tool to split an edge of a shell, the solution in this case is to split the shell’s face 
as well, as illustrated in fig. 7. Splitting the shell introduces two rectangular sub-faces, 
which leads to the division of the shell’s intersection edge into four smaller edges. 
Two of these edges can now be merged with a coincident edge on the volume’s 
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boundary at the intersection. The height of these shell sub-faces is chosen with regard 
to the element size as specified in the size map1 imposed in the dimensional interface. 
This is done in order to obtain well shaped triangular elements when meshing the 
shell, as the automatic mesh generation process is constrained by splitting faces. 

5.2   Step Two: Adding Mini-beams 

To prevent the hinge effect described earlier (a consequence of incompatible DOF) 
mini-beams are also added to both internal faces once the mesh is performed. While 
the FE solver would not fail in the case illustrated in fig. 6 as the edge is not a straight 
line, adding these mini-beams first models a rigid connection instead of a hinge con-
nection at the intersection curve. Also, like in the case of beam-volume connections, it 
models the connection between the shell and the volume more accurately as the  
connection is made on a face (representing the shell thickness) instead of a curve, re-
ducing by the way stress concentrations at the interface. The operation is rather 
straightforward as the list of all triangular segments belonging to the connecting faces 
(contour and inside) can be easily obtained. A mini-beam is then added between both 
nodes of each segment so that the entire connecting face is overlaid with mini-beams.  

The principle of mini-beams of infinite stiffness used in the case of beam-volume 
intersections cannot be used here however as the shell’s section at the interface must 
be able to bend. Fig. 8a illustrates this type of specific cases where three forces act to 
 

 

Fig. 8. Displacements results (Y direction) for a shell-volume intersection. a) 3D model b) 
Model with mini-beams of infinite stiffness c) Model with oriented mini-beams d) Illustration 
of two mini beam’s orientation. 

                                                           
1 In our work, the size map is a tensorial function describing the desired mesh size at each point 

in space. 
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bend the shell, but a section of infinite stiffness prevents the shell from deforming 
properly (Fig. 8b). In order to solve this problem, oriented mini-beams are used in-
stead of mini-beams with infinite stiffness. Oriented mini-beams are configured with 
an infinite moment of inertia in one direction, but with no inertia in the other direction 
and a null section area. In the case of fig. 8, this means that the mini-beams have a 
moment of inertia Iyy infinitely large (see figure 8d). The stiffness in the other direc-
tions is supplied directly by the shell itself.  

Fig. 9 illustrates Von Mises stress results obtained for a simple model where a por-
tion of a shell is modeled using shell elements while the remaining portion uses vol-
ume elements. As it can be seen, the Von Mises stress field is quite continuous across 
 

 

Fig. 9. Von Mises stress results on a shell (tension). Top face stresses are illustrated for shell 
elements. 

 

Fig. 10. Von Mises stress results on a shell (bending). Top face stresses are illustrated for shell 
elements. 3D view and side view pointing out the deformed shape (at the bottom). 
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the part except for very small discontinuities near the dimensional interface between 
volume and shell elements. In this particular case these discontinuities appear because 
of the inability to obtain mini-beams of real zero and infinite stiffness. Fig. 10  
features the same model under a bending load. 

6   Examples  

The method described above has been successfully implemented through the design 
of a computer program. Practically, the whole process starts from an idealized model, 
designed in a commercial CAD system. Technical data such as wall thicknesses (for 
shells), section properties and orientation (for beams), boundary conditions and me-
chanical properties are also integrated into the model using an interactive interface, as 
well as an imposed size map for mesh generation. After this, the remainder of the 
process is fully automated. This automatic process starts with modifications to the 
idealized model (essentially face splitting) which are led directly in the CAD system 
using an Application Programming Interface (API). This API is also used to provide 
the geometric model with technical data mentioned above. This API is first used to 
process the identification of intersections between shells and volumes (for what con-
cerns the scope of this paper), and then to apply face splitting algorithms. It is also 
used to flag internal faces to be overlaid by the mesh generator with mini-beams and 
to merge edges and vertices. Then, the addition of mini-beams is carried out by spe-
cific procedures integrated in the automatic mesh generation system developed by our 
research team [13-15].  

It can also be mentioned here that the size map constraining mesh generation can 
be either specified by the analyst or by an automated process (referred to in our work 
as automatic mesh pre-optimization [16-18]). Also, in the context of the work pre-
sented here, the size map is adapted according to the shape of internal faces (resulting 
from face splitting). 

Table 1. Comparison of the different models 

 6 legged support Coat hanger Ventilation 
gate 

 

 
  

Mixed dimensional analysis 
Nb. elements 23 171 20 121 42 310 
Nb. of DOF 20 295 17 900 47 646 

Max displacement (m) 2.85 e-9 2.242 e-9 1.589 e-7 
Full 3D model (quadratic tetrahedron) 

Nb. elements 88 048 26 608 34 373 
Nb. of DOF 410 316 129 201 200 982 

Max displacement (m) 2.995 e-9 2.248e-9 1.497 e-7 



310 S. Bournival, J.-C. Cuillière, and V. François 

 

Fig. 11. Solid model of the waterslide 

 

Fig. 12. The idealized model after face splitting 

Table 1 summarizes a few simple examples modeled with the method described in 
this paper. The three different models are compared with results obtained from a full 
3D model. The mixed-dimensional models use linear tetrahedrons, linear thin shells 
and oriented mini-beams while the 3D models use only quadratic tetrahedron. We 
were unable to compare these results with mixed-dimensional models using con-
straints equations as we do not have access to that code. 

The use of oriented mini-beams is particularly noticeable in the case of the ventila-
tion gate as the faces at the dimensional interface need to bend in order for the model 
to deform correctly. Note that the 3D models are not necessarily more accurate as tet-
rahedron elements are ill suited to model thin shells. 
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Fig. 13. Mixed-dimensional mesh of the waterslide 

 

 

Fig. 14. Von Mises Stress results (on external faces for shell elements) 
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The next example illustrates the analysis of a waterslide structure in details. Fig. 12 
illustrates the solid CAD model of the waterslide. This model is then idealized and 
provided with technical data (boundary conditions, shell thickness and material prop-
erties). For this example, support parts are modeled using 3D elements and the half-
tube using shell elements. Fig. 13 illustrates this model after face splitting. As seen 
with the zoom, face splitting results are illustrated using different colors. 

Fig 14 illustrates the resulting mixed-dimensional mesh. The 7 volumes and 6 shells 
are meshed independently. Oriented mini-beams are then added applying the proper ori-
entation and the mesh is automatically graded around the dimensional interfaces.  

The mesh, material properties, boundary conditions and shell properties are finally 
exported to a commercial FEA solver. The resulting Von Mises stress field can be ob-
served in fig. 15. From this model, various design scenarios can now be easily  
investigated. 

7   Conclusions 

This paper presents a method intended to couple shell and volume elements for 
mixed-dimensional analysis only using specific arrangements of classical 2D and 3D 
finite elements. Since the technique is mesh-geometry based it presents the advantage 
of being independent from both the mesh generator and the solver. The mesh genera-
tor used in this work is based on advancing front techniques, but a Delaunay mesh 
generator could be used as well. 

The software implementation of this work has proved that the concepts presented 
here are consistent and that the process can be fully automated from an idealized 
model added with relevant technical data (shell thicknesses and beam sections proper-
ties, boundary conditions and element size constraints).  

In a design optimization context, this method generates reliable FEA results and in 
many occasions, the use of this method can provide more accurate results than using 
only tetrahedral elements. This is particularly the case when shell thickness is small in 
comparison with the size map. Generally, when using only tetrahedral or hexahedral 
meshing in the case of mechanical structures with beams and shells, resulting 3D 
meshes are either very poor (in terms of elements quality) by the way leading to poor 
FEA results, or excessively large (in terms of DOF), if compared to mixed-
dimensional meshes. 

Of course, the efficient use of mixed-dimensional analysis is also directly related to 
the ability to derive idealized models from 3D parametric and feature-based CAD 
models. Consequently, a significant research work is presently ongoing in order to 
provide efficient and robust tools for CAD models preparation for FEA and deriving 
idealized models is one of the subjects that are presently investigated.  
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Summary. Optimizing surface and volume triangulations is critical for advanced numerical sim-
ulations. We present a simple and effective variational approach for optimizing triangulated sur-
face and volume meshes. Our method minimizes the differences between the actual elements
and ideal reference elements by minimizing two energy functions based on conformal and iso-
metric mappings. We derive simple, closed-form formulas for the values, gradients, and Hes-
sians of these energy functions, which reveal important connections of our method with some
well-known concepts and methods in mesh generation and surface parameterization. We then
introduce a simple and efficient iterative algorithm for minimizing the energy functions, includ-
ing a novel asynchronous step-size control scheme. We demonstrate the effectiveness of our
method experimentally and compare it against Laplacian smoothing and other mesh optimization
techniques.

Keywords: Mesh optimization; isometric mapping; conformal mapping; inverse mean ratio; vari-
ational methods.

1 Introduction

Optimization of mesh quality is a fundamental problem for numerical simulations in
science and engineering. It has become increasingly important in recent years, because
modern computational applications often involve dynamic interfaces or moving bound-
aries. These applications require on-line optimization of the meshes to maintain the
validity and quality within the simulation codes as the physical domains deform. There-
fore, the mesh-optimization algorithms must be effective and robust without user inter-
vention, and at the same time be efficient and easy to implement. These requirements
pose decidedly nontrivial new challenges. For problems with very large deformation or
motion, one may have to change the mesh connectivity by adding or removing points or
flipping edges for best robustness. However, it is often desirable to maintain the mesh
connectivity as far as possible to minimize numerical errors, such as in the Arbitrary
Lagrangian Eulerian (ALE) methods [15]. In this paper, we focus on mesh optimization
with fixed connectivity, i.e. the mesh smoothing problem.

� Corresponding author.
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1.1 Related Work

Mesh smoothing has a vast amount of literature. The most popular methods for opti-
mizing two-dimensional meshes are probably Laplacian smoothing and its variations
[6, 13], which move each point to a weighted average of its neighbors. Their popularity
is largely due to their simplicity and efficiency, though they are ineffective at concave
regions. A simple but more effective approach is the angle-based smoothing in [27],
which provides no theoretical guarantee either but often works well in practice. The
most effective methods are optimization based, such as those in [21, 24]. However,
these methods are much more expensive and difficult to implement than other simpler
alternatives. An ideal method should be simple, efficient, and effective, which we strive
to achieve in this paper.

Most methods for optimizing triangular meshes are designed for meshes in R
2. They

can be applied to surface meshes by first parameterizing the surface locally or glob-
ally and then optimize the flattened mesh (see e.g. [12, 19]). To preserve geometry,
these methods typically require a smooth or discrete CAD model and associated point-
location procedure to project the points, which increase implementation complexity and
computational cost. We propose a simpler approach in this paper.

Mesh smoothing of volume or even higher-dimensional meshes is far more complex
than smoothing 2-D meshes. Many methods fail to generalize. For example, Laplacian
smoothing often produces inverted elements in 3-D, angle-based method [27] no longer
applies, and condition-number based optimization [8, 21] becomes increasingly cum-
bersome. One of more successful methods is the minimization of the inverted mean
ratio [10, 23]. A side product of this paper is to derive the inverted mean ratio from a
differential geometry point of view, shows its intimate connection with the aspect ratio
of tetrahedra [25], and in turn provide a justification and a simpler and more efficient
algorithm for minimizing it.

In mesh optimization, there have been some notable endeavors to unify different
methods and concepts, such as the study in [1] from an algorithmic point of view, the
algebraic framework in [19, 20], and the finite-element-based methods in [14]. One of
the objectives of this paper is also such a unification, but in the aspect of unifying the
optimization methods for different dimensions. A notable benefit of such a unification
is to enable simultaneous optimization of surface and volume meshes, which we will
demonstrate to be critical for effective mesh optimization.

1.2 Contributions and Overview

In this paper, we strive to meet the needs of mesh smoothing within numerical simu-
lations. We make contributions in both theoretical and practical aspects. Theoretically,
our first contribution is to establish a unified framework of variational mesh optimiza-
tion in arbitrary dimensions (including surfaces and manifolds) based on the theory
of isometric mappings in differential geometry. The core of this framework is two en-
ergy functions that capture angle and volume preservation, respectively. We show the
connection of the angle-preservation energy with the well-known harmonic smoothing
in mesh generation (e.g., [17]) and conformal parameterization in computer graphics
(e.g., [7]).
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Our second theoretical contribution is a set of simple, closed-form formulas for the
gradient and Hessian of the energy functions for surface and volume meshes. These for-
mulas provide us direct proofs of the convexity of our energy functions and enable effi-
cient algorithms and simple implementations for solving the minimization problems. In
addition, they reveal the equivalence of angle-preserving energy with the inverse mean
ratio in Euclidean space and establish an important connection of these energies with
the aspect ratios of tetrahedra [25]. These results substantially enhance the fundamental
understandings of variational mesh optimization.

In the practical aspect, our main contribution is a new algorithm for mesh optimiza-
tion. The most notable features of our method include 1) its ability to smooth surface
and volume meshes simultaneously for improved effectiveness, and 2) a simple asyn-
chronous step-size control scheme. Other virtues of our algorithm include ease of im-
plementation and parallelization (comparable with Laplacian smoothing), effectiveness
(at least as comparable as inverse mean ratio), and high efficiency (significant improve-
ment in computational cost and memory requirements compared to other optimization-
based methods). These properties make our algorithm especially well suited for direct
implementation within numerical simulation codes.

The remainder of this paper is organized as follows. Section 2 defines the notation
and reviews some fundamental concepts for variational mesh optimization. Section 3 de-
scribes our formulation for optimizing surface meshes. Section 4 generalizes our method
to volume meshes. Section 5 contains some experimental results of our method and com-
parisons with other methods for optimizing static and dynamic meshes. Section 6 con-
cludes the paper with discussions of future research directions.

2 Unified Variational Framework for Mesh Optimization

In mesh optimization, there are typically desired shapes and/or sizes of the elements in
the resulting mesh. Therefore, we envision each element has a corresponding “ideal”
reference element of the desired shape and size. We focus on isotropic (instead of
anisotropic) meshes. In this setting, the desired shape is typically regular (i.e., equi-
lateral), and the desired size may be determined by a density function over the domain.
The elements of an “optimal” mesh should be as “close” to their corresponding ideal el-
ements as possible. To achieve this, we must define the measures for the “closeness” and
then optimize them over the mesh. We seek inspirations from the continuous mappings
between surfaces (or manifolds in general), which have been well studied in differential
geometry.

2.1 Harmonic, Conformal, and Isometric Mappings

Mappings between surfaces (or manifolds in general) are central in differential and Rie-
mannian geometry (see e.g. [4, 5, 22]). Before delving into the details, we first review
the intuitive meanings of three types of mappings to motivate our method.

The most well-known type of mapping is probably harmonic mappings. Such map-
pings are “smooth,” as they satisfy some elliptic partial differential equation (PDE),
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namely the Laplace equation. Harmonic mappings are popular especially for optimiz-
ing structured meshes for their simplicity and efficiency [17], but unfortunately less so
for unstructured meshes.

Another important type is conformal mappings, which preserve angles locally within
a infinitesimal neighborhood of every point on the surface. Conformal mapping is a
special type of harmonic mapping. The two types are equivalent under some conditions
(such as for simply connected surfaces without boundaries and holes).

The former two types are more widely used. However, the most classical type is
in fact isometric mapping, which is the foundation of intrinsic differential geometry.
Such mappings preserve the first fundamental forms, and in turn preserve the length
measures along all directions. In other words, an isometric mapping preserves angles
and areas/volumes locally at all points, so it is a special type of conformal mapping and
also of harmonic mapping.

We develop our method based on conformal and isometric mappings, as they are
well suited for controlling the shapes and/or sizes of isotropic meshes. As we will ex-
plain, isometric mappings provide a powerful and flexible framework that can supersede
conformal mappings in a variational framework.

2.2 Computational Aspects of Conformal and Isometric Mappings

We now give a more detailed and rigorous treatment of the mappings. Consider two
m-dimensional manifolds Γ1 and Γ2 embedded in R

n1 and R
n2 , respectively, where

n1 ≥ m and n2 ≥ m. Let u(ξ) : Ω ⊆ R
m → R

n1 and x(ξ) : Ω ⊆ R
m → R

n2 denote
the corresponding coordinate functions of two parametric patches on Γ1 and Γ2, where
ξ = [ξ1, . . . , ξm]T , u = [u1, . . . , un1 ]T and x = [x1, . . . , xn2 ]T . Let J1(ξ) and J2(ξ)
denote the Jacobian matrices of u(ξ) and x(ξ), respectively. For brevity, we will omit
the argument ξ in the following discussions. The first fundamental tensors of Γ1 and
Γ2 are G1 = JT

1 J1 and G2 = JT
2 J2, respectively. Let G denote the matrix G2G

−1
1 ,

which is in general nonsymmetric. Let F denote the mapping from u(ξ) to x(ξ) over
the local patches. The mapping F is said to be isometric if G2 = G1 or equivalently
G = I , i.e., if the first fundamental tensor is preserved by the mapping. Similarly, the
mapping F is conformal if G2 = cG1 or equivalently G = cI , where c > 0 and in
general varies from point to point. These definitions of the mappings are classical but
inconvenient for numerical computations. It turns out to be revealing to consider the
eigenvalues of G.

Lemma 1. Let G1 and G2 denote the first fundamental tensors of local patches on Γ1

and Γ2 with parameterization u(ξ) : Ω ⊆ R
m → R

n1 and x(ξ) : Ω ⊆ R
m → R

n2 ,
respectively. Let F denote the mapping from u(ξ) onto x(ξ). (a) The eigenvalues λi of
G = G2G

−1
1 are all positive. (b) F is conformal iff λ1 = · · · = λm. (c) F is isometric

iff λi = 1 for i = 1, . . . ,m.

Due to length limitations we omit all the proofs in this paper. The presence of eigen-
values in Lemma 1 may appear to be daunting computationally in high dimensions.
Note that the sum of the eigenvalues of a matrix is equal to its trace (i.e.,

∑m
i=1 λi =

tr(G2G
−1
1 )), and the product of the eigenvalues is equal to its determinant (i.e.,
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∏m
i=1 λi = |G2G

−1
1 |). We use |A| to denote the determinant of a matrix A in this

paper. We then obtain the following lemma.

Lemma 2. The mapping F is conformal if and only if

tr(G2G
−1
1 )

m
√
|G2|/|G1|

= m. (1)

F is isometric if and only if F is conformal and

|G2| = |G1|. (2)

Based on Lemma 2, we can verify whether a mapping is conformal or isometric from
tr(G), |G2|, and |G1|, which are easy to compute as we will explain in later sections.
Eqs. (1) and (2) are essentially measures for angle- and area-preservation, respectively.
This separation of concerns will prove to be very convenient.

2.3 Variational Formulation for Discrete Isometric Mapping

Our preceding discussion focused on continuous surfaces. In meshing or more generally
in most numerical computations, the domain is discretized (i.e., triangulated or tessel-
lated), so the surfaces are discrete. Fortunately, variational calculus provides us exactly
what we need for generalizing the formulations from continuous to discrete surfaces.
The basic idea is to define the mappings over each element, where the formulas for the
continuous surfaces apply. We refer to the mapping for each element as the elemental
mapping, which maps from an ideal element to the actual element through a paramet-
ric element. As in the continuous case, we use u, x, and ξ to denote the coordinates of
these elements, respectively. Fig. 1 illustrates the elemental mappings between triangles
in 2-D and tetrahedra in 3-D.

conceptual map

ideal triangle actual triangle

F2  F1
-1

u1 u2

u3

x0

x1

x2

parametric triangle

F1 F2

helper

(0,0) (1,0)

(0,1)

(a)

conceptual map

ideal tetrahedron actual tetrahedron
u3

F2  F1
-1

x3

u0

u1

u2

x0

x1

x2

parametric tetrahedron

F1 F2

helper

(0,0,0) (1,0,0)

(0,1,0)
(0,0,1)

(b)

Fig. 1. Schematic of elemental mapping for (a) triangles and (b) tetrahedra
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Ideally, we hope all of the elemental mappings are isometric or conformal. Unfortu-
nately, these requirements in general are over-determined and in turn would not yield
a solution. We solve the problem in an approximate sense by minimizing a potential
energy function (or objective function). This is in spirit similar to solving an over-
determined linear system using linear least squares approximations, except that our
equations are more complex and nonlinear.

A fundamental question in a variational method is the definition of the energies. For
best effectiveness, we require an energy to have the following properties:

Optimality: It must be positive and be minimized for an “ideal” mesh;
Barrier: It should be infinite for degenerate elements with zero area/volume;
Convexity: It should be free of local minimum;
Simplicity: It should be simple and efficient to evaluate and differentiate.

Based on Lemma 2, for each element τ we define two energies Eθ and El for angle
preservation and area/volume preservation:

Eθ(τ) =
tr(G2G

−1
1 )

m
√
|G2|/|G1|

(3)

El(τ) = (|G2|/|G1|)p + (|G1|/|G2|)p . (4)

In El, p > 0, and the larger p is, the steeper the gradient of El becomes. In particular,
we choose p = 0.5, as we explain later. Per Lemma 2, Eθ is minimized for conformal
mappings, and Eθ and El are minimized simultaneously for isometric mappings. If the
volume of an element is zero, then |G2| = 0 and in turn Eθ = El = ∞. Therefore, the
first two requirements are satisfied. The convexity and simplicity of these functions are
far more involved, which we address in later sections.

We remark that in Euclidean spaces, the inverse mean ratio [10, 23] is

‖J2J
−1
1 ‖2

F

m (|J2|/|J1|)2/m
, (5)

which is equal to Eθ/m, because tr(G2G
−1
1 ) = tr(J−T

1 JT
2 J2J

−1
1 ) = ‖J2J

−1
1 ‖2

F

and |Gi| = |J i|2. However, the energy (3) is more general as it is directly applicable
to surfaces and manifolds. Given the energy of elemental mappings, we define the total
energy over a mesh M as

E(Γ, µ) =
∑
τ∈M

(µEθ(τ) + (1− µ)El(τ)) , (6)

where µ ∈ [0, 1) controls the significance of angle versus volume conservation.
Overall, our method computes the energy and their first and second derivatives with

respect to the vertex positions, and then moves each vertex to reduce the energy subject
to constraints (such as boundary conditions, validity of the mesh, and preservation of
sharp features). We repeat this process for a number of iterations or until the mesh
quality no longer improves. This framework applies to meshes in any dimensions. It
produces approximations to special types of harmonic maps, so it is justified to refer to
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our method as variational mesh optimization or mesh smoothing. However, we have not
yet to derive efficient formulas for evaluating and differentiating the energy functions
and define simple and effective numerical solutions for solving the resulting nonlinear
optimization. We address these issues for surface and volume meshes in the next two
sections, respectively.

3 Optimizing Triangular Surface Meshes

We now present our formulation and algorithm for optimizing a triangulated surface
mesh embedded in R

3. Obviously, this algorithm would also be applicable to 2-D
meshes, but we derive it directly for curved surfaces for generality. As illustrated in
Fig. 1(a), we construct a mapping from the ideal to the actual triangle through a para-
metric triangle. In this specific setting, x has three components, namely {x, y, z}, while
u and ξ has two components, namely {u, v} and {ξ, η}, respectively.

3.1 Energy for Angle Preservation

We first derive the formulas for Eθ over a triangle τ = x1x2x2. For efficient minimiza-
tion of the energy over the mesh, we need to evaluate its value and compute its gradient
and Hessian with respect to the vertex positions of the triangle. Fortunately, these can
be computed efficiently from the angles (or the first fundamental tensor) of the ideal
triangle as well as the edge lengths and area of the actual triangle. As illustrated in
Fig. 2, let θi denote the angle at the ith vertex of the ideal triangle. Let a =

√
|G1| and

A =
√
|G2|, i.e., twice of the areas of the ideal and actual triangle, respectively. Let li

denote the opposite edge of the ith vertex of the actual triangle, n̂ is its unit normal in
R

3, and l⊥i = n̂×li , the 90◦ counter-clockwise rotation of li. We define the shorthands

i+ =

{
i + 1 i < 3
1 i = 3

and i− =

{
i− 1 i > 1
3 i = 1

. (7)

Given a function f = [f1|f2|f3]T , let ∇x1f = [∇x1f1|∇x1f2|∇x1f3]. Let ‖x‖
denote the 2-norm of a vector x. We obtain the following theorem.

Fig. 2. Naming convention for triangles
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Theorem 1. The energy Eθ(τ) in (3) for a triangle τ = x1x2x3 in R
3 is

Eθ =
1
A

3∑
i=1

ωi‖li‖2, (8)

where ωi = cot θi. Its gradient ∇xiEθ and Hessian ∇2
xi

Eθ with respect to the xyz
coordinates of vertex xi for i = 1, 2, 3 are

∇xi
Eθ =

2
A

(ωi+li+ − ωi−li−)− Eθ

A
l⊥i , (9)

∇2
xi

Eθ =
2
A

(ωi+ + ωi−) I − 1
A

Bi −
Eθ‖li‖2

A2
n̂n̂T , (10)

where I is the 3× 3 identity matrix and Bi = (∇xi
Eθ) l⊥T

i + l⊥i (∇xi
Eθ)

T .

We note that in R
2, the energy Eθ has re-occurred many times in the literature: It

is essentially equivalent to the functional for harmonic mapping in [17], the “MIPS
energy” for conformal parameterization in [16], and the condition-number-based met-
ric in [12]. The notation using cotangent is due to Pinkall and Polthier [26], but we
generalized it to triangles in R

3. Our formulas for the gradient and Hessian in (9) and
(10) appear to be new. In (13), the n̂n̂T term has no effect if the surface is flat and is
negligible if a vertex moves only nearly tangentially. In surface mesh optimization, all
vertices move nearly tangentially, so we can omit this term. Under this assumption, for
any reference triangle with acute angles,−Bi is positive definite, so is∇2

xi
Eθ , and Eθ

is therefore convex. A different analysis in R
2 can be found [23].

For isotropic meshing, the ideal triangle is regular, and ωi = cot 60◦ = 1/
√

3 for
i = 1, 2, 3. It is more convenient to use Ẽθ =

√
3Eθ instead of Eθ for the energy. In

this case, the energy is simply the ratio between the sum of the squared edge lengths
versus twice of the area, and we then have the following simplified formulas:

Ẽθ =
1
A

3∑
i=1

‖li‖2, (11)

∇xi
Ẽθ =

1
A

(2li+ − 2li− − Ẽθl
⊥
i ), (12)

∇2
xi

Ẽθ ≈
1
A

(
4I − B̃i

)
, (13)

where B̃i =
(
∇xi

Ẽθ

)
l⊥T
i + l⊥i

(
∇xi

Ẽθ

)T

.

3.2 Energy for Area Preservation

For triangles, our definition of El in (4) reduces to

El =
A2p

a2p
+

a2p

A2p
, (14)
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where a =
√
|G1|, A =

√
|G2|, and p > 0. This energy controls the triangle areas.

Assume a is independent of xi. It can be shown that the gradient and Hessian of El

with respect to xi are

∇xiEl =
2p
A

(
A2p

a2p
− a2p

A2p

)
l⊥i =

2p
(
A4p − a4p

)
a2pA1+2p

l⊥i , (15)

∇2
xi

El ≈
(

8p2A4p

a2pA2+2p
−

(1 + 2p)2p
(
A4p − a4p

)
a2pA2+2p

)
l⊥i l⊥T

i

=
(4p2 − 2p)A4p + (4p2 + 2p)a4p

a2pA2+2p
l⊥i l⊥T

i , (16)

where the residual in ∇2
xi

El is a negligible n̂n̂T term. ∇2
xi

El is positive semi-definite
if p ≥ 0.5. For p = 0.5, the formulas simplify to

∇xiEl =

(
A2 − a2

)
aA2

l⊥i and ∇2
xi

El ≈
2a
A3

l⊥i l⊥T
i . (17)

Therefore, we choose p = 0.5 in practice. This choice of El coincides with the energy
used for area distortion for surface parameterization in [3].

3.3 Energy Minimization

The total energy is the sum of the elemental energies over all the triangles. The gradient
and Hessian of the total energy with respect to a vertex xv is equal to the summation of
those in the incident triangles of the vertex, i.e.,

∇xv
E =

∑
{τ |v∈τ}

(
µ∇xv

Ẽθ(τ) + (1− µ)∇xv
El(τ)

)
, (18)

∇2
xv

E =
∑

{τ |v∈τ}

(
µ∇2

xv
Ẽθ(τ) + (1− µ)∇2

xv
El(τ)

)
. (19)

Because ∇2
xv

Ẽθ(τ) is positive definite and ∇2
xi

El is positive semi-definite, ∇2
xv

E
is positive definite if 0 ≤ µ < 1 and all the triangles have positive areas. In other
words, E is convex locally at each vertex. In practice, we choose µ = 0 for conformal
optimization and µ = 0.5 for isometric optimization. After obtaining the gradient and
Hessian, one could apply one step of Newton’s method to determine a displacement dv

for the vertex, i.e., by solving
(
∇2

xv
E
)
dv = −∇xv

E. To preserve the geometry, we
must constrain the displacement to be nearly tangential. We compute the tangent vectors
using an eigenvalue analysis as described in [18]. For a vertex on a smooth surface, let
t̂1 and t̂2 denote two orthonormal tangent vectors at v, and let T = [̂t1 | t̂2]. Instead of
solving for dv in R

3, we reformulate the problem to solve for dv = Tu, where u ∈ R
2.

The gradient and Hessian of E with respect to u are then ∇uE = T T∇xv
E and

∇2
uE = T T

(
∇2

xv
E
)
T , respectively. Therefore, Newton’s equation for minimizing

E with respect to u becomes(
T T

(
∇2

xv
E
)
T
)

u = −T T∇xv
E,
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and therefore

dv = −T
(
T T

(
∇2

xv
E
)
T
)−1

T T∇xv
E. (20)

Note that ∇2
uE is symmetric positive definite for any reasonable approximations of T .

For a point on a ridge curve, we replace T in (20) by the unit tangent vector to the ridge
curve. If a point is at a corner, we fix the vertex and set dv = 0. This procedure pre-
serves sharp features and preserve smooth surface geometry to second-order accuracy.
If higher-order accuracy is required, the displacement dv can be adjusted by projecting
onto a high-order reconstruction of the surface as in [11].

3.4 Overall Algorithm

For the overall algorithm, it is most efficient and convenient to compute the gradient
and Hessian of Eθ and El over all the triangles, accumulate them to vertices, and then
compute the displacements for all the vertices concurrently. This is similar to a typical
finite-element code. When applying the displacements, we determine a relaxation factor
αv for each vertex and then addαvdv to the vertex, where the relaxation factor is chosen
to ensure mesh validity, as we will explain shortly. Algorithm 1 summarizes the core
of this variational algorithm, which is essentially a block-Jacobi solver for one step of
Newton’s method. Our overall algorithm repeatedly invokes this procedure for a desired
number of iterations or until the mesh no longer improves.

Algorithm 1. One step of variational smoothing of surface triangulation.
1: Initialize vector grad and matrix H to zero for each vertex;
2: for each triangle τ do
3: for each vertex xi of τ do
4: v ←vertex id of xi

5: grad[v] ← grad[v] + µ∇xi Ẽθ(τ ) + (1 − µ)∇xiEl(τ );
6: H[v] ← H[v] + µ∇2

xi
Ẽθ(τ ) + (1 − µ)∇2

xi
El(τ );

7: end for
8: end for
9: for each vertex v do

10: let T be composed of tangent vector to surface at v;
11: xv ← xv − αvT

(
T T (H[v]) T

)−1
T T grad[v];

12: end for

In Algorithm 1, we compute the displacements for all the vertices concurrently for
better efficiency and ease of implementation. However, concurrent vertex motions may
lead to mesh folding if checking is not performed. To address this problem, we introduce
a safeguard via an asynchronous step-size control: For each triangle x1x2x3, we solve
for the maximum α ≤ 1 such that the triangle x

(α)
1 x

(α)
2 x

(α)
3 does not fold, where

x
(α)
i = xi + αdi. We scale the displacement dv at v by a factor αv equal to the

minimum α among the incident faces of v. After rescaling the displacement of all the
vertices, we recompute α and repeat the rescaling process until αv = 1 for all vertices.
Finally, we move all the vertices by the scaled displacement.
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Note that this rescaling scheme can be used with any smoothing algorithms to pre-
vent mesh folding. It is particularly effective for our method because the “barrier” prop-
erty of the energy functions prevents the formation of poor-shaped elements. In practice,
the rescaling is rarely invoked except during the first few iterations when optimizing an
extremely poor-shaped input mesh.

4 Optimizing Tetrahedral Meshes

We now extend our algorithm to optimize tetrahedral meshes. We reuse the same frame-
work, including the definitions of the energies and the control flow in Algorithm 1. In
the elemental mapping, as illustrated in Fig. 1(b), all the coordinates, namely, x, u, and
ξ, now have three components, denoted by {x, y, z}, {u, v, w}, and {ξ, η, ζ}, respec-
tively. Our main focus here will be on the efficient evaluation and differentiation of the
energies.

4.1 Energy for Angle Preservation

For tetrahedral elements, the angle-preserving energy of the elemental map for a tetra-
hedron τ = x0x1x2x3 in R

3 is

Eθ(τ) =
tr(G)

|G2/G1|1/3
. (21)

As illustrated in Fig. 3, we label the edges as li and ri for i = 1, 2, 3, where li = xi−x0

and li = xi−−xi+, where i+ and i− are defined in (7). Let n0 = r2×r1, the normal
to the opposite triangle of x0 pointing toward x0 with magnitude equal to twice of the
triangle area. Let

G1 =

⎡⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤⎦ and G2 =

⎡⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎦ ,

where gij = gij and hij = hji, and let gj and hj denote the jth columns of G1 and

G2, respectively. Let ν =
√
|G1| and V =

√
|G2|| = −nT

0 li, i.e., six times of the

Fig. 3. Naming convention for tetrahedron. Underlined symbols indicate edges.
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volumes of the ideal and actual tetrahedra, respectively. Let sum(a) = a1 +a2 +a3 for
any a ∈ R

3. We obtain the following theorem.

Theorem 2. The energy Eθ(τ) for a tetrahedron τ = x0x1x2x3 in R
3 is

Eθ =
1

V 2/3

3∑
i=1

(
αi‖li‖2 + βi‖ri‖2

)
, (22)

where αi = sum(gi+×gi−)/ν4/3 and βi = (giigi−,i+−gi,i−gi,i+)/ν4/3. Its gradient
∇x0Eθ and Hessian ∇2

x0
Eθ with respect to x0 are

∇x0Eθ = − 2
V 2/3

(
3∑

i=1

αili

)
− 2

3V
Eθn0 (23)

∇2
x0

Eθ =

(
2

V 2/3

3∑
i=1

αi

)
I − 2

3V
B − 2

9V 2
Eθn0n

T
0 , (24)

where I denotes the 3× 3 identity matrix and B = (∇x0Eθ)nT
0 + n0 (∇x0Eθ)

T .

The theorem gives only the derivatives with respect to x0, but it is easy to adapt the
formulas for the other vertices by symmetry. To the authors’ knowledge, these closed-
form formulas are all new. For isometric mesh smoothing where the ideal tetrahedra are
regular, αi = βi = 2−4/3, and it is more convenient to omit these constants and use the
alternative function

Ẽθ =
1

V 2/3

3∑
i=1

(
‖li‖2 + ‖ri‖2

)
, (25)

i.e., the ratio between the sum of squared edge lengths versus V 2/3. The gradient and
Hessian of Ẽθ with respect to x0 are then

∇x0Ẽθ = − 2
V 2/3

3∑
i=1

li −
2

3V
Ẽθn0, (26)

∇2
x0

Ẽθ =
6

V 2/3
I − 2

3V
B̃ − 2

9V 2
Ẽθn0n

T
0 , (27)

where B̃ =
(
∇x0Ẽθ

)
nT

0 + n0

(
∇x0Ẽθ

)T

. By plugging (26) into (27), it is easy to

show that ∇2
x0

Ẽθ is positive definite as long as Ẽθ > 0.
Note that the aspect ratio of a tetrahedron [25] is defined as

ρ =
c

V

(
3∑

i=1

(
‖li‖2 + ‖ri‖2

))3/2

,

where c ≈ 0.048113. When a regular tetrahedron is used as the reference element,
Ẽθ and the inverse mean ratio (5) are both a constant factor of ρ2/3. This connection
provides another justification for minimizing Ẽθ for isotropic meshes.
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4.2 Energy for Volume Preservation

For tetrahedra, the energy for volume preservation is

El =
V 2p

ν2p
+

ν2p

V 2p
(28)

for p > 0. For simplicity, we assume ν is independent of xi. The gradient and Hessian
of El with respect to x0 are

∇x0El =
2p
V

(
V 2p

ν2p
− ν2p

V 2p

)
n0 =

2p
(
V 4p − ν4p

)
ν2pV 1+2p

n0, (29)

∇2
x0

El =
(4p2 − 2p)V 4p + (2p + 4p2)ν4p

ν2pV 2+2p
n0n

T
0 . (30)

As for surfaces, ∇2
x0

El is positive semi-definite if p ≥ 0.5 and all the volumes are
positive. We choose p = 0.5 in practice, which lead to simplified formulas

∇x0El =

(
V 2 − ν2

)
νV 2

n0 and ∇2
x0

El =
2ν
V 3

n0n
T
0 . (31)

Let E be the total energy defined in (6) for tetrahedral meshes. ∇2
xi

E is symmetric
positive definite for any tetrahedral mesh with positive volume, so E is convex locally
at each vertex. To smooth a tetrahedral mesh, it is now a simple matter of plugging in
the above formulas for Eθ and El into Algorithm 1, except that the triangles would be
replaced by the tetrahedra. Regarding to the matrix T in the algorithm, we construct it
from the tangent vectors for the vertices on the boundary but replace T by the identity
matrix for interior vertices.

5 Experimental Study

In this section, we present some experimental results using our methods for static and
dynamic meshes. We report results only for tetrahedral meshes. Because our volume
mesh optimization contains integrated surface mesh optimization, these results are also
representative for surface meshes. To assess the methods, we measure mesh qualities
using the maximum and minimum dihedral angles of tetrahedra. These measures are
intuitive and can capture most bad elements, including slivers.

5.1 Optimizing Static Meshes

For static meshes, we used two meshes of a unit cube generated using GAMBIT of
Fluent/ANSYS Inc., and also meshes of a hand and a dragon from [2], as shown in
Fig. 4. The latter generated the meshes by enhancing some initial meshes through mesh
modification and Laplacian smoothing. We optimized the meshes using conformal op-
timization with fixed boundary, conformal optimization with surface optimization, and
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Fig. 4. Sample test tetrahedral meshes

Table 1. Optimization of tetrahedral meshes

Case #vertices #tets Min and max dihedral angles in degrees
Original Fixed-boundary Conformal Isometric

Cube-1K 1,603 7,417 18.9 / 149.3 22.1 / 141.7 22.1 / 141.7 22.4 / 14.1.3
Cube-10K 10,246 53,068 14.4 / 157.0 19.6 / 152.7 19.6 / 152.7 19.9 / 151.9
Hand-10K 3,144 10,000 7.9 / 164.4 7.9 / 163.5 13.7 / 160.9 13.9 / 160.9

Hand-100K 16,649 99,995 3.6 / 174.6 3.6 / 174.6 6.1 / 171.0 6.4 / 170.8
Dragon-5k 1490 4,999 8.0 / 161.2 8.6 / 160.3 12.1 / 160.3 12.1 / 161.1

Dragon-100k 26,436 100,000 3.4 / 174.7 3.4 / 174.7 4.8 / 171.7 4.8 / 171.7

isometric optimization with surface optimization. In isometric optimization, for each
tetrahedron we used the average volume of its neighbors as the desired volume.

Table 1 shows the quality measures of the initial and optimized meshes. We observe
that the optimization with fixed boundary delivered virtually no improvement for the
hand and dragon meshes. This is likely because the worst mesh qualities are constrained
by the vertices on the boundary. On the other hand, simultaneous surface and volume
mesh optimization improved the dihedral angles in all cases by about 3 to 7.7 degrees.
Furthermore, we observe that isometric optimization produced roughly the same results
as conformal optimization in terms of the dihedral angles while it provides better control
of element sizes and improved the volume ratios by about 50% in our tests.

5.2 Optimizing Moving Meshes

One of the motivating applications of our methods is mesh motion. To demonstrate the
effectiveness for such applications, we compressed the smaller mesh of the unit cube
progressively up to 40% of its dimension along the x direction. We adapted the time
steps to prevent mesh folding and performed up to 10 iterations of mesh smoothing
per time step. Before smoothing, the worst minimum dihedral angle was 0.43◦ and
the maximum was 179.3◦ among all the time steps, which were improved to 18.2◦

and 154.4◦ respectively after smoothing. Fig. 5(a) shows the cross-section view of the
mesh after 40% compression along with the original unit cube. Fig. 5(b) and (c) show
the profiles of the minimum and maximum dihedral angles of the original mesh and
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(a) (b) (c)

Fig. 5. Cross section of cube after 40% compression (a) and profiles of dihedral angles (b-c)

after 10%, 20%, and 40% compressions. Our method delivered high quality meshes
throughout the simulation. Furthermore, our optimized mesh after 10% compression
eevn has a higher quality than the original undeformed mesh.

As another example, we deform a sphere of radius 0.15 centered at (0.5, 0.75, 0.5)
in a velocity field given by

u(x, y, z) = sin2(πx)(sin(2πz)− sin(2πy)), (32)

v(x, y, z) = sin2(πy)(sin(2πx)− sin(2πz)), (33)

w(x, y, z) = sin2(πz)(sin(2πy)− sin(2πx)). (34)

We move the boundary vertices by integrating the velocity using the fourth-order
Runge-Kutta scheme and move the interior vertices by mesh smoothing. Fig. 6(a) shows
the deformed shape of the sphere at t = 0.3. As in the previous example, we constrained
the time steps so that the tetrahedra do not become inverted. We compare our variational
smoothing with Laplacian smoothing. Before smoothing, the worst minimum dihedral
angle was as small as 0.004◦ and the maximum was as large as 179.987◦ among all
the time steps, which were improved to 1.74◦ and 175.66◦ by Laplacian smoothing,
respectively. In contrast, our variational smoothing improved the angles to 5.32◦ and
171.08◦, respectively. Fig. 6(b) and (c) show the histograms of the dihedral angles at
times t = 0.15 and 0.3 along with the original mesh. As we highlighted in the figure,

(a) (b) (c)

Fig. 6. Sphere after moderate deformation (a) and profiles of dihedral angles (b-c)



330 X. Jiao, D. Wang, and H. Zha

Laplacian smoothing produced far more poor-shaped elements than variational smooth-
ing, although both methods produced similar distributions for well-shaped elements. In
this test, our variational smoothing was about twice slower than Laplacian smoothing.
However, it allowed time steps twice as large as those allowed by Laplacian smoothing,
so it can result in a net saving in the total computational time in a dynamic simulation,
where the physics solvers dominate the overall computational cost.

5.3 Comparison of Computational Cost

For tetrahedral meshes, computational cost of mesh smoothing is often a major con-
cern. The most computational intensive steps are the evaluation and differentiation of
the energies. We use the methods in [10], including the block coordinate decent method
and inexact Newton method, as the basis of a comparison. The block coordinate de-
cent method requires 480 floating-point operations (flops) to compute the gradient
and Hessian of the elemental energy with respect to each vertex, which amounts to
480 × 4 = 1920 flops per element. The inexact Newton’s method requires 20% extra
operations. In contrast, our formulas require 312 flops per element to compute the gra-
dient and Hessian of the elemental energy with respect to all its vertices (including 159
multiplications, 142 additions, and 1 power operation), which are more than six times
faster than their counterparts in [10]. In terms of memory requirement, our method re-
quires nine floating-point numbers per vertex, which is nearly an order of magnitude
less than what is required by the inexact Newton’s method. Besides these reductions
in cost, our algorithm is easy to implement, without requiring any sophisticated pack-
ages. Therefore, we consider our algorithm as simple, efficient, and effective, and it is
promising for direct integration into simulation codes.

6 Conclusions and Discussions

In this paper, we presented a new variational method for optimizing surface and volume
meshes. We defined the energy functions based on conformal and isometric mappings
between actual elements with ideal reference elements and derived closed-form for-
mulas for their gradient and Hessian. In addition, we developed a simple and efficient
algorithm for optimizing the surface and volume meshes by minimizing the energies.
We compared our method with some existing methods and demonstrated its effective-
ness for optimizing static and moving meshes.

Our method is not without limitations. First, it requires the input mesh to be valid
(i.e., with no folding). This is not a severe constraint for numerical simulations where
mesh validity is required by other numerical computations. However, it may limit the
applicability of our method for other purposes. This limitation can be alleviated by
applying a mesh untangling procedure, such as in [9]. For future research directions, we
plan to extend our method to optimize quadrilateral meshes and hybrid volume meshes
and extend it to anisotropic mesh optimization.
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Summary. In this work we develop a procedure to deform a given surface triangu-
lation to obtain its alignment with interior curves. At present, we consider that these
curves are defined by the orthogonal projection from plane cubic splines to the initial
surface triangulation. For example, the curves can represent interfaces between dif-
ferent materials or boundary conditions, internal boundaries or feature lines. Another
possibility of this procedure is the adaption of a reference mesh to changing curves in
the course of an evolutionary process (for example, aligning of mesh nodes and edges
to moving shocks in compressible flows). Specifically, we propose a new method that
moves the nodes of the mesh, maintaining its topology, in order to achieve two objec-
tives simultaneously: the piecewise approximation of the curves by edges of the surface
triangulation and the optimization of the resulting mesh. We will designate this proce-
dure as projecting/smoothing method and it is based on the smoothing technique that
we have introduced for surface triangulations in previous works. The mesh quality im-
provement is obtained by an iterative process where each free node is moved to a new
position that minimizes a certain objective function. The minimization process is done
on a surface projection plane attending to the surface piece-wise approximation and
to an algebraic quality measure (mean ratio) of the set of triangles that are connected
to the free node. So, the 3-D local projecting/smoothing problem is reduced to a 2-D
optimization problem. Several applications of this method are presented.

Keywords: Mesh alignment, Moving meshes, Mesh adaptation, Surface mesh smooth-
ing, Node movement, R-adaptivity.

1 Introduction

The numerical simulation of physical problems requires the internal boundaries
and discontinuities to be properly represented. Usually, the largest errors are
introduced in a neighborhood of such discontinuities. These errors are often
greatly reduced if the mesh is aligned with the discontinuities. That is why it
is desirable to have a procedure capable of deforming a given triangulation to
get its alignment with a curve. Although there are numerous works dealing with
surface mesh optimization, see for example [9, 10], only a few of them address
the problem of the exact mesh alignment with interior curves. In fact, the only



334 J.M. Escobar et al.

paper that we have found in the bibliography tackling this question in similar
terms, but for quadrilateral grids is [12]. The authors consider the problem of
aligning a planar grid with multiple embedded curves defined by basic segments
as straight lines or arcs of circle. A different approach to the problem can be
found in [3], where the curve is approximated by a polygonal line included in
the surface triangulation, but in this case the segments are not edges of the
mesh. The paper [19] presents a variant of Ruppert’s algorithm for producing
a 2-D Delaunay triangulation of a domain containing arbitrary curved inputs.
Nevertheless, this algorithm does not allow a dynamical adaption of the mesh
without remeshing.

The procedure that we describe in this paper aligns a given surface triangu-
lation with an arbitrary curve and it is based on the surface mesh smoothing
technique proposed in [5]. An analytical representation of the curve is not usually
available. Instead, it is approximately known by a sequence of interpolating data
points. We have chosen a parametric cubic spline as interpolating curve due it
is C2 continuous and it has other interesting properties that will be used later.
Obviously, the grade of approximation of the curve depends on the element sizes,
therefore, a good strategy is to combine the projecting/smoothing technique with
a local mesh refinement [11]. Our procedure is specially indicated for evolution-
ary problems where the boundaries change their shape or position with time;
for example, the ones related to fluid-structure interactions involving large dis-
placement (see, for example [21]), or crack modeling. The projecting/smoothing
technique could be also applied to domain decomposition, definition of material
interfaces, free boundary problems, etc.

The organization of the paper is as follows. In section 2 a rough description
of the proposed method is presented. In section 3 we propose an objective func-
tion, and the corresponding modification, able to untangle and smooth plane
triangulations simultaneously. The projecting/smoothing method is initially an-
alyzed for plane triangulations in section 4 and, afterward, it is extended to
triangulations defined on curved surfaces in section 5. Section 6 is devoted to
applications. The paper concludes with a brief discussion of the work and its
possible extensions.

2 Statement of the Projecting/Smoothing Method

Let C be a curve, and suppose that it is embedded in a surface triangulation
TΣ (see Figure 1). The basic idea of the projecting/smoothing method lies in
relocating the nodes of TΣ closest to C in positions just sited in the curve. This
operation, which we will refer to as node projection onto the curve, goes on until
getting an approximate representation (interpolation) of C by linked edges of
TΣ. A node of TΣ is considered projectable if we can displace it from its initial
position to any point of C in such a way the local mesh does not get tangled.
This projection implies an enforced alteration of the original positions of the
nodes and, in general, has a negative effect on the quality of the triangles close
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N(q)

M(p)

q´
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q

P
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Fig. 1. The relocation of node p ∈ Σ is performed in the plane P by projecting q on
Q and, consequently, p on C

to C. To avoid this drawback, the remaining nodes are also displaced to new
positions following the smoothing procedure proposed in [5].

For 2-D (or 3-D) meshes, the quality improvement can be obtained by an
iterative process where each node of the mesh is moved to a new position that
minimizes an objective function derived from certain algebraic quality measure of
the local mesh [15, 8]. The objective function presents a barrier in the boundary
of the feasible region associated to the free node. In this context the 2-D (or
3-D) feasible region is the set of points where the free node could be placed to
get a valid local mesh, that is, without inverted elements. The barrier has an
important role because it avoids the optimization algorithm to create a tangled
mesh when it starts with a valid one. We show in [5] a procedure for smoothing
surface triangulations taking into account these aspects. The basic idea lies in
transforming the original problem on Σ into a two-dimensional one on a plane
P . To do this, the local mesh M(p), belonging to TΣ, is orthogonally projected
onto a plane P performing a local mesh N(q), where p is the free node on Σ and
q is its orthogonal projection onto P . The plane P is suitably chosen in terms of
M(p) in order to get a valid mesh on P (see Figure 1). Thus, the optimization of
M(p) is got by the appropriate optimization of N(q). It involves the construction
of ideal triangles in N(q) that become near equilateral in M(p).

When Σ is a curved surface, each triangle of M(p) is placed on a different
plane. Therefore, it is not possible to define the feasible region associated to the
free node p. Nevertheless, the feasible region associated to node q is perfectly
defined in plane P and it is denoted as Hq. Furthermore, its associated objective
function has a barrier at the boundary of Hq (see [6]). This is a crucial reason
for working on P instead of on Σ.
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In the present work the curve C is defined as the image of a curve Q sited on
a plane P . Specifically, if we define a plane curve by the parametrization Q(u) =
(x(u), y(u)) and we consider that f (x, y) is the z coordinate of the underlaying
surface (the true surface, if it is known, or the piece-wise linear interpolation,
if it is not), then the curve C is given by C(u) = (x(u), y(u), f (x(u), y(u)))
(see Figure 1). We note that this type of parametrization can be straightforward
introduced in the new meccano method which has been recently developed by the
authors [4]. We remark also that, although the surface mesh smoothing process
can be carried out in different planes chosen in terms of M(p) [5], the particular
way in which C is defined in the present paper demands a unique plane. A
general parametric curve C(u) = (x(u), y(u), z(u)) will be considered in future
works.

Since the problem of getting a piecewise approximation of C by edges of TΣ

is translated to the plane P , the task to determine if a node q can be projected
onto Q and, that being the case, which is its optimal position, is undertaken by
an objective function derived from algebraic quality measures of the local mesh
N(q). This objective function incorporates the modifications proposed in [6] in
order to deal with tangled meshes. Obviously, a control of the allowed distance
between M(p) and M(p′) is done in the analysis of the movement of node q.

3 Smoothing and Untangling of Plane Triangulations

Firstly, we will focus our attention on finding an objective function to smooth
a valid plane triangulation. As it is shown in [8], [13], and [14] we can derive
optimization functions from algebraic quality measures of the elements belonging
to a local mesh. Let us consider a triangular mesh TP defined in R

2 and let t
be a triangle in the physical space whose vertices are given by xk = (xk, yk)T ∈
R

2, k = 0, 1, 2. To start with, we introduce an algebraic quality measure for t.
Let tR be the reference triangle with vertices u0 = (0, 0)T , u1 = (1, 0)T , and
u2 = (0, 1)T . If we choose x0 as the translation vector, the affine map that
takes tR to t is x = Au + x0, where A is the Jacobian matrix of the affine map
referenced to node x0, given by A = (x1 − x0,x2 − x0). We will denote this
type of affine maps as tR

A→ t. Let now tI be an ideal triangle whose vertices are
wk ∈ R

2, (k = 0, 1, 2) and let WI = (w1−w0,w2−w0) be the Jacobian matrix,
referenced to node w0, of the affine map tR

WI→ tI ; then, we define S = AW−1
I

as the weighted Jacobian matrix of the affine map tI
S→ t. In the particular case

that tI was the equilateral triangle tE , the Jacobian matrix WI = WE will be
defined by w0 = (0, 0)T , w1 = (1, 0)T and w2 = (1/2,

√
3/2)T .

We can use matrix norms, determinant or trace of S to construct algebraic
quality measures of t. For example, the Frobenius norm of S, defined by |S| =√

tr (STS), is specially indicated because it is easily computable. Thus, it is
shown in [15] that qη = 2σ

|S|2 is an algebraic quality measure of t, where σ =
det (S). We use this quality measure to construct an objective function. Let
x = (x, y)T be the position vector of the free node q, and let Sm be the weighted
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N(q)

q

q

Q

q´

Fig. 2. The curve Q intersects the feasible region Hq (in gray) and, therefore, the node
q is projectable, being q′ its optimal position on the curve

Jacobian matrix of the m-th triangle of a valid local mesh N(q) composed of
M triangles, see Figure 2. The objective function associated to m-th triangle is
|Sm|2
2σm

, and the corresponding objective function for the local mesh is

|Kη|n (x) =

[
M∑

m=1

(
|Sm|2

2σm

)n

(x)

] 1
n

(1)

being n an integer number, typically n = 1 or n = 2.
The feasible region for the local mesh is defined as the interior of the polygonal

set Hq =
M⋂

m=1
Hm, where Hm are the half-planes defined by σm (x) ≥ 0. We say

that a triangle is inverted if σ < 0. The objective function (1) presents a barrier
in the boundary of the feasible region. This barrier avoids the optimization
method to create a tangled mesh when it starts with a valid one, but, on the
other hand, it prevents the algorithm to untangle it when there are inverted
elements. Therefore, this objective function is only appropriate to improve the
quality of a valid mesh, not to untangle it. To construct an objective function
applicable to deal with tangled meshes we propose to modify it following the
criteria developed in [6]. This modification lies in substituting σ in (1) by the
positive and increasing function

h(σ) =
1
2
(σ +

√
σ2 + 4δ2) (2)

where the parameter δ = h(0) is an appropriate small value.
In this way, the barrier associated with the singularities of |Kη|n (x) will be

eliminated and the modified objective function will be smooth all over R
2
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∣∣K ′
η

∣∣
n

(x) =

[
M∑

m=1

(
|Sm|2

2h (σm)

)n

(x)

] 1
n

(3)

This new objective function strongly penalizes the negative values of σ, so
that the minimization process of (3) leads to the construction of a local mesh
N(q′) without inverted triangles, provided it is possible. Note that the minimum
of original and modified functions are nearly identical when Hq �= ∅ and δ tends
to zero. With this approach, we can use any standard and efficient unconstrained
optimization method to find the minimum of the modified objective function,
see for example [2].

4 Alignment of Plane Triangulations

Node movement provides the mesh with the ability to align with an arbitrary
curve. Suppose that Q is a curve defined on a 2-D triangulation TP , our objective
is to move some nodes of TP , projecting them onto Q, to get an interpolation
of Q by linked edges of TP . To achieve this objective we have to decide which
nodes of TP can be projected onto Q without inverting any triangle of its local
mesh. More accurately, we say that the free node q is projectable onto Q if there
are points of this curve belonging to the feasible region Hq (see Figure 2).

In general, if q is projectable, its possible placement on Q is not unique. The
projecting/smoothing method must determine if q can be projected onto Q and,
if so, which is its optimal position. The last question can be answered by using
the objective function (3) subject to the constrained x ∈ Q. Thus, the problem
of finding the optimal position to project the free node onto the curve is

minimize
∣∣K ′

η

∣∣
n

(x) , subject to x ∈ Q (4)

If x̄ is the position vector of the minimizing point q′ of (4) and σ (x̄) > 0
for all triangle of N(q′), we conclude that q is projectable onto Q and x̄ is its
optimal position. Otherwise, we say that node q is not projectable.

4.1 Curve Definition

The previous criterion allows us to determine whether q is projectable onto Q
or not, but it involves a high computational cost because it needs to solve the
constrained minimization problem (4). Nevertheless, it is clear that most nodes
of TP are not projectable because they are very far from any point of the curve.
Therefore, it is convenient to have an efficient method to select those nodes,
close to some segment of Q, expected to be projectable.

In many situations of practical interest we do not have an analytical repre-
sentation of Q, but Q is approximately known by a sequence of interpolating
data points. Among the options to define an interpolating curve, we have chosen
a parametric cubic spline as it has many desired properties: it is a C2 continuous
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function, it has a very simple local form, small oscillations, etc. Moreover, each
segment of the spline is a degree 3 Bézier curve that lies within the convex hull
of its four defining control points (see, for example [1]). We will use this property
in order to know if a given node is close to some segment of Q.

Let {P0, P1, . . . , Pm} ⊂ R
2 be a set of interpolating points belonging to plane

P . The parametric cubic spline

Q(u) = (x(u), y(u)), where u ∈ [u0, um] (5)

is an interpolating curve that satisfies Q(ui) = Pi for i = 0, . . . ,m and two
additional constraints in order to be fully defined. Usually, these constraints
are imposed at the ends of the curve. For example, it is well known that the
conditions Q′′(u0) = 0 and Q′′(um) = 0 define a spline known as natural.

Every segment of the spline delimited by two consecutive interpolating points
is a degree 3 polynomial. Suppose that Qi(t) = ai+bit+cit2+dit3, with ai, bi, ci

and di in R
2, is the polynomial associated to the segment Qi (i = 0, 1, . . . ,m−1)

that runs from Pi to Pi+1, being t ∈ [0, 1] the local parameter, see Figure 3. This
one is related with the parameter of the entire curve by t = (u− ui) / (ui+1 − ui).

4.2 Node Projection onto the Curve

The Qi segment also is a degree 3 Bézier curve, given by Qi(t) =
∑3

j=0 ui
jB

i
j (t)

with t ∈ [0, 1], where Bi
j (t) are the Berstein polynomials and ui

j ∈ R
2 are the

control points. The relation between the polynomial coefficients and the control
points are given by ⎛⎜⎜⎝

ui
0

ui
1

ui
2

ui
3

⎞⎟⎟⎠ =
1
3

⎛⎜⎜⎝
3 0 0 0
3 1 0 0
3 2 1 0
3 3 3 3

⎞⎟⎟⎠
⎛⎜⎜⎝

ai

bi

ci

di

⎞⎟⎟⎠ (6)

As we have already said, an interesting property of the Bézier curves estab-
lishes that the Qi segment lies within the convex hull of its control points. If
CH denotes the convex hull of a set of points, we have Qi ⊆ CH

(
ui

0, . . . ,u
i
3

)
.

Note that a necessary (but not sufficient) condition for the node q to be pro-
jectable onto Q is that its feasible region Hq intersects the convex hull of some
segment of the curve. In other words, it must exist a segment Qi such that
Hq ∩ CH

(
ui

0, . . . ,u
i
3

)
�= ∅. This property allows us to know beforehand which

nodes are not projectable, because they yield an empty intersection for all seg-
ments of the curve. Nevertheless, calculating the set Hq and, moreover, its in-
tersection with a convex set, is not a trivial problem, so it is more advisable to
deal with a simplified version.

Let Rq and RQi be the minimal rectangles, with sides parallel to the axes,
enclosing the sets N(q) and CH

(
ui

0, . . . ,u
i
3

)
, respectively. Then, due toHq ⊂ Rq,

it is clear that q is projectable onto Qi only if Rq ∩RQi �= ∅ (see Figure 3). The
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qR

Qi

Q

q´
iQR

q

N(q)

q

Fig. 3. The figure shows the situation in which Rq ∩ RQi �= ∅, but node q is not
projectable because the optimal position for the free node, q′, is outside the feasible
region

computation of this intersection allows us to take a quick decision about if a
node is candidate to be projected onto the curve.

The algorithm to determine if q is projectable onto Q and, if it is so, which
is its optimal position, can be summarized as follows. For each segment of the
curve analyze Rq ∩ RQi and, if this set is not empty, solve the minimization
problem

minimize
∣∣K ′

η

∣∣
n

(Qi (t)) , for t ∈ [0, 1] (7)

Let t̄ be the global minimum of (7) and x̄i = Qi (t̄) the corresponding position
of the free node q on the segment Qi. We say that x̄i is an admissible optimal
position for the free node if σm (x̄i) > 0 for m = 1, . . . ,M . In order to determine
the optimal position of the free node on Q, we take x̄opt as the best admissible
position for all segments Qi. Obviously, if no admissible position exists, the
conclusion of previous algorithm is that node q is not projectable onto Q.

Take into account that an admissible projection of a free node on Q can
give rise to a local mesh with very poor quality. Although this effect is partly
palliated after smoothing the remainder nodes, following the procedure described
in section 3, it is appropriate to tighten the condition σm (x̄i) > 0 enforcing
σm (x̄i) > ε, with ε > 0 a prescribed tolerance. Nevertheless, this more restrictive
condition makes it difficult for the nodes to be projected onto the curve and it
could produce situations where some sections of the curve are not interpolated
by edges of TP . This drawback will be studied in the next subsection but, for
that purpose, it needs further clarification.

Up to now, we have accepted that parameter t pertains to the closed inter-
val [0, 1] and, in consequence, the problem (7) admits a global minimum. But,
with this consideration, the ends of the consecutive segments are shared and,
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therefore, a projected point can belong to two segments at the same time. In
order to avoid this ambiguity, we will assume that each segment Qi (t) is defined
for t ∈ [0, 1), except the last one, that it is for t ∈ [0, 1] if the curve is open. In
this way, each point of the curve belongs to a unique segment.

4.3 Discontinuities of the Mesh Alignment with the Curve

It can happen that, after repositioning all the nodes of the mesh, the piecewise
approximation of Q by edges of TP is not continuous. We can detect this dis-
continuity if we take into account that the projected nodes are arranged in the
curve. Thus, a section of the interpolated curve among two consecutive projected
nodes is discontinuous if they are not connected by an edge of TP .

As the parameter t ∈ [0, 1) induces an order relation in each segment of the
curve and, in turn, each segment is ordered by its subindex, we can say that the
node p ∈ Qi precedes p′ ∈ Qj if i < j or, in case of i = j, if the corresponding
parameters satisfies tp < tp′ . A possibility to correct a detected discontinuity
in the piecewise approximation of Q is to relax the condition σm (x̄i) > ε, by
decreasing the value of ε. However, there are situations in which, even taking
ε equal to zero, there are discontinuities impossible to avoid without removing
some of the projected nodes. The Figure 4(a) shows a scheme of this problem.
It can be seen that it is impossible to project the node q (neither r) without

r

Q
a

b

c

q

(a)

r

Q

c

b

a q

(b)

r

q Q

a
b

c

(c)

Fig. 4. The dashed line is non-recoverable without tangling the mesh (a). The free
node q is enforced to be projected (b). The tangled triangle abq is untangled and the
node c is also projected (c).
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tangling the mesh. We propose a solution to this conflict by enforcing the free
node q to be projected, even if a tangled mesh is created. The Figure 4(b) shows
how the movement of q produces the tangled triangle abq.

Afterward, the position of q is fixed for subsequent iterations of the project-
ing/smoothing algorithm, but the surrounding nodes are free to move in search
of their optimal positions that untangle the mesh and complete the interpola-
tion of the curve (see 4(c)). So, the algorithm extracts nodes from the curve
if their current positions are not admissible (see the new position of node a in
figure 4(c)).

Sometimes the curve represented by splines has sharp features that we want to
preserve in the piecewise interpolation. To reach this objective we select, from the
interpolating points, a set of prescribed points sited in strategic locations. Once
the projecting/smoothing process has finished, the algorithm searches among
the nodes projected on Q, which one is the optimal candidate, say q, to be
relocated in the position of each prescribed node. If xpres is the position of
certain prescribed point, the node q is chosen, among the nodes projected on
Q and close to xpres, as the one that maximizes the quality of N (q) when q
is enforced to take the position xpres. Obviously, if N (q) is not valid after the
relocation of q, a new iteration of the projecting/smoothing procedure must be
done.

5 Extension to Curved Surfaces

We are interested in extending the projecting/smoothing method to curved sur-
faces. As we pointed in section 2, the original problem on Σ is transformed into
another one on the plane P . The more significant difference with respect to the
former method lies in searching ideal triangles in N(q) that become equilateral
in M(p). Due to restriction of the extension of this paper, we summarize in this
section our main result relative to this aspect. A detailed analysis can be carried
out in the surface mesh smoothing procedure that is presented in [5]. Its con-
nection with the problem of surface mesh aligning with curves could be easily
implemented.

Consider that triangle t ∈ N(q) (located in plane P ) is the orthogonal pro-
jection of triangle τ ∈M(p) (located in plane π), see Figure 5. Let tR and τR be
the references triangles defined in planes P and π, respectively. Suppose that we
chose as ideal triangle in π the equilateral one (τI = τE). Our goal is to find the
ideal triangle tI ⊂ P , moving q on P , such that tI is mapped into an equilateral
one, τE ⊂ π. For this purpose, the following similarity transformation between
the matrices S and SI was proved in [5]

S = S−1
E SISE (8)

where S is defined on the plane π as the 2× 2 weighted Jacobian matrix of the
affine map that transforms the equilateral triangle into the physical one, that is,
τE

S→ τ , SE is defined on plane P as the equilateral-weighted Jacobian matrix
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Fig. 5. Local surface mesh, M(p), and its projection, N(q), on plane P

of the affine map tE
SE→ t and SI is defined on plane P as the ideal-weighted

Jacobian matrix of the affine map tI
SI→ t.

Matrices S may be used, as it is defined in (8) for any triangle τ ∈ M(p),
to construct the objective function associated to M(p) and, then, solve the op-
timization problem. Nevertheless, this procedure has important disadvantages.
First, the optimization of M(p), working on the true surface, would require the
imposition of the constraint p ∈ Σ. It would complicate the resolution of the
problem because, in many cases, Σ is not defined by a smooth function. More-
over, when the local mesh M(p) is on a curved surface, each triangle is sited
on a different plane and the objective function, constructed from S, lacks bar-
riers. It is impossible to define a feasible region in the same way as it was done
at section 3. Indeed, all the positions of the free node, except those that make
det(S) = 0 for any triangle, produce correct triangulations of M(p). However,
there are another unacceptable positions of the free node.

To overcome these difficulties we proposed in [5] to carry out the optimization
of M(p) in an indirect way, working on N(q). With this approach the movement
of the free node will be restricted to Hq ⊂ P , which avoids unacceptable surface
triangulations to be formed. Then, the original smoothing problem is trans-
formed in a two-dimensional approach on P . The algorithm to determine the
optimal projection of a free node p ∈ Σ onto the curve C is reduced to the
one presented in section 4 for reaching the optimal projection of q onto Q. If
x̄opt is the optimal projection of the free node q onto Q, then the corresponding
position on the surface is given by ȳopt = (x̄opt, f(x̄opt))T , where f(x) is the
z coordinate of the underlaying surface. If this one is not known analytically,
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we take the initial triangulation as reference surface. The algorithm follows the
usual smoothing procedure when the free node is not projectable on C. The dis-
continuities of the mesh alignment with the curve are solved by using the same
idea of section 4.3.

In order to prevent a loss of the details of the original geometry when we
are smoothing the mesh, our algorithm evaluates the difference of heights ([∆z])
between the centroid of the triangles of M(p) and the reference surface, every
time a new position of the free node is calculated. If this distance exceeds a
threshold, ∆(p), the movement of the node is aborted and the previous position
is stored. This threshold ∆(p) is established attending to the size of the elements
of M(p). That is, the algorithm evaluates the average distance between the
free node and the nodes connected to it, and takes ∆(p) as percentage of this
distance. Other possibility is to fix ∆(p) as a constant for all local meshes. In
the particular case in which we have an explicit representation of the surface
by a function f(x, y), ∆(p) can be established as a percentage of the maximum
difference of heights between the original surface and the initial mesh.

6 Applications

In this section we present an application that shows the satisfactory behav-
ior of the projecting/smoothing technique. In particular, we have applied the
projecting/smoothing technique to the Igea surface triangulation (see Figure 6)
obtained from http://www.cyberware.com/. The mesh contains 67170 triangles
and 33587 nodes.

Our goal is to obtain a new triangulation (maintaining the initial mesh topol-
ogy) after applying the projecting/smoothing procedure to reach the alignment
of the new mesh with the contours of a mask and of a star drawn on the face
of Igea. These curves are defined by the spline piece-wise interpolation of a few
points that are placed on a front view of Igea. In Figure 7 we show the poly-
lines that connect the fixed points for the definition of the mask and the star.
Moreover, we construct several reference windows to define surface patches and
to evaluate the coordinate transformation from the image parametric space to
the physical one. In order to keep the sharp angles of the star drawing, we have
prescribed 10 points as the extremes of 10 splines. We propose the following
strategy to get our objective.

Initially, we apply the smoothing technique [5] to the whole triangulation.
In this case, the projection plane is chosen in terms of the local mesh to be
optimized. The resulting mesh, after 4 iterations of our optimization procedure,
is shown in Figure 8. The value of the average mesh quality (measured with
the algebraic quality metric based on the condition number proposed in [8])
increases from 0.794 to 0.913. A more significant data is that average quality of
the worst 100 triangles increases from 0.379 to 0.575. We have fixed ∆(p) as 10%
of average distance between the free node and the nodes connected to it. More
details about this application can be seen in [17].
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Fig. 6. Original mesh of Igea obtained from http://www.cyberware.com/

Fig. 7. Point input data for the definition of the curves, approximation of the splines
as polylines and reference windows
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Fig. 8. Optimized mesh of Igea after 4 iterations of our smoothing procedure

Fig. 9. Aligned and optimized mesh of Igea after 12 iterations of the local project-
ing/smoothing procedure
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(a)

(b)

Fig. 10. Detail of the initial mesh of Igea with marked edges before projection (a).
The same edges are remarked after the algorithm has projected them onto the contours
of the mask and the star (b).

In order to reduce the computational cost of the alignment step, the project-
ing/smoothing process is carried out on the surface patches associated to the
mask and to the star. For this purpose, we select the set of triangles whose cen-
troids are included in the reference windows of the mask and of the star. Then,
we apply the projecting/smoothing procedure to these two sets separately. We
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note that, in the former process, the boundary of each patch triangulation is
fixed. So, we obtain an appropriate connection of the modified local meshes with
the rest of the surface triangulation. These ideas could be used for a parallel
implementation of the simultaneous aligning and smoothing local technique.

In Figure 9 it is presented a general view of the surface triangulation of Igea
after applying 12 iterations of the aligning and smoothing procedure. The ap-
proximation of the contours by edges of the resulting triangulation is marked.
After the application of our algorithm the values of minimum and average qual-
ities become 0.100 (same value than in previous meshes) and 0.911, respectively.
The average quality of the worst 100 triangles is 0.519. Therefore, the mesh
qualities are similar before and after the application of the projecting/smoothing
technique.

Two details of the initial and final meshes (Figures 8 and 9) are shown in
Figures 10(a) and (b), respectively. We represent the same marked edges before
and after the local projecting/smoothing process. We note that it is very difficult
to determine a priori which are the best edges for a suitable approximation of
the contours of the mask and the star. However, the algorithm finds appropriate
nodes (and consequently edges) automatically.

7 Concluding Remarks and Future Research

In this paper we have introduced the projecting/smoothing technique which is
able to align a surface triangulation with arbitrary curves without producing, in
general, a significant decrease in the minimum quality of the mesh. Indeed, the
average quality is increased in many cases as the remainder part of the mesh
undergoes a smoothing process.

In present work the curves have been defined by splines whose interpolating
points are fixed on a plane. Applications of this technique can be done in a
straightforward manner, for example, in environmental modeling [16, 18] for
aligning topographic surface meshes to significant contours, as coastlines, river
banks, etc. In addition, this particular curve definition can be applied on different
patches of a more general surface.

Our method for aligning and smoothing of surface triangulations could be
generalized by using a global parametric space (in similar terms as it is pro-
posed in [7, 20]) which makes the projection on a plane unnecessary. So, general
parametric curves embedded on the surface will be considered. Another more
ambitious generalization lies in extending the present method to align a tetra-
hedral mesh with interior surfaces. This is an open problem. It is clear that the
mesh alignment problem is not always possible to solve. Generally, the existence
of an admissible solution can not be assured. Moreover, several admissible solu-
tions may exit. Obviously, the existence of solution of the problem depends on
size, quality and topology of the initial mesh and regularity of the embedded
curves or surfaces.
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e Investigación of the Ministerio de Educación y Ciencia of the Spanish Gov-
ernment and FEDER, grant contracts: CGL2007-65680-C03-01 and CGL2008-
06003-C03-01.

References

1. Bartels, H.R., Beatty, J.C., Barsky, B.: An introduction to Splines for use in com-
puter graphics & geometric modeling. Morgan Kaufmann, Los Altos (1987)

2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programing: theory and
algorithms. John Wiley and Sons Inc., New York (1993)

3. Bonneau, G.P., Hahmann, S.: Smooth polylines on polygon meshes. In: Brunnett,
G., Hamann, B., Mueller, H. (eds.) Geometric modeling for scientific visualization,
pp. 69–84. Springer, Berlin (2003)

4. Cascón, J.M., Montenegro, R., Escobar, J.M., Rodŕıguez, E., Montero, G.: A new
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18. Montero, G., Rodŕıguez, E., Montenegro, R., Escobar, J.M., González-Yuste, J.M.:
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Summary. For grid terrain data, we propose a Lepp-surface triangulation method
that starts with a coarse initial triangulation of the input data, and incrementally adds
data points that reduce the worst edge approximation error in the mesh. The method
generalizes a previous Lepp-centroid method in two dimensions as follows: for the edge
E, having highest error in the mesh, one or two points close to (one or two) terminal
edges associated to E, are inserted in the mesh. The edge error is computed by adding
the triangle approximation errors of the two triangles that share E, while each triangle
error in L2-norm is computed by using a curvature tensor (good approximation of the
surface) at a representative point associated to both triangles. The method produces
triangular approximations that capture well the relevant features of the terrain surface
by naturally producing well-shaped triangles.

1 Introduction

Techniques for the efficient and timely management of huge terrain grid data
produced by satellites have been intensively developed in the last ten years.
Problems related with storage requirements, real-time rendering, data transmis-
sion, and visualization arise when dealing with these huge data sets. Data repre-
sentation methods that minimize the data size by modeling well the important
features of the terrain are highly desirable.

For visualization purposes, a fast and efficient large scale rendering with min-
imal memory and hardware requirements is always desirable, since the grid data
set is usually too large to be displayed as a whole. Two main approaches have
been mainly used to efficiently deal with the rendering task: the use of different
levels of detail (LODs) depending on the view focus, and the reduction of the
data size without loosing visual representation. View dependent LOD methods
display the surfaces with adaptive resolution depending on the distance to the
view focus [7, 17]. Data reduction methods basically consider two alternative
strategies for the treatment of grid data, top-down approach [2, 4, 10, 14, 15, 23]
and bottom-up approach [6, 9, 11]. The top-down algorithms, start with a few
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grant TIN2007-67982-C02-02.
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triangles and incrementally add vertices until obtaining a triangulation that ac-
complishes requirements previously established. This kind of process is known
as refinement process. The second strategy starts with a mesh of the whole data
and deletes vertices or edges and sometimes moves vertices to a new better loca-
tion until it achieves the desired requirements. These methods have been called
decimation or simplification. The vertices added or moved in both strategies can
belong to the initial data set or can be extrapolated from them. Different criteria
to finish the process have been used: number of elements, faces or vertices, error
estimation between the initial and final model, element quality, etc.

For numerical simulations, additional constraints need also to be taken into
account. The triangles of the fitting triangulated surface must be reasonably
good-shaped (with bounded smallest angle) which guarantees the convergence of
the numerical method [24]. A triangulation of a terrain surface can be built either
by using only the xy-coordinates of the input points, or the 3D information of
the input points. In the latter case it is called a data-dependent triangulation [5].
When the fitting surface is created from a triangulation in the xy-plane, usually
the Delaunay triangulation is used since this maximizes the minimum angle.
However, having well-shaped triangles in the xy-plane does not guarantee well-
shaped triangles on the the fitting surface. Moreover, it is also known that when a
data-dependent triangulation is used to fit a triangulated surface by minimizing
the L2 norm of the difference between the original and the approximated surfaces,
long and skinny triangles can be obtained throughout the fitting process [18].

Figure 1 shows two possible triangulations of a half cylinder. The triangulation
of Figure 1(a) minimizes the L2 error, while the triangulation in Figure 1(b) was
obtained with our method that considers the L2 norm error and produces well-
shaped triangles. Even when the first triangulation approximates the surface
with less mean error (2.9e-05) than the second one (0.1), the second triangulation
is more desirable for numerous applications requiring of the use of numerical
methods.

In this paper we center on the problem of fitting a data-dependent triangu-
lation with a small number of triangles to a set of grid data points so that the
triangles are well-shaped and the L2 error remains low. Note that the decimation

(a) (b)

Fig. 1. Comparison of two possible triangulations of a half cylinder surface with the
same quantity of final vertices. In (a) the triangulation minimizes the L2 error and in
(b) the triangulation tries to maximize the quality of the triangles.
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strategy centers on the elimination of biggest possible number of input data. On
the contrary, our goal is to obtain an accurate approximation by progressively
adding the smallest possible number of input data points.

1.1 Our Contribution

We consider a finite set V of grid data from a terrain surface F . The output is
an interpolating data-dependent triangulation (piecewise linear surface defined
by a set of triangles) F whose vertices belong to a subset V ⊂ V . Out method
selects relevant points of V in such a way that: 1) F fits well the original surface
F ; 2) the triangles of F , when possible, are well-shaped; 3) the number of points
in V (triangles of F ) remains low.

The proposed method estimates the edge approximation error as the sum of
the L2 error of the two triangles that share the edge by using a curvature tensor
that locally approximates the surface at each point of the model. The algorithm
gives more importance to the L2 metric but when it is possible the aspect-ratio of
the elements is taken also into account, achieving in this way an approximation
of the terrain with good quality elements. This is the main difference of our
algorithm with previous works in this area [2, 6, 10, 11].

The remaining part of this paper is organized as follows. Basic concepts nec-
essary to understand the proposed method like linear interpolation, surface cur-
vature and the Lepp Delaunay method are introduced in Section 2. Section 3
details the theoretical tools needed to approximate a terrain from a grid: edge er-
ror, point insertion, two lepps strategy and surface-midpoint or surface-centroid
selection. In Section 4 we describe the algorithm that integrates the different
tools. In section 5 we discuss empirical testing as well as the advantages of our
method. The document finishes with same conclusions and future work issues.

2 Preliminaries

Regular grids are widely used techniques for modeling terrain surfaces because of
their simple structure and the availability of satellite technology to get the data.
A disadvantage of this structure is that this uses more information than necessary
to represent the irregularity of the terrain. Irregular triangulations obtained by
sampling of irregularly spaced relevant points over the terrain surface are more
adequate to adaptively represent the terrains. In this way density of the sample
points can be adapted to the local variation in elevation: high density is only
needed in regions where the elevation varies a lot.

In the following sections we introduce the theoretical concepts we need to
develop our approximation methods.

2.1 Linear Interpolation

Given a function F (x, y), (x, y) ∈ R
2, and a set V of n arbitrary points

(xi, yi) ∈ R
2, the Linear Interpolation consist of constructing a piecewise

linear interpolation function F (x, y) such that



354 N. Coll et al.

F (xi, yi) = F (xi, yi) , i = 1, . . . , n .

The common method is to construct a triangulation T of V and to define
FT (x, y) by

FT (x, y) =
∑
Tk

FTk
(x, y) ,

where Tk is a triangle of the triangulation T and FTk
(x, y) is the function with

value 0 outside Tk and inside Tk is equal to the unique linear polynomial function
defined by the values of F at the three vertices of Tk. Since for fixed V the quality
of the interpolation depends on the specific triangulation T , T has to be chosen
in an optimal manner.

The Lp norm of a function f(x, y) is defined by

‖f‖Lp =
(∫

R2
|f(x, y)|p dxdy

) 1
p

.

Thus, the triangulation T minimizing

‖F − FT ‖Lp

is the best triangulation to obtain a good linear interpolation of a function
F (x, y).

An expression for the L2 error for a quadratic function F with hessian H(F )
on a single triangle Tk with vertices v1, v2 and v3 was computed by Nadler [16]:

E2(F, F Tk
) =

∫
Tk

|F − FTk
|2 dxdy =

|Tk|
180

(
(d1 + d2 + d3)2 + d2

1 + d2
2 + d2

3

)
,

where |Tk| is the area of Tk and

di =
1
2
(vi+1 − vi)TH(F )(vi+1 − vi) .

From this expression Nadler proved that, when the number n of points goes
to infinity, the orientation of the triangles for best L2 interpolation is given by
the eigenvectors of the hessian matrix, while their relative size in each principal
direction is given by the reciprocal square root of the absolute value of the corre-
sponding eigenvalue. Later Rippa [18] indicated how to construct the triangula-
tion T for best Lp interpolation of a quadratic function F with det(H(F )) > 0 as
follows. Let λ1, λ2 be the eigenvalues of the hessian H(F ), and e1, e2 the corre-

sponding eigenvectors. Consider also the transformation (x, y) =
√

λ2
λ1

x′e1+y′e2.
The optimal triangulation is obtained from the Delaunay triangulation of the
transformed set of input points V . Given an edge e = v1v3 adjacent to triangles
�v1v2v3, �v3v4v1, the Delaunay criterion replaces e by the edge e′ = v2v4 if
and only if

∠v1v2v3 + ∠v3v4v1 > ∠v2v3v4 + ∠v4v1v2 .

This condition of the Delaunay criterion applied to the (x′, y′) coordinates is
equivalent to the same condition applied to the (x, y) coordinates by comput-
ing the angles using the metric with eigenvalues |λ1|, |λ2| and corresponding
eigenvectors e1, e2.
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2.2 Surface Curvature

Let S ⊂ R
3 be a smooth surface. Given a point p ∈ S, let t be a unit vector

in the tangent plane at p and let n be the unit normal vector at p. The normal
curvature kn(t) is the curvature of the planar curve that results from intersecting
S with the plane through p spanned by n and t. The minimal normal curvature
k1 and the maximal normal curvature k2 are called principal curvatures. The
associated tangent vectors t1 and t2 are called principal directions and are always
perpendicular to each other (if k1 = k2, it is sufficient to pick two arbitrary
orthogonal tangent vectors). The normal curvature function kn(t) is a quadratic
form and satisfies

kn(t) = cos2(θ)k1 + sin2(θ)k2 ,

where θ is the angle between t and t1.
The curvature tensor T is the symmetric 3×3 matrix with the eigenvalues k1,

k2, 0 and the corresponding eigenvectors t1, t2, n. Then, the normal curvature
can be computed by

kn(t) = tTT t .

When surfaces are approximated by using polygonal meshes, the goal is to
compute approximations of the previous concepts directly from the mesh data.
Many methods have been proposed to this purpose. The general idea of the
techniques is to compute discrete differential properties as spatial averages over
a local neighborhood of a point p on the mesh. The size of the local neighbor-
hood critically affects the stability and accuracy of the discrete operators. A
complete survey of all the proposed methods and a robust statistical estimation
of curvature on sampled surfaces can be found in [12]. In our approach the cur-
vature tensor is approximated by a quadratic patch fitted with the least-squares
technique.

2.3 Lepp Delaunay Methods for Quality Triangulation

The following concepts were introduced and used in references [19, 21, 22]. An
edge E is called a terminal edge in a triangulation if E is the longest edge of
every triangle that shares E, while the triangles that share E are called terminal
triangles. Note that in 2-dimensions either E is shared by two terminal triangles
t1, t2 if E is an interior edge, or E is shared by a single terminal triangle t1 if E
is a boundary (constrained) edge. See Figure 2 where edge AB is an interior ter-
minal edge shared by two terminal triangles t2, t3, while edge CD is a boundary
terminal edge with associated terminal triangle t3.

For any triangle, the longest edge propagating path of t0, called Lepp(t0), is
the ordered sequence {tj}N+1

0 , where tj is the neighbor triangle on a longest
edge of tj−1, and longest-edge (tj) > longest-edge (tj−1), for j=1,... N. Edge E
= longest-edge(tN+1) = longest-edge(tN) is a terminal edge and this condition
determines N . Consequently either E is shared by a couple of terminal triangles
(tN , tN+1) if E is an interior edge, or E is shared by a unique terminal triangle
tN with boundary (constrained) longest edge. See Figure 2.
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Fig. 2. (a) AB is an interior terminal edge shared by terminal triangles (t2, t3) asso-
ciated to Lepp(t0) ={t0, t1, t2, t3}; (b) CD is a boundary terminal edge with unique
terminal triangle t3 associated to Lepp(t∗

0) = {t∗
0, t1, t2, t3}

Lepp-midpoint and Lepp-centroid algorithms work essentially in the same
way. For any general (planar straight line graph) input data, and a quality
threshold angle θ, the algorithm constructs constrained Delaunay triangulations
that have all angles at least θ as follows: for every bad triangle t with smallest
angle less than θ, a Lepp-search is used to find an associated convex terminal
quadrilateral formed by the union of two terminal triangles which share a lo-
cal longest edge (terminal edge) in the mesh. Then, associated to this terminal
quadrilateral, a point p is selected for point insertion, and Delaunay inserted in
the mesh. The process is repeated until the triangle t is destroyed in the mesh. In
the case of Lepp-midpoint algorithm, p is selected as the terminal edge midpoint,
while for the Lepp-centroid algorithm the centroid of this terminal quadrilateral
is computed. In [20] it has been proved that the centroid version produces tri-
angulations both with average smallest angles greater than those obtained with
the midpoint version, and with bigger smallest edges without suffering of a rare
looping case associated to the midpoint method.

3 Terrain Approximation from Grid Data Points

Consider a set V of size n of grid data of a terrain surface F . Given a fixed size
data n� n, we want to construct a triangulation F over a subset V ⊂ V of size
n such that F fits well to F . We base our approach on an iterative refinement
methods. These methods take as input a triangulated mesh F

0
of a very small

subset of V and compute a sequence of meshes, F
i
, i = 1, 2, . . ., by successive

insertions of new vertices. The new vertex of a mesh F
i

is a related point of
the worst element, edge or face, of the mesh F

i−1
. In the following sections we

present the concepts required by our refinement method: the error associated
to each edge based on the L2 norm, the point insertion mechanism used to
improve the fitting of the approximated surface to the original surface or to
obtain triangles with good aspect-ratio, and the two lepps strategy in order to
determine the data points, surface-midpoints or surface-centroids, to be selected
and inserted into the triangulation F .
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3.1 Edge Error

Given a point p on F , we can approximate the neighborhood of F around p by
a surface patch of the form

x(u, v) =

⎛⎝ u
v

1
2 (k1u

2 + k2v
2)

⎞⎠ ,

using the frame coordinates with origin at p and axes determined by the principal
directions t1, t2 and the surface normal n at p. Then, locally, the surface F is a
quadratic function F (u, v) = 1

2 (k1u
2 + k2v

2) with hessian as follows:(
k1 0
0 k2

)
.

In the canonical R
3 frame coordinates the quadratic form defined by this hessian

coincides with the curvature tensor.
Given an input vertex v, let Tv be the curvature tensor at v. Then, each vertex

v defines a local interpolation error for a triangle t = �v1v2v3

E2(t, v) =
|t|
180

(
(d1 + d2 + d3)2 + d2

1 + d2
2 + d2

3

)
,

where |t| is the area of the projection of t onto the tangent plane at v and

di =
1
2
(vi+1 − vi)TTv(vi+1 − vi) .

For a given edge e adjacent to triangles te and t′e we consider the grid data
point ce whose projection onto the xy-plane is the closest data point to the
centroid of the quadrilateral determined by union of the projections onto the xy-
plane of te and t′e among the projections of input points in V . The interpolation
error of the edge e is defined by

E2(e) = E2(te, ce) + E2(t′e, ce) .

The curvature tensor Tce needed to compute E2(e), as discussed in
Section 2.2, is approximated by a quadratic patch fitted with a least-squares
technique. The size of the neighborhood of ce is taken proportionally to the
length of the shortest edge of triangles te and t′e.

3.2 Point Insertion

When a new point p is selected for insertion in the triangulation, a simple valid
mesh is obtained by joining p with vertices of the triangle whose xy-projection
contains the xy-projection of p. Then, a sequence of edge flips are used either
for error improvement or for triangle quality improvement as follows:
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(i) if the error of one of the two configurations is far bigger than the error asso-
ciated to the other configuration, the configuration of less error is selected.

(ii) if both configurations have approximately the same error, the configuration
of better angles on the terrain surface is selected.

Notice that:

• triangles with small angles can be obtained even in regions with low curvature
by only applying this strategy,

• vertices need to be well fitted by the surface patch defined by the local
curvature tensor in order to properly apply the error criterion.

Consequently, adjustment and planarity measures are needed for an accurate
point insertion. Following sections are dedicated to define these measures and to
specify how the edge flipping operator works.

Adjustment and planarity measures

For each triangle t of area A(t) adjacent to an edge e let

• A(t) be the area of the triangle determined by the projection of vertices of t
onto the surface patch defined by the local curvature tensor at ce,

• A(t) be the area of the projection of t onto the tangent plane at ce.

Note that A(t) ∼= A(t) when t is well fitted by the local surface patch, A(t) ≤ A(t)
and A(t) ∼= A(t) when t is within a region with low curvature. We define the
adjustment measure of t by

Ad(t, e) =
|A(t)−A(t)|

A(t)
,

and the planarity measure by

Pl(t, e) =
A(t)−A(t)

A(t)
.

Consequently, the adjustment measure of e is defined by

Ad(e) = max{Ad(te, e), Ad(t′e, e)} ,

and the planarity measure by

Pl(e) = max{Pl(te, e), P l(t′e, e)} .

Edge flipping operator

We say that an edge e = v1v3 is 2D-flippable if the xy-projections of its two
adjacent triangles te = �v1v2v3, t′e = �v3v4v1 form a convex quadrilateral.
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Now we specify when a 2D-flippable edge e is replaced by the edge e′ = v2v4.
First we compute the adjustment measures of e and e′. If at least one of these
measures is considered unacceptable, i.e.:

max{Ad(e), Ad(e′)} > ε1 ,

edge e is replaced by edge e′ only when

Ad(e) > Ad(e′) .

Otherwise, we compute the planarity measures and the edge errors of e and e′.
When the edges are within a low curved region, i.e.:

max{Pl(e), P l(e′)} < ε2 ,

or when the edge errors are similar, i.e.:

|E2(e)− E2(e′)|
max{E2(e), E2(e′)}

< ε3 ,

edge e is replaced by edge e′ only when e′ improves the triangle quality, i.e.:

∠v1v2v3 + ∠v3v4v1 > ∠v2v3v4 + ∠v4v1v2 .

On the contrary, e is replaced by edge e′ if e′ improves the edge error, i.e. when

E2(e) > E2(e′) .

By varying the thresholds ε1, ε2 and ε3 we can prioritize the adjustment,
planarity and L2 error measures. For all the results in this paper, we use ε1 = 1.0,
ε2 = 0.2 and ε3 = 0.2

We say that a non boundary edge e is called 3D-flippable when the angle
criterion can be applied to it.

3.3 Two Lepps Strategy

Our approach is based on destroying edges with higher error by inserting one or
two points close to (one or two) associated terminal edges. In this way we create
well-shaped triangles, like the Lepp Delaunay methods do. The three possible
cases for each processing bad edge e with adjacent triangles te and t′e are as
follows:

1. Edge e is terminal (see Figure 3(a)).
2. Edge e is the longest edge for te but not for t′e (o viceversa). In this case we

use the lepp of triangle t′e for finding a terminal edge e′ (see Figure 3(b)).
3. Edge e is not the longest edge for both te and t′e. In this case we use the lepps

of triangles te and t′e for finding two terminal edge e′1 and e′2. Figure 3(c)
shows the two lepps used for finding e′1 and e′2 (in order to make clear how
the method works, only interior triangles and insertion of midpoints are
considered).

For the three cases, we insert a point inside the terminal quadrilateral defined
by the associated terminal edges e, e′, e′1, e′2.
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Fig. 3. (a) Special case where e is terminal. (b) Special case where e is the longest
edge of te but not of t′

e (or viceversa). (c) The two lepp for edge e.

3.4 Surface-Midpoint or Surface-Centroid Selection

In this section we determine the point to be inserted for each reached terminal
edge e. We denote by πe the vertical plane containing e and by Fe the intersection
between the surface F and πe.

The surface-midpoint sme is the point of Fe equidistant from the endpoints
vi and vj of e. The point sme can be computed as the intersection between F
and the line contained in πe, orthogonal to e and passing through the point
(vi +vj)/2. Since in the common case this computation can not be done exactly,
the point sme can be approximated by a bipartition algorithm.

Given four points p1, p2, p3, p4 in a plane, the centroid of the quadrilateral
p1p2p3p4 is defined by (p1 + p2 + p3 + p4)/4 or equivalently by ((p1 + p3)/2 +
(p2 + p4)/2)/2. We define the surface-centroid sce of an edge based on the last
expression. Let e′ be the edge determined by two vertices of the triangles adjacent
to e not contained in e. The point sce is defined as the surface midpoint of the
edge determined by sme and sme′ .

Our method inserts the surface-midpoint when e is a non 3D-flippable edge,
and the surface-centroid when e is a 3D-flippable edge. After the point insertion
the link edges of the point are tested to be flipped with the edge-flip operator
in a similar way as in Lawson [13] algorithm.

4 Lepp-Surface Refinement Algorithm

In what follows we explain the details of our algorithm summarized in Algorithm
1. The process starts with a triangulation F of a subset of representative points
of the real terrain. Then, new points of the real terrain are progressively added
and triangulated using our algorithm until a predetermined number of vertices
is inserted. The set of representative points is composed by a reduced subset of
boundary points and some singular interior points which represent peaks, valleys,
passes, etc. The algorithm iterates over the set of edges E sorted in decreasing
order of approximation error. For each processing edge ef the two lepps strategy
is applied, and one or two terminal edges are obtained. If a terminal edge e is
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Algorithm 1. Lepp-surface refinement algorithm

1. Input = Grid data V , number of desired final points n
2. Output = Irregular triangulation F
3. Select a small set of points of V and construct a surface triangulation F
4. Find E = the set of edges of F in descendent order by error
5. while (Number of vertex of F is less than n) do
6. Consider processing ef the worst edge of E
7. Let ti, i = 1, 2 the two adjacent triangles of ef

8. if longest edge of t1 and t2 is equal to ef then
9. v = Select-Point(t1, t2, ef )

10. Insertion of v in F
11. else
12. for i = 1, 2 do
13. if longest edge of ti is not equal to ef then
14. Use lepp(ti) for finding terminal triangles ta, tb and terminal edge ei

15. v = Select-Point(ta, tb, ei)
16. Insertion of v in F
17. end if
18. end for
19. end if
20. Update E
21. end while

Algorithm 2. Select Point (t1, t2, e)

1. if (second longest edge of t1 is not constrained and second longest edge of t2 is not
boundary) or e is boundary then

2. if e is 3D-flippable then
3. Select p equal to surface centroid sce

4. else
5. Select p equal to surface midpoint sme

6. end if
7. else
8. for j = 1,2 do
9. if tj is not null and has constrained second longest edge e∗ then

10. Select p equal to surface midpoint sme∗

11. end if
12. end for
13. end if
14. Select v equal to the closest vertex to p in V
15. RETURN v

3D-flippable, we select the point p as the surface centroid sce, otherwise we select
p as the surface midpoint sme (see Algorithm 2). Next the closest input vertex
v to p in V is determined and inserted to F . The determination of v has a low
computational cost because of the subjacent grid data input. Since each vertex
insertion changes the triangulation, the list of edges E needs to be updated.
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5 Results

In this section we present empirical testing performed to evaluate the practi-
cal behavior of our method. The software was implemented in C++ language
and using Qt libraries, to real terrain data (Cervino, Kilimanjaro, Como lake,
Maggiore Lake, and Dolomiti). All our test problems were run with threshold
parameters ε1 = 1.0, ε2 = 0.2 and ε3 = 0.2(see Section 3.2).

We compare our method with the simplification method of QSlim [8] which
is a widely known decimation algorithm that starting with the original surface,
iteratively collapses edges from the model by minimizing the surface error of the
approximation by using a quadric error metric at each vertex.

Table 1. Number of triangles and vertices in the original model and in the triangulation
obtained with the Lepp-surface and the QSlim methods

Initial Lepp-surface QSlim
Model model triangulation triangulation

Vertices Triangles Vertices Triangles Vertices

Cervino 9801 949 505 948 508
Kilimanjaro 9801 940 505 939 502

Table 2. L2 norm errors computed by using Mesh1.3 software. Minim, maxim, and
mean errors are presented for triangulations of the same size obtained with Lepp-surface
method and QSlim method.

Lepp-surface method QSlim method
Model Min. Max. Mean Min. Max. Mean

Error Error Error Error Error Error

Cervino 0 1.93 0.2 0 1.40 0.13
Kilimanjaro 0 0.74 0.1 0 0.84 0.07

Table 3. Distribution of the minimum angles obtained with Lepp-surface method and
QSlim method

Lepp-surface method QSlim method
Model Angles Mean 1st Angles Mean 1st

< 15◦ < 20◦ < 25◦ < 30◦ angle Quartile < 15◦ < 20◦ < 25◦ < 30◦ angle Quartile

Cervino 6 22 60 127 40.31 34.55 45 128 245 402 32.90 24.68
Kilimanjaro 0 0 9 31 42.50 38.45 50 122 241 431 32.23 24.74

Table 4. Distribution of the minimum angles and error approximation obtained ap-
plying a smoothing post-processing

Laplacian smoothing HC-Laplacian smoothing
Model Max. Mean Mean 1st Max. Mean Mean 1st

Error Error angle quartile Error Error angle quartile

Cervino 2.56 0.43 40.05 33.5 1.71 0.35 37.56 30.97
Kilimanjaro 1.10 0.21 39.98 33.77 0.85 0.17 37.81 30.77
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Table 5. Distribution of the minimum angles and error approximation obtained with
Lepp-surface method for different models

Vertices Lepp-surface method
Model original Triangles Vertices Angles Mean 1st Max. Mean

model < 15◦ < 20◦ < 25◦ < 30◦ angle Quartile error error

Como Lake 810000 15985 8105 38 290 915 2078 40.40 34.74 0.57 0.001
Dolomiti 810000 15974 8105 31 277 842 1993 40.39 34.67 0.9 0.002
Maggiore lake 810000 15957 8105 44 259 765 1750 40.76 35.70 0.64 0.0009

(a) (b)

Fig. 4. Cervino mountain in column (a) and Kilimanjaro mountain in column (b).
By rows from top to down, original model, refinement and simplification.

For both triangular approximations, we have used the freely available Mesh1.3
[1] package to estimate the L2 approximation error between the the triangular
approximation computed and the grid data. The L2 error is expressed as a
percentage over the length of the bounding-box diagonal of the model.
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The half cylinders presented in the introduction in Figure 1 were obtained
using QSlim (Figure 1(a)) and our approach (Figure 1(b)). As can be appreciated
in this example our approach obtains triangles with better quality meanwhile
the L2 error is nearly the same as in QSlim. Both examples contain 100 vertices
over a sample of 4950 points.

We have used real terrain test data corresponding to Cervino and Kilimanjaro
mountains both to compare the Lepp-surface and the QSlim methods, and for
illustrating the the ability of our method for modeling complex terrain features.
The comparison performed between the Lepp-surface and the QSLIM methods,
is illustrated in Tables 1, 2, 3 and Figures 4, 5 for the Cervino and Kilimanjaro
mountains. Table 1 summarizes the number of elements of the original and of
the computed models, while Table 2 summarizes the errors associated to the
results of Table 1. In addition, Table 3 and Figure 5 show the minimun angle
distribution for the resulting triangulations obtained with the Lepp surface and
QSlim methods.

In order to test the behavior of our method in presence of sharp features we
have multiplied the original highs of the terrain two times, except Kilimajaro
model.

(a) (b)

Fig. 5. Minimum angle distribution for the Lepp-surface (first row) and QSlim (second
row) triangulations for Cervino mountain in column (a) and Kilimanjaro mountain in
column (b)
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(a) (b) (c)

Fig. 6. Como lake in column (a), Dolomiti in column (b) and Maggiore lake in column
(c). By rows from top to down, original model and refinement (1%).

These results show that the refinement process achieves the main goals pro-
posed: 1) the approximation of a terrain surface considering only original grid
data; 2) with triangles of good aspect ratio. The error obtained with the refine-
ment process is comparable with that obtained with a simplification process,
as it is shown in Table 2 and Figure 4. The statistical study of the minimum
angle allows us to take several favorable conclusions to our method. As it can
be appreciated in the histograms of Figure 5 the distribution of the minimum
angles in refinement process is better than when a simplification process is ap-
plied. Table 3 shows that the mean minimum angle, the quantity of triangles
with angles less than 15◦, 20◦, 25◦ and 30◦, and the first quartile obtained with
the refinement are better than with the simplification.

The quality of the triangles can be optimized in post-processing being the
Laplacian smoothing the commonly used technique. This technique lacks moti-
vation because the input grid data is not respected and may not even remain a
valid triangulation. The freely available software MeshLab [3] offers the Lapla-
cian and the HC-Laplacian [25] smoothing techniques. We have applied these
techniques to the simplified surfaces of Cervino and Kilimanjaro examples (see
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(a) (b)

Fig. 7. Detail of the Como lake. In (a) the original model and in (b) the refined model
(5%).

Table 4). In error approximation as well as in angle quality our method gives
better results than the considered post-processing techniques.

Table 5 presents results obtained applying Lepp-surface method to other mod-
els: Como lake, Maggiore Lake and Dolomiti. Here, error approximation and sta-
tistical data of angles are shown for each model. This table is complemented by
Figure 6 in which views of original models and their refinement can be compared.
As can be appreciated in this figures in spite of the lower quantity of points used
in the refinement (1% of the original set) the main features of the terrains can
be distinguished. The algorithm takes about 9 seconds in generating this models
in an Intel Pentium 3.00 GHz with 1.00 GB of RAM.

Finally, to illustrate that local details are preserved Figure 7 shows a detail
both of the original data and of the Lepp-surface approximation for the Como
Lake with 5% of the original data set points with a total running time of about
60 seconds.

6 Conclusions and Future Work

We have presented a refinement method that interpolates grid input data based
on estimating the L2 error by using the curvature tensor and a two lepp strategy
in order to create a well-shape triangulation. The L2 metric is prioritized but
when it is possible the aspect-ratio of the triangles is taken also into account,
achieving in this way an irregular triangulation of the terrain with good quality
elements that fits well the original input data.

The method has been tested on several models giving very good results in the
approximation of terrain surfaces with sharp features. The main goals pursued
in this research, that is, good error approximation and good aspect-ratio of the
triangles were achieved.

The basic ideas of the method presented in this paper can be easily adapted
to work with irregular terrain input data, and generalized to deal with input
data obtained by using 3D scanners.
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Summary. In point-based graphics, surfaces are represented by point clouds without
explicit connectivity. If the distribution of the points can be carefully controlled, surface
reconstruction becomes a much easier problem. We present a simple, completely local
surface reconstruction algorithm for input point distributions that are locally uniform.
The locality of the computation lets us handle large point sets using parallel and
out-of-core methods. The algorithm can be implemented robustly with floating-point
arithmetic. We demonstrate the simplicity, efficiency, and numerical stability of our
algorithm with an out-of-core and parallel implementation using graphics hardware.

1 Introduction

The idea of point-based graphics is that a point sample can be the primary
representation of a surface, simplifying computation and saving space by doing
without explicit connectivity information. In some situations, for instance a geo-
metric modeling system or the simulation of a moving front, the distribution of
the sample points is entirely under the control of the application, which upsam-
ples, downsamples and smooths the distribution as necessary. What kind of a
distribution should a point-based application seek to maintain? One criterion,
among others, is that the distribution should make later geometry processing
operations, such as surface reconstruction, easier. A surface reconstruction algo-
rithm which will be applied to a carefully maintained distribution can be simpler,
faster, and easier to implement and to parallelize, and it should scale better.

In this paper we explore how simple and local a surface reconstruction algo-
rithm can be when applied to well-distributed points. Specifically, we consider
distributions which are locally uniform, and we give a very easy surface re-
construction algorithm which works well in practice on such distributions. We
emphasize that this scenario is very different from the problem of surface recon-
struction from acquired data. Rather than designing the algorithm for robustness
to noise and sampling irregularity, we can design for simplicity, speed, and lo-
cality of computation.

Outline of algorithm. We construct a octree for the sample points and down-
load it to the GPU. In parallel, we find the k-nearest neighbors of each sample
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point. Then at each sample point we construct an umbrella of possible surface
triangles. Edges that are consistent between adjacent umbrellas are defined to
be consensus edges. On arbitrary distributions it is possible that the consensus
edges will form a very sparse graph, possibly not even connected. But on distri-
butions that are locally uniform, we observe that the consensus edges define a
polygonalization of the surface, in which all faces have a small number of edges.
We triangulate any non-triangular faces in this graph, using a deterministic rule,
completing the triangulation. Our implementation can triangulate a sample con-
sisting of 6 million points on a surface in R

3 in about 35 seconds (not including
the CPU octree computation). It is written in CUDA, and uses native GPU
floating point arithmetic.

Related work. Surface reconstruction is a huge field and we focus here on
only the work most related to ours. The idea of reconciling local umbrellas at
each sample point is the central concept in the algorithm of Gopi et al. [1],
in which the umbrellas are computed on an advancing front. While the high-
level idea of Gopi’s algorithm is similar to ours, it is essentially sequential. A
recent GPU-assisted algorithm based on Gopi’s method is due to appear [2].
This algorithm apparently computes local umbrellas in parallel on the GPU,
with both the earlier step of finding nearest-neighbors and a post-processing
reconciliation of the umbrellas done sequentially. Also in this same vein, Adamy
et al. [3] select umbrellas at each point (using a criterion similar to ours) and
reconcile them using simple topological processing followed by a global linear
programming step. Our algorithm differs from all of this previous work in that
we reconcile the umbrellas locally and in parallel; we do not have to resort to a
sequential global process.

Computing and maintaining an umbrella (or “star”) at every vertex is also
central to Shewchuk’s “star splaying” algorithm [4] for maintaining a Delaunay
triangulations under perturbations.

Dey et al. [5] and Funke et al. [6] considered surface reconstruction given a
locally uniform distribution, and give an almost linear time algorithm. While
candidate triangles are found independently at each sample, a final reconcili-
ation stage requires a sequential sweep through the surface. Finally, Dumitriu
et al. [7] give a sequential surface reconstruction algorithm which takes a very
dense, possibly poorly sampled point cloud as input, and constructs a triangula-
tion of a sparse locally uniform subsample. Their algorithm is interesting in that
the only geometric computation required is the construction of a neighborhood
graph on the original dense sample. Like us, they find a graph of “good” edges,
within which the minimal cycles form a polygonization of the surface; they re-
port cycles of length at most five in practice. In an unpublished manuscript [8],
they give a (large) constant upper bound on the size of the cycles produced by
their algorithm, which unfortunately cannot be applied to ours. In contrast, our
algorithm requires only the sparse locally uniform input, not the dense input
point set as well.

A very recent GPU surface reconstruction algorithm by Zhou et al. [9] im-
plements the Poisson surface reconstruction algorithm of Kazhdan et al. [10].
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The paper emphasizes that a major contribution is the introduction of an octree
which is not only searched on the GPU, like ours, but also constructed in parallel
on the GPU. They report an excellent running time of 0.2 seconds for an input
of about 500K points. Poisson reconstruction requires normal information and
is a global algorithm; the output size is limited by the resolution of the grid
achievable on the GPU. Local algorithms like ours can handle larger inputs by
breaking them up into smaller parts.

Locally uniform point samples. We define locally uniformity for a point
distribution on a surface using a parameter α.

Definition 1. Let P be a sample of points from a surface in R
3. For a sample

point v ∈ P , let δv be the minimum distance from v to any other sample. Let εv

be the maximum distance from v to any surface point in the Voronoi cell of v.
We say that P is locally uniform with parameter α if, for all v ∈ P , εv ≤ αδv.

This measure of the distribution of a point set is similar to the well-known
circumradius to shortest edge criterion for a triangulation. Computing εv is not
possible if we are not given the surface itself. But it is easy to estimate εv once
we have an output triangulation; we use such estimates to illustrate the range
of α within which our algorithm is successful in our experiments.

Local uniformity of a point sample does not guarantee that it is dense enough
to allow for a correct reconstruction of the surface. Besides being locally uni-
form, our algorithm also requires the input point distribution to be everywhere
sufficiently dense; as noted by Amenta et al. [11], the minimum required density
varies over the surface linearly with distance to the medial axis. Any distribu-
tion which everywhere exceeds this minimum density and is locally uniform is
an appropriate input to our surface reconstruction algorithm.

Producing and maintaining locally uniform samples. It is indeed possible
to produce locally uniform point samples on surfaces, and to maintain them as
the surface changes. A perfect triangular grid of points in the plane achieves
the best possible α = 1/

√
3 ≈ 0.577 everywhere, but we cannot expect to do so

well on an arbitrary surface. A simple greedy sampling strategy [12], however,
does achieve α ≤ 1 on an arbitrary surface: choose a small enough δ, and then
while there is some point of the surface farther than δ from any sample, place
a new sample at any such point. This procedure can also be adapted to handle
varying sampling density. The distribution is improved if the new point is chosen
uniformly at random (the Poisson disk sampling method; see Dunbar et al. [13]).
Another strategy is to insert the point furthest from any previously-placed sam-
ple (eg. Boissonnat and Oudot [14]).

The greedy algorithm creates locally uniform point sets. Among heuristics
which can be used to maintain local uniformity after a perturbation (e.g. dur-
ing a modeling operation or simulation step), Lloyd’s algorithm works well in
practice. It moves every sample to the center of mass of its Voronoi cell, it-
eratively, until convergence. Surazhsky et al. [15] uses local parameterizations
and Llyod’s relaxation to produce locally uniform sampling on arbitrary genus
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surfaces. Recent work on optimal Delaunay triangulations [16] uses a similar idea
to produce even nicer-looking distributions on the plane. On implicit surfaces,
a classic paper by Witkin and Heckber [17] uses repulsion and attraction forces
to produce and maintain locally uniform point distributions; the distribution
in Figure 9 was produced using our implementation of their algorithm. More
recently, Meyer et al. [18] gave an improved force-based algorithm along similar
lines.

2 Geometric Intuition and Groundwork

Let’s begin by considering the uniform unit triangular grid in a plane embedded
in R3, the vertices of which form a distribution P with the minimum α =
0.577. An empty circumsphere of a triangle has the vertices of the triangle on
its boundary and has no other point of P in its interior. The minimal empty
circumspheres of the triangles of the grid have radius α, while any other triangle
with vertices on the grid has no empty circumsphere of non-infinite radius. This
motivates our umbrella selection criterion: we will choose an umbrella in which
each of the triangles has a small empty circumsphere.

In more realistic situations, the surface is curved and the distribution is not so
nice. We are however always guaranteed that every sample point in P has at least
one umbrella consisting of triangles with small circumspheres. The restricted
Delaunay triangulation [19] is the set of triangles with empty circumspheres
centered at points on the surface; these centers are the points at which the edges
of the 3D Voronoi diagram of P pierce the surface.

Observation 1. A triangle t of restricted Delaunay triangulation has circum-
spheres of radius at most εv, for any vertex v of t.

Since there is an umbrella of triangles at each vertex, each of which has a small
circumsphere, we are always able to select such an umbrella. Not all triangles
with small circumspheres will be restricted Delaunay triangles, however, even
on distributions that are everywhere dense and locally uniform. The difficulty
has to do with slivers: very flat tetrahedra, the vertices of which are nearly co-
circular. It is possible (although not necessary) for all of the triangular faces of
a sliver tetrahedron in the 3D Delaunay tetrahedarlization of P to have small
circumspheres. Also, even when P is locally uniform, five, six or more points
can be nearly co-circular and define many triangles with small circumspheres;
the number of points that can be nearly co-circular increases with α. If v and
several of its neighbors are nearly co-circular, they might choose umbrellas that
are inconsistent with each other. On the other hand, any subset of these triangles
chosen for the umbrella at v will include the two edges connecting v to its
neighbors u, w along the “circle”. Similarly, these edges will also appear in any
subsets of the triangles chosen for the umbrellas at u and w. This intuition leads
us to the definition of consensus edges.
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Definition 2. We define the Delaunay edge uv to be a consensus edge if it ap-
pears in every umbrella which contains the two vertices u, v. Note that this in-
cludes the umbrellas of points other than u and v.

We conclude with some observations about the triangles with small circum-
spheres (of radius at most αδv). These observations will be useful in selecting
the triangles, and they also clarify the connection between α and the quality of
the output triangles.

Since every triangle in P is enclosed in a circumsphere of radius at most εv ≤
αδv, we know that each triangle has a circumcircle of radius at most εv. Since
every edge must have length at least δv, the smallest possible circumcircle (and
hence the smallest possible circumsphere), is the one surrounding an eqilateral
triangle with side length δv.

Observation 2. The smallest triangle circumcircle has radius 1/
√

3δv ≈ 0.577δv.

Consider the figure below.

The triangle with the largest possible angle has to look like the bold triangle; the
radius of the circumcircle is as large as possible, that is, εv. To get as large an
angle as possible at v, we spread the two adjacent edges as far apart as possible,
until they are as short as possible, that is, δv. The two marked angles are the
same, and must be arcsin((δv/2)/εv) = arcsin(1/2α). So the opposite angle in
each of the right triangles is arccos(1/2α), and the large angle at the bottom
is 2 arccos(1/2α). Also, notice that to make as small an angle as possible, we
also need to use as large a circumcircle as possible, and the smallest angle will
be opposite the smallest edge of the triangle. So any angle of a triangle with
circumradius εv, opposite an edge of length δv, has the smallest possible angle.
Hence:

Observation 3. The largest angle of any triangle is 2 arccos((1/2α) and the
smallest angle of any triangle is arcsin(1/2α). For instance, with α = .9, we
have largest angle of 112.5 and a smallest of 33.75 degrees.

3 Algorithm

We now describe the parallel GPU part of our algorithm. Each step in the
following description is run in parallel over each vertex v ∈ P .
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Algorithm 1. Parallel surface reconstruction for each v ∈ P

1: Retrieve the k nearest neighbors Nv of v.
2: Compute Delaunay faces Fv connected to v using Nv

3: Compute umbrella Uv by choosing a subset from Fv.
4: Determine if out-going edges of Uv are consensus edges Cv by searching through

all umbrellas in Nv.
5: Find cycles for every edge in Cv and output polygons.

Fig. 1. A visualization of the steps of our algorithm. We draw the simplicies by scaling
them towards their respective vertices. Starting from the left, we compute Delaunay
and nearly-Delaunay triangles (light green), umbrellas (dark green), consensus edges
(dark blue), and cycles (orange). We then render the resulting triangles.

Let us discuss these steps in detail. The first step retrieves the k nearest
neighbors using a search structure; we use an octree which is pre-computed on the
CPU. The second step computes Delaunay faces connected to v by considering
samples in Nv, which is sufficient as long as the k nearest neighbors contain all
points within 2εv distance from v. The choice of k depends on the uniformity of
the point-set.

We defer discussion of the second parallel step, which produces a set of trian-
gles at each vertex v, until Section 4. From this set, we extract an umbrella of
triangles, each with small circumball radius in the third step, using the following
algorithm. An outgoing edge of v is an edge connected to v. Triangles in Fv

are adjacent if they share an outgoing edge. Outgoing edges of an umbrella Uv

are manifold edges, meaning that edge is connected to exactly two triangles. To
form an umbrella from Fv and to ensure that the resulting umbrella if formed by
triangles with small circumball radii, we look for triangles with large circumball
radii that can be removed. A triangle is a flake if one of its outgoing edges does
not meet another triangle at a large dihedral angle. A flake is never a restricted
Delaunay triangle and can always be removed immediately. Second, a triangle is
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v

UvFv

Fig. 2. The left figure is a Fv with flake triangles highlighted in yellow and pocket
triangles highlighted in blue. The right figure is a resulting umbrella Uv. Note that
removable of a pocket triangle can change pocket triangles into flake triangles.

Algorithm 2. UMBRELLA(v, Fv)

Uv ← Fv

while Uv is not an umbrella do
Remove all flakes in Uv.
Remove the pocket triangle with the largest circumball radius in Uv.

return Uv.

a pocket triangle if it is not a flake and if the dihedral angle between it and any
of its adjacent triangles are small; adjacent triangles with manifold edges are
also pockets. Figure 2 shows an example of flakes and pockets and Algorithm 2
describes the umbrella filtering.

We may remove a restricted Delaunay triangle which is a pocket triangle,
but if so the remaining umbrella will consist only of triangles with even smaller
minimal circumspheres.

The fourth step determines if the outgoing edges of Uv are consensus edges.
For a vertex v, let us define Lv as the link of Uv, which contains all edges in Uv

not touching v. Let Ov be outgoing edges of Uv. In order for an edge vw ∈ Ov

to be consensus, we check two conditions. First, we check if wv ∈ Ow. Second,
we check for all x ∈ Nv such that if vertices {v, w} ∈ Ux, then vw ∈ Lx. If either
of these conditions fail, then vw is not a consensus edge.

We can easily extend the consensus definition to handle boundaries. A point on
a boundary cannot have an umbrella, so the UMBRELLA algorithm will produce
the empty set (see Figure 3). In order to produce triangles that partially cover
a boundary sample, we simply ignore consensus tests that involve empty Uw or
Ux. This works quite well when the boundary is nicely sampled, as in Figure 3.

Finally, in the last step, we extract the polygonal faces by detecting cycles in
the graph of the consensus edges. This is complicated by the fact that we do not
have vertex normals or a consistent orientation. Following a consensus edge from
v to w, we orient w consistently with v as follows. We consider the triangle tw
that is on the same side as tv of the plane that is perpendicular to tv and passing
through vw (tw may or may not be tv). If tw has a consensus edge wz opposite
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Fig. 3. A closeup of the boundary of the hand model. Our algorithm handles bound-
aries gracefully.

Fig. 4. Our algorithm works on non-orientable surfaces. Here, the input point samples
are shown at the top right.

of vw, we choose wz as the next consensus edge in the cycle. If tw does not have
a consensus edge, we traverse the adjacent triangles in the umbrella until we do
find a consensus edge; if we get back to vw before finding another consensus edge
we quit and do not output a cycle. For a consensus edge touching a boundary
sample b, we do something similar to define a face: we start a path from the edge
containing b and terminate the search once the path reaches another boundary
sample (which might be b).

Once a cycle is found, we can return the cycle as a polygon or triangulate
it if necessary. To make sure all vertices compute the same triangulations, we
deterministically break each cycle into a triangle fan with the center located at
the vertex with the smallest memory address. By not relying on any orientation
information, we can extract non-orientable surfaces, such as a Mobius strip as
shown in Figure 4.
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4 Nearly-Delaunay Computation with Floating-Point
Arithmetic

In this section, we discuss the computation of the set of Delaunay and nearly-
Delaunay triangles from which the umbrellas are selected. This computation is
done with the GPU’s floating-point arithmetic, which is generally single-precision
and does not conform to the IEEE floating-point standard. Our approach is to
be tolerant of numerical error.

The umbrella selection algorithm requires at each vertex v a set of triangles,
each labeled with an estimate of the radius of its smallest empty circumsphere.
In the interests of maximizing the number of consensus edges, we would like
this set to be as small as possible. In this section we consider the geometric
computation we use to find that set. We first select a list of possible candidate
triangles, and then we check each candidate. We can eliminate a candidate if we
determine that it is definitely not Delaunay, or if we determine confidently that
its smallest empty circumsphere is much larger than the distance from v to its
nearest neighbor.

We begin with the candidate set of all well-shaped triangles Tv in Nv con-
nected to v. To estimate the radius of the smallest circumsphere for a triangle
touching t ∈ Tv we consider the Voronoi edge dual to t. We parameterize the
dual edge as e(λ) = c + λn, where c is the circumcircle center of t, n is the unit
normal perpendicular to the plane of t and λ ∈ R. Let Bλ be the circumsphere
centered at e(λ), touching the vertices of t. For each point q ∈ {Nv\t}, we find
the interval Λq that contains values of λ for which Bλ is empty of q. This idea
is elaborated in Algorithm 3.

The fundamental operation in the algorithm is computing the interval Λq,
which is equivalent to finding the center of the sphere touching the three vertices
of triangle t and the fourth point q. This circumcenter operation is notoriously
numerically unstable: if the four points are nearly co-circular, then round-off
error in fixed-precision floating-point computation can lead to wildly incorrect
results. We use our assumption that the input P is locally uniform in several

Algorithm 3. DELAUNAY FACES(v, Nv)
Fv ← {}
Let Tv be the set of all possible triangles from Nv , touching v, and without very
large or very small angles.
for all t ∈ Tv do

Λt ← (−∞, +∞)
for all q ∈ {Nv\t} do

Compute the valid interval Λq

Λt ← Λt ∩ Λq

if Λt is not empty then
Find the smallest |λ| in Λt to determine the smallest circumball radius rt.
Add {t, rt} in Fv.

return Fv.
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Ba

Bb

t

Fig. 5. This figures shows the regions considered in our robust floating-point compu-
tation. The triangle t and its points are shown in black, the two balls Ba and Bb are
shown in dotted lines, and the shells are shown in blue. The right figure is a closeup of
the area near the triangle. Points in the orange region are considered to be co-circular
with the vertices of t. Points in the blue region are considered to be co-spherical with
either Ba or Bb. Points in the red region are considered to have circumball radius larger
than ε. Points in the gray region are numerically safe to use Equation 1.

Fig. 6. The computed Delaunay faces for each vertex are highlighted in green and
the darker green triangles are the resulting umbrellas. The left figure shows triangles
computed using without using the careful numerical approach described in Section 4,
and the right figure shows the triangles using the approach.

ways to deal with the problems caused by numerical instability. Our goal is
to avoid eliminating restricted Delaunay triangles, while filtering out triangles
that cannot possibly be restricted Delaunay triangles, thus producing better
umbrellas and more consensus edges.

First, we eliminate all triangles that have any angle that is too large or too
small, which is justified by Observation 3. In our experiments, we simply ignore
triangles with angles smaller than one degree.

Second, we observe that because triangle t is well-shaped, the computation
of its normal n and the center of its circumcircle c are, while not exact, at
least numerically stable. Instability in these computations occur when the three
triangle vertices are nearly co-linear, and these situations have been eliminated.
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So we compute c and n once for each triangle and use them in the computation of
each Λq. In computing n and c, we improve the stability by taking v as the origin,
and then in the computation of Λq we use c as the origin. Also, we ensure that
the vertices of a triangle are always used in the same (memory address) order
when computing n and c, so that n and c will be identical when t is processed
at each of its vertices.

To solve for the endpoint in the interval Λq, we solve for λ such that |e(λ)−p| =
|e(λ)− q|, where p is a vertex of t. If c is at the origin, then

λ =
(p− q)T (p + q)

2(p− q)T n
(1)

This computation will not be stable if q and the vertices of t are nearly co-circular
or nearly co-planar. We do some special processing to identify these cases. We
take a conservative approach and set Λq to (−∞,∞) if the four points are nearly
co-circular, passing the triangle (as far as q is concerned) as nearly-Delaunay. At
the same time, we eliminate triangles with large minimal empty circumspheres.

First, let us consider an idea for avoiding unnecessary evaluations of λ. Recall
that Observation 2 tells us that the radius of the circumcircle of each well-shaped
triangle is no smaller than

√
3δv, while Observation 1 tells us that any restricted

Delaunay triangle has a smallest circumsphere of radius at most εv = αδv. We
consider two balls, Ba and Bb, passing through the vertices of t with the center
of Ba above and the center of Bb below the plane of t (see Figure 5), each of
radius

√
3α multiplied by the circumcircle radius of t. Any sample qout outside

Ba ∪ Bb cannot improve our lower bound on the size of the smallest empty
circumsphere, so immediately conclude that t is acceptable with respect to qout

and continue on to the next q. Any sample qin inside Ba∩Bb forces the minimum
empty circumsphere to have radius radius larger than ε, so we immediately reject
t for Fv.

Now we consider the unstable case. Notice that in Equation 1, if the vector
(p− q) is very small or is almost perpendicular to n, then the denominator will
be close to zero. The dot product between these two vectors may produce a
catastrophic cancelation that results in a large relative error. To avoid doing the
computation in the unstable case, we consider the shells Sa and Sb of Ba and
Bb, respectively. A shell of a ball B is formed by the points between the two
balls sharing the same center as B with radii r(1 − µ) and r(1 + µ), where r is
the radius of B and 0 < µ � 1. If q ∈ Sa ∩ Sb, then we assume q is co-circular
with the vertices of t and we treat Λq as unbounded. If q ∈ (Sa ∪Sb)− (Sa∩Sb),
we handle it as described above for Ba and Bb. Only if q �∈ (Sa ∪ Sb) and
q ∈ (Ba ∪ Bb) − (Ba ∩ Bb) do we compute λ using the formula above, and in
that case the computation is stable. To make sure the resulting Λt has an valid
interval when its interval is very small, we also scale each interval Λq by (1+µ).
In our experiments, we set µ as low as 10−5 without noticing any problems with
the 32-bit floating point arithmetic on our graphics hardware.

Figure 6 shows an example of a difficult input, containing many truly co-
circular quadruples of points, with Λq computed using a naive floating-point
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implementation and also with our more careful conservative strategy. Notice
that we retain triangles which are possibly not Delaunay. The later umbrella
computation and the choice of consensus edges tolerate this behavior.

5 Parallel and Out-of-Core Implementation

We wrote our parallel algorithm using NVIDIA’s CUDA GPU Computing envi-
ronment [20], using OpenGL for rendering. Each of the steps in Algorithm 1 runs
in parallel as a CUDA kernel. In order to communicate between kernel stages,
we create workspace buffers to hold intermediate data, such as the pointers to
the k neighbors of each vertex in P . If these workspace buffers collectively take
up too much memory, we partition P into smaller groups, which are then com-
puted serially. The groups are bounded by chains of input samples, which are
included in both groups. To make sure the samples in these boundary groups
produce consistent triangles, the neighboring samples on either side should also
be included in both groups. In our experiments so far, however, we treat the
group boundaries as described in Section 3, and we have not noticed holes in the
resulting outputs.

For the Delaunay computation of Fv, each vertex v iterates over all possible
candidate triangles formed by v and two other samples in Nv. To speed this up,
we create a thread for each of v’s neighbors. We allow these threads to commu-
nicate by caching vertex positions into the on-chip memory (shared memory)
that is shared amongst v’s neighbors.

Reducing the number of nearest-neighbors k of course speeds up the compu-
tation of the nearly-Delaunay triangles. But small values of k can lead to trouble
when we have varying sampling density, as in Figure 7. In this situation it might
happen that some of v’s neighbors find triangles including v which are not found
by the computation at v itself. To remedy this, we share near-Delaunay faces be-
tween neighbors after they are computed. We do this by searching through each

Fig. 7. The left figure shows the Delaunay faces each v finds by considering just
its k nearest neighbors. Notice that with the quickly varying sampling density, some
triangles at v are missed. The right figure shows the results after each v searches for
faces connected to v from its k+ neighbors.
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v’s k+-nearest neighbors. In our experiments, we chose k+ = 2k. This allows us
to reduce the size of k.

6 Results

We used an NVIDIA GeForce 8800 GTX GPU with 768MB connected via PCI
Express 16x to an Intel Core2 Quad 2.4GHz CPU. Our applications are built on
top of Windows XP and the CUDA Toolkit 1.1.

To see how running time varies as function of the input size, we produced
inputs of varying size using subdivision. The timing results are shown in Figure 8.
To focus on our algorithm, we do not include rendering time nor the time required
to compute the octree on the CPU, which takes less than a minute for 6 million
points. In most cases, rendering adds an additional 20% to the overall time. The
first three stages of Algorithm 1 take the majority of time: getting the neighbors
takes about 20%, making nearly-Delaunay triangles takes 40%, and selecting
umbrellas takes 20%. We optimized our code for the Delaunay computation by
caching vertex positions into the shared memory space, which reduced the timing
by a factor of four. We have not applied similar optimizations to the other stages
yet, which we expect would yield similar speedups.

A method to generate our sampling requirement is shown in Figure 9. We
begin with a uniform random distribution, and use our implementation of the
Witkin-Heckbert technique [17] to improve the distribution. Any vertex that does
not have an umbrella or has less than three consensus edges is considered to have
failed the reconstruction. The percent of vertices for which the reconstruction
fails appears in the figure. The α value is estimated at each v by finding δv,
the distance to the closest other sample, and then estimating εv by the largest
circumcircle radius in v’s umbrella. Histograms of these estimated alpha values
can be seen in Figures 12-11.
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Fig. 8. Timing results (GPU only) for varying input sizes and for different choices
of k. As expected, we see that that reconstruction time scales linearly with the input
size.
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Fig. 9. The left figure shows the initial uniform-random distribution on a sinusoidal
surface. Using k = 9 the reconstruction works on 92% of the vertices. The middle
figure shows the distribution after one iteration of the Witkin and Heckber particle
smoothing algorithm with 96% correct reconstruction. The right figure shows the per-
fect reconstruction after the particles converge to a stable configuration, which takes
about ten iterations.

0.5 5

Fig. 10. We consider the Oliver hand model. We see from the left figure that the
hand has very uniform sampling. The two hands in the middle show the reconstruction
using using k = 3 with 10% correct (left) and k = 7 with 100% correct (right). Notice
from the most right figure that the regions between the fingers with high curvature are
reconstructed properly.

0.5 5

Fig. 11. To consider a very non-uniform sampling, we decimated the dragon model
from 3.6 million points to 100k points. With k = 16 the reconstruction works on 95% of
the vertices. Notice from the right figure that the scales are reconstructed reasonably
well. The spike at the top of this figure is sampled too sparsely to have a meaningful
reconstruction.
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a) c)

d)

e)

f)

0.5 5 0.5 5

b)
Fig. 12. These figures show the uniform and non-uniform Neptune models. Histogram
of their estimated alpha values are also shown. (a) The uniformly sampled Neptune
model. (b) A close up of the uniform model with consensus edges. Using k = 9, the
reconstruction fails on 13 of the 1.6 million vertices. (c) The non-uniform Neptune
model. (d) A close up of the base. Notice that regions near extremely varying sampling
density are not reconstructed properly. (e) Reconstruction of the non-uniform model
using k = 9 with 97% correct (f) and k = 15 with 98% correct.

We considered the overall reconstruction successful if a very large percentage
of the vertices produce at least three consensus edges. The number of nearest
neighbors required to get a successful reconstruction varies with α. The uniformly
sampled Neptune only requires k = 9, while the non-uniformly sampled Neptune
model requires k = 15. For the very uniform hand model, k = 7 produces perfect
reconstruction. We also tried our algorithm on a very non-uniform sampling with
the dragon model shown in Figure 11. The dragon model works on 95% of the
vertices with k = 15.

7 Future Work

This work is one example of a geometry processing problem which is easier when
applied to locally uniform data. We emphasize that our algorithm is not meant
to reconstruct noisy data from laser scanners, but instead meant to represent
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surfaces purely from point clouds that can be carefully controlled. If some vertices
do not meet the sampling condition, one can explicitly maintain their umbrel-
las. However, we hope that research in this direction will inspire more work on
producing and especially maintaining nice sampling distributions, and showing
that these distributions have useful properties.

We are currently working on a proof that an exact version of this algorithm
would always produce cycles with small constant maximum length on inputs
that are locally uniform and sufficiently dense. On the practical side, we plan
to incorporate this surface reconstruction algorithm into an application that
maintains a locally uniform distribution on a moving surface.

Our algorithm fails to be completely parallel since we begin by computing an
octree on the CPU. While this is not the bottleneck, developing a good octree
implementation on the GPU is an important issue, recently addressed in the
algorithm of Zhou et al. [9]. We plan on incorporating similar data structure in
order to make our algorithm run completely in the GPU.
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Application of Smooth Mixed Meshes Based on Metric 
Identity in Aerospace Analysis and Design 

Jochen Wild 

DLR, Institute for Aerodynamics and Flow Technology, Lilienthalplatz 7,  
D-38108 Braunschweig, Germany 

Abstract. An applicable method for generating mixed meshes around simple and medium 
complex configurations is presented. Core part of the mesh generation strategy is a smooth 
meshing of the boundary layer region by structured hexahedrons and prisms applying smooth-
ing based on solving face-weighted Laplacian equations. A preconditioning of the point set for 
triangulation by shear and edge-weighted average affine invariant transformation is proposed to 
stabilize end accelerate constrained Delaunay volume triangulation. An examples of the mesh 
generation strategy is shown for a generic transport aircraft in high-lift configuration. 

1   Introduction 

Numerical design optimization is an emerging design tool for real world applications 
in aerodynamics. The state of the art of 3D Navier Stokes solvers already show a 
good predictive capability even for more complex 3D aircraft configurations as shown 
for example in [1][2][3]. 

Optimization based on high-level computational fluid dynamics (CFD) tools using 
Reynolds-averaged Navier-Stokes equations (RANS) in the meantime is widely used 
for 2D airfoil design. Today the step towards 3D wing optimization is to be done.  
Although already practical for simple configurations like wing-body, the effort of cal-
culating more complex configurations is still too high for application within an opti-
mization environment. The main limiting factor hereby is the number of grid points 
necessary for accurate flow simulation using hybrid unstructured grids consisting of 
tetrahedral and prismatic elements. E.g. for the configuration used in the Drag Predic-
tion Workshop [1] the medium hybrid unstructured grid used giving promising results 
contained approximately 12 million grid points. This resulted in a computational ef-
fort of 100 hours CPU-time on a NEC SX5 high performance computer for a given 
flow condition. Even the grid generation for this case took about 1 day turn-around 
time. This computational effort is clearly unacceptable in terms of an optimization 
process, where multiple configurations have to be evaluated. As a rough estimate, 
when assuming 200 evaluations for a converged optimization, this will lead linearly to 
200 days grid generation and 800 CPU-days flow calculation. Even assuming a paral-
lel processing of the flow on 4 processors will result in more than 1 year turn-around 
time for the optimization.  

Regarding applications in high-lift optimization the situation worsens. Today a hy-
brid unstructured mesh for a transport aircraft configuration contains about 20 Million 
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grid points. A mesh is usually generated over night using an advancing front method 
for high quality meshes. Even with the new computer technology providing massively 
parallel LINUX cluster systems, 1 to 5 days are needed for a fully converged flow 
simulation. Using such meshes would require 40 to 1000 days of computing, depend-
ing on the optimization algorithm. 

The big shortcoming of hybrid unstructured grids is the low anisotropy of surface 
triangles resulting in a large number of grid points, which is agglomerated through the 
number of prismatic layers for the boundary layer resolution. This low anisotropy 
leads to an unnecessary high resolution in spanwise direction, especially for high as-
pect ratio wings. Recovering the experience with the application of structured grids, it 
is known, that the aspect ratios of the surface quadrilaterals can be much higher, addi-
tionally resulting in well aligned body conforming meshes. The shortcoming of an 
overall use of structured meshes is the increasing complexity of the targeted configu-
rations, where structured meshing reaches its limitations, mainly due to grid topology 
issues. 

In the past the author et al. [4] reported a new strategy to generate mixed meshes 
containing smooth structured hexahedral and prismatic elements for the resolution of 
boundary layers by a parabolic marching routine based on the face-weighted Laplace 
equation. In the following the method is briefly described. New extensions are pre-
sented concerning the interface to the field triangulation and a preconditioning 
method for the Delaunay field triangulation. These extensions have been crucial in 
order to accelerate and stabilize the process. Finally the method is applied to a high-
lift wing-body configuration including the use within an optimization environment. 

2   Mixed Mesh Generation Methods 

As long as the variations of the field variables to be resolved by the numerical solu-
tion to a set of differential equations are of the same order of magnitude in all direc-
tions the use of hybrid unstructured meshes is appropriate and furthermore avoids the 
manual labor of subdividing the field into blocks usually needed for structured 
meshes. On the other hand an adequate resolution of very thin layers with large nor-
mal gradients requires a layered structure of the mesh. Such meshes may be generated 
by marching away from a fixed mesh face, say the body surface in case of a boundary 
layer, or away from a floating mesh face in case of a wake. When the mesh on the ini-
tial face is unstructured, the resulting three-dimensional mesh extruded from it con-
sists of prisms of triangular cross-sections and is called hybrid. A structured mesh on 
the initial face, of course, leads to a fully structured three-dimensional mesh. 

Structured meshes are easily clustered differently in all grid line directions. Since 
they need far less points for directional clustering than hybrid unstructured meshes, 
they add efficiency to the numerical solution procedure of the differential equations. 
On the other hand their generation suffers from the amount of work to be invested to 
achieve the blocking for complex geometries. To ease the situation we combine both 
kinds of surface meshes starting the three-dimensional marching generation of mixed 
meshes simultaneously from neighboring patches with structured and unstructured 
surface meshes. 
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For the generation of these mixed meshes we integrated surface and volume trian-
gulation methods into the DLR structured mesh generator MegaCads [5]. We used 
available methods, in fact the TRIANGLE code of Shewchuk [6] and the DE-
LAUNDO code of Müller et al. [7] for surface mesh generation in parametric space. 
For Volume triangulation we chose the NETGEN code of Schöberl [8]. 

2.1   Structured Hexahedral Boundary Layer Meshes 

Like in most structured mesh generation methods the 3D structured mesh blocks are 
initially generated by an algebraic interpolation method. Depending on the block 
boundaries we use either tri-linear or transfinite interpolation [9]. Since our objective 
is to generate smooth meshes we additionally apply smoothing with the use of elliptic 
equations. In the work of Niederdrenk [10] beginning with the metric identity in its 
differential conservative form the well known Poisson equations for structured 
meshes were derived including a precise analytical definition of all 9 control func-
tions. The metric identity in its differential form simply states that the sum over the 
face normal vectors in the grid conforming +ξ and -ξ direction together with the sum 
over the remaining face normal vectors in η- and ζ-directions must vanish. A decom-
position using the face normal vectors leads to a system of differential equations that 
can be separated into the face weighted Laplace equation in computational space and 
the so-called control functions 
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with the Si being the face normal vectors 

1 2 1, ,S r r S r r S r rη ζ ζ ξ ξ η= × = × = ×  (2) 

Prescribing the control functions, the metric identity becomes a mesh generating 
equation. This is used either for elliptic smoothing or for an advancing layer method 
through these differential equations parabolized with respect to the marching direction 
and subsequently discretized [11]. By this the generation of the initial algebraic mesh 
is not necessary.  

2.2   Smooth Prismatic Boundary Layer Meshes 

For unstructured meshes there exists no globally underlying computational space. 
Therefore, starting from the same basic principle we begin with the metric identity in 
its discrete form to directly derive from it the set of algebraic equations to be solved 
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numerically. The derivation of the equa-
tions has been shown in a previous paper 
of the author et al. [4]. Proceeding as in 
the structured case we decomposed the 
face normal vectors into the line vector di-
rections and rewrote the metric identity in 
terms of line vectors with coefficients 
consisting of scalar products of face vec-
tors. Compared with the expanded differ-
ential form of the identity for structured 
meshes, which split into the Laplacian 
terms and the control functions, the corre-
sponding decomposition of the discrete 
form of the identity yields nothing similar, 
still leaving the problem to isolate the 
Laplacian smoothing part from the pure 
identity. The problem area is, of course, confined to the unstructured mesh in the body 
conforming surfaces. Decomposing the discrete identity for planar surfaces results in 
the definition of suited averages, such that the discrete Laplace equation is repre-
sented. To verify this we compared them to the discretized form of the Laplace equa-
tion for structured quadrangles and hexagonal cells [12]. So our averaging procedure 
is not proven but only believed to hold for any collection of triangles forming an N-
cornered cell. 

Finally we solve equation (3) for the unknown central point r0 on level m: 
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where ∆rn,m is defined as the midpoint between two adjacent corner points  

( ), 1,, 0,, ,with 1 2 n m n mn m mn m n m rc rcr rm r rm ++∆ = − = . (4) 

and the face and edge vectors according to Fig. 1. 

2.3   Intermediate Layer to Connect to Volume Triangulation 

In order to be able to triangulate the volume the outer hull of the hexahedrons of the 
structured mesh must be converted to a triangulation. First attempts to generate py-
ramidal elements on top of the hexahedrons led to intersections in concave regions 
that were only removed by using very flat pyramidal cells. 

The way chosen now is a division of the outermost hexahedrons into pyramids and 
tetrahedrons using the center point. By this method the interface surface grid formed 
by the outer layer is as smooth as the hexahedral layer itself. Fig. 2 shows the  
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Fig. 1. Discrete triangular prism 
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Fig. 2. Division of outermost structured hexahedrons into pyramids and tetrahedrons to achieve 
a smooth interface surface for tetrahedral mesh generation 

sequence of dividing the outer layer first into pyramids, afterwards into tetrahedrons 
to form a smooth outer hull for the volume triangulation. 

2.4   Preconditioned Delaunay Meshing of Tetrahedrons 

For the meshing of the outer field with tetrahedrons we use the NETGEN code [8], 
which is a constrained Delaunay method with an advancing front for boundary recov-
ery. One major difficulty of using structured hexahedral cells in unstructured meshes 
is the interface to the outer tetrahedral cells, especially if Delaunay triangulation is 
applied. The Delaunay criterion drives the mesh towards isotropic tetrahedrons, and 
by this the height of the triangle interfacing to the hexahedrons is much larger than the 
height of the hexahedrons. This normally results in a jump of volume size and is 
therefore unfavorable for the flow simulation. Another difficulty arises due to the fact 
that although the interface grids at the outer hexahedral layer looks smooth and well 
aligned, it does not fulfill the Delaunay criterion. This usually degrades the perform-
ance of the triangulation algorithm. 

In order to be able to generate a suited tetrahedral mesh we use a geometric pre-
conditioning of the surface mesh for the Delaunay algorithm. We call it precondition-
ing since it is a global transformation of the initial boundary triangulation in order to 
make it more suitable for Delaunay meshing. The volume triangulation is applied on 
the modified point set without major changes. 

A first transformation is a shear transformation, which is important for the applica-
tion to swept high aspect ratio wings of transport aircraft.  

1
1

−=P S P  (5) 
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where P is the set of boundary points and S is the shear transformation for the wing 
sweep. Assuming the spanwise coordinate to be y the shear transformation is given by 

1 sin 0

0 1 0

0 0 1

ϕ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  (6) 

where ϕ  is the wing sweep angle. This transformation shears the surface elements 
and results in an intermediate mesh that is more Delaunay than the original one. 

The second item to deal with is the high aspect ratio of the surface triangles. At this 
time anisotropic Delaunay meshing is not available. We therefore apply an edge-
weighted mean affine invariant transformation. For each surface triangle an affine in-
variant transformation 

1−=i ip A p%  (7) 
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Fig. 3. Meshing box around outboard high-lift wing: top left) original geometry; top right) 
shear transformation applied; bottom) shear and edge-weighted affine invariant transformation 
applied 
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is defined by a matrix A reflecting the anisotropy of the surface element  
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where n is the number of points of the surface element and xc is the center point. In 
fact the affine invariant is the quadratic form of an ellipsoid passing through the 
points of the surface element. By this the matrix reflects the size and stretching of the 
element. We now calculate a mean edge-weighted average of these matrices of all sur-
face elements. 

( )21

1

m

n
i

j c
j

n

x x=

=

=
−

∑
∑

iA A  
(9) 

The advantage of the edge weighting is that the large regular triangles at the outer 
domain boundary don’t mask the high anisotropy of the small surface elements at the 
interface. The final point array used for the Delaunay triangulation is now 

1 1− −=P A S P  (10) 

In Fig. 3 the meshing box around the outboard portion of a transport aircraft high-lift 
wing is shown for all steps of the preconditioning. The points-of-view are identical  
excluding a necessary swapping of the axes due to the affine invariant transformation 
where the sorting of the axes is according to the eigenvalues. 

3   Application for a Generic Transport Aircraft in High-Lift 
Configuration 

For demonstration of the mixed mesh approach using the described parabolic march-
ing algorithms the meshing of a generic transport aircraft wing-body configuration 
with deployed high-lift devices is shown. This type of configuration is often too com-
plicated for structured meshing. Especially the geometric details at the device ends 
and their cut-out of the main wing are very hard to be meshed with the block struc-
tured approach. On the other hand purely hybrid unstructured meshes lead to point 
numbers of 20 million grid points or more. For design applications these grids are 
therefore not suitable.  

With the mesh generation strategy described in this work we are able to generate a 
mesh for a generic transport aircraft in high-lift configuration that contains only about 
2 Mio. grid points. The wakes of all three wing elements are resolved by aligned 
hexahedral elements up to one half flap chord behind the flap trailing edge. Due to the 
parametric grid generation process, the mesh generation is applicable to geometric 
changes within an optimization context. The grid generation process takes about 50 
minutes from scratch. Compared to the time needed to generate a classic hybrid un-
structured mesh of at least 6-8 hours, there remains a significant acceleration. This 
time frame is acceptable for the application within an optimization framework. 
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Fig. 4. View on boundary layer grid of generic transport aircraft in high-lift configuration, wing 
meshed with structured hexahedrons, wing tip and fuselage meshed with prisms 

 

Fig. 5. Zoom on wing boundary layer grid of the generic transport aircraft in high-lift configu-
ration with structured cells are covering boundary layers and wakes of all three wing elements 
and the wing tip resolved by smooth prismatic mesh. 

Fig. 4 shows an overview of the boundary layer grid. Nearly the complete wing is 
meshed with structured type meshes. Prismatic elements are applied around the fuse-
lage, on the wing tip and at the device ends. Additionally the wakes of all 3 wing  
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Fig. 6. Zoom on junction of main wing and outboard flap end of the generic transport aircraft 
showing smooth transition from hexahedral to prismatic elements and the structured wake grids 

 

Fig. 7. Comparison of flow field around high-lift configuration at AoA 10°: left) mixed mesh; 
right) hybrid mesh. Contours are shown for Mach number in field and pressure coefficient on 
surface mesh. Solid line indicates boundary of area resolved with structured elements. 

elements are captured by structured wake grids (Fig. 5). This is very relevant for 
high-lift flows, since the mixing of the shear layers has a big influence on the aerody-
namic performance. Fig. 6 shows a zoom on the device ends of the slat and the flap 
together with the wing cut-out in this area. A smooth transition from the structured 
hexahedral to the prismatic elements is observed. 

For this case a comparison to a hybrid unstructured mesh containing approximately 
the same number of points on the surface is done. Due to the missing resolution of the 
wakes the overall point number of 1.5 Mio. is lower than for the mixed mesh. Fig. 7  
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shows a comparison of a cut through the flow field. The contours in the field are the 
local Mach number while the coloring of the surface mesh is made by the pressure 
coefficient. Especially the wakes of the wing elements are much better resolved with 
the mixed mesh.  

For this configuration an aerodynamic optimization the of the positioning of slats 
and flaps has been performed applying the presented meshing algorithms. Within this 
optimization meshes were generated for 151 different configurations, while only in 13 
cases the grid generation process failed. The overall optimization including mesh 
generation and flow simulation on a 96 CPU parallel PC cluster took about 15 days 
turn-around time.  

4   Conclusion 

An applicable method for generating mixed meshes around simple and medium com-
plex configurations has been shown. Core part of the mesh generation strategy is a 
smooth meshing of the boundary layer region by structured hexahedrons and prisms 
applying smoothing based on solving face-weighted Laplacian equations. Special em-
phasis was put on the interface layer and the generation of tetrahedral elements in the 
outer field. A preconditioning of the point set for triangulation by shear and edge-
weighted average affine invariant transformation has been proposed to stabilize end 
accelerate constrained Delaunay volume triangulation. 

An example of the mesh generation strategy is shown for a generic transport air-
craft in high-lift configuration. A superior grid accuracy compared to standard hybrid 
unstructured hybrid meshes with an order of magnitude less points was shown. The 
improved resolution of wake areas due to structured elements has been demonstrated. 
Finally the mesh generation strategy was successfully applied within an optimization 
environment. 
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Summary. Virtual interactive examination of the quality of car body surfaces is an
important issue in the development process of a car. The method is based on simu-
lating reflection lines using striped environment maps and strong specular highlights.
For this purpose high quality meshes are created from the NURBS surfaces. However,
the meshes have a fixed resolution, hence a closer examination requires a finer tessella-
tion. In this paper we present a method which allows a view-dependent, arbitrary fine
tessellation of trimmed NURBS surfaces at interactive frame rates.

Keywords: realtime tessellation, view-dependent tessellation, quality control.

1 Introduction

An important issue in the development process of a car is the examination of car
bodies by reflection lines and specular highlights. This methods allows detecting
curvature discontinuities within the surfaces. Furthermore, reflection lines also
reveal the character of the car body, no matter whether it is for the overall shape
or details of certain parts. For the sake of a short development cycle, designers
and construction engineers meet frequently to examine the car shape and tune
the character of the car.

In order to avoid expensive prototypes this quality process is done virtually
as soon as possible in the development cycle. For this purpose, high quality
meshes are generated offline from CAD-models and are examined with standard
graphic tools [5]. However, since the meshes have a fixed number of triangles,
the examination process is limited to a certain distance due to mesh resolution.
A closer view would require a finer tessellation. Unfortunately it is not a good
choice to provide meshes with a very fine resolution because the parts of a whole
car body exceed the graphics hardware limit of displaying triangles.

There are a large number of algorithms for generating triangular meshes from
NURBS patches ([1], [2], [11], [15], [16], [17], [18]). They are either optimized for
speed, for triangle count, for best approximation or for surface examination. But
none of them is capable of tessellating several CAD parts in reasonable mesh
quality in realtime due to the expensive trimming of NURBS surfaces.
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Guthe and Balázs [7] present a method which uses the graphics hardware to
evaluate NURBS surfaces. The trimming is done by a binary trimming texture
which is created by also evaluating the NURBS trimming curves on the GPU.
The approximation error is choosen to be below half a pixel of the screen for
each single patch of a model. In [8] the method is extended to be appearance
preserving in order to visualize reflection lines. However these methods are based
on cubic surfaces only. Surfaces of higher degrees are reduced to cubic degree.
If the approximation error of the reduction is too coarse, the surfaces are subdi-
vided until the overall error is below half a pixel. In [12] the authors extend the
methods above to evaluate the original, i.e. non-reduced, surfaces directly within
the fragment program by an GPGPU-approach with several render passes.

The visualization of reflection lines as well as of specular highlights is heavily
based on the surface normal and is very sensitive to even small displacements
of the normal’s direction. Therefore it is very important for examining surfaces
that a vertex and its normal are computed exactly from the original surface and
not from an approximation as it is done in [7] and [8]. All methods above share
the same disadvantage: Since the surfaces are evaluated at the GPU, the special
case of degenerated surface corners cannot be handled properly. An example is
given in Fig. 1. This is a common construction method when several beveled
edges meet at a corner.

Fig. 1. When three beveled edges meet at a corner, the usual construction is a degener-
ated NURBS surface where one row or column of the control points are collapsing to a
single control point. At this point one of the partial derivatives vanishes and hence the
surface normal cannot be computed. In [?] a solution for that special case is proposed.

Contributions

In this paper we present a hybrid method for view-dependent realtime tessel-
lation. The NURBS surfaces and trimming curves are tessellated separately by
the CPU and stored in a dynamically extendable hierarchy. This ensures an
appropriate evaluation of a surface and its normals. The trimming of the sur-
faces is done by the GPU using trimming textures while rendering the hierarchy.
We extend the trimming texture approach of [7] by using 28 bits of an RGBA-
texture. Furthermore, we present an efficient texture atlas for each bit-plane of
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the RGBA-texture to reduce the number of fragment-program changes as much
as possible.

2 Preliminaries

In order to detect surface errors and design issues, the car industry used to have
cube like rooms with many parallel lights rows on the wall and on the ceiling to
detect surface errors and design issues. The reflected light rows on a shiny car
surface are called reflection lines. Since this method requires real hardware, it is
necessary to cut out the current CAD model from a block of solid material. This
is a very expensive and time consuming process. Thus virtual examination at a
workstation is a very attractive alternative. It is even possible to have several
sessions a day, i.e. examining several different designs and comparison between
them. Detected errors may be corrected and re-examined instantly.

The use of reflection lines is described in [14],[9], or [5] and the principle
is sketched in Fig. 2. In this paper we use sphere environment textures with
a pixel-based texture lookup in order to avoid visualization artecfacts due to
texture interpolation (in contrast to the per-vertex-based lookup in [5]).

Fig. 2. The reflected line on a shiny Gn-continuous surface is exactly Gn−1-continuous.
In a) the surfaces have at least a G2-continuous joint and thus the line is G1 as well.
In b) the surfaces have the same tangent plane but not the same curvature at the joint
(G1), hence the reflected line changes direction immediatly. In c) the surfaces only join
at a common boundary (G0) which breaks the reflected line.

2.1 Estimates on NURBS Curves and Surfaces

Since the hierarchy we build later in this paper is extended dynamically, a fast
tessellation of the untrimmed NURBS surfaces and trimming curves is needed.
In [4] the authors present some estimates on how many uniform samples are
necessary to approximate a curve or surface within a given tolerance.

The number of samples needed for trimming curve C(t) is:

T =

⎡⎢⎢⎢(t1 − t0)

√
supt∈[t0,t1] ‖C′′(t)‖

8δ

⎤⎥⎥⎥ + 1. (1)
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where δ is the tolerance given in domain space of the surface S(u, v) the trimming
curve belongs to. The number of samples in both directions needed for a surface
S(u, v) are:

N =

⎡⎢⎢⎢(u1 − u0)(v1 − v0)

√
1
8 (Suu + Suv)

2ε

⎤⎥⎥⎥ + 1 (2)

M =

⎡⎢⎢⎢(u1 − u0)(v1 − v0)

√
1
8 (Svv + Suv)

2ε

⎤⎥⎥⎥ + 1 (3)

with

Suu = sup
(u,v)∈[u0,u1]×[v0,v1]

∥∥∥∥∂2S(u, v)
∂u2

∥∥∥∥ (4)

Suv = sup
(u,v)∈[u0,u1]×[v0,v1]

∥∥∥∥∂2S(u, v)
∂u∂v

∥∥∥∥ (5)

Svv = sup
(u,v)∈[u0,u1]×[v0,v1]

∥∥∥∥∂2S(u, v)
∂v2

∥∥∥∥ , (6)

where ε is the given tolerance in world space.
The maximum deviation of S(u, v) is bound to the absolute value of the partial

derivatives ‖∂S(u,v)
∂u ‖ and ‖∂S(u,v)

∂v ‖. To specify a tolerance ε for a curve in world
space the maximum deviation is scaled with the occupied range of the curve in
the domain of S(u, v):

δu =

⎡⎢⎢⎢ ε

(u1 − u0) sup(u,v)∈[u0,u1]

∥∥∥∂S(u,v)
∂u

∥∥∥
⎤⎥⎥⎥ (7)

δv =

⎡⎢⎢⎢ ε

(v1 − v0) sup(u,v)∈[u0,u1]

∥∥∥∂S(u,v)
∂v

∥∥∥
⎤⎥⎥⎥ (8)

δ = min(δu, δv). (9)

3 Related Work

Guthe [7] introduced a GPU-based realtime tessellation scheme. It is based on
cubic Bézier surfaces which are defined on [0, 1]2. Hence NURBS data are con-
verted to single Bézier patches by knot insertion. In a preprocessing step, a
number of predefined grids with uv-coordinates in the range [0, 1]2 are loaded
on the graphics card as display lists. The trimming curves are preprocessed in
a similar manner. For each frame the following steps have to be done for each
single patch.
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3.1 Adapting Patches to the Camera

For each patch the distance to the camera determines the approximation toler-
ance ε and the number of needed samples is determined according to equations
2 and 3. If a single patch is of higher degree then it is geometrically continuously
reduced to cubic degree. Since degree reduction causes geometric distortion, the
patch may be subdivided into several sub-patches until the combined approxima-
tion error of degree reduction and sampling is below the approximation tolerance
for each sub-patch (Fig. 3).

Fig. 3. If the combined approximation error due to degree reduction and sampling
exceeds given tolerance, the single patch is subdivided in advance. The resulting sub-
patches are then processed like single patches.

Finally, the size of the trimming texture has to be determined. The boundary
for the maximum deviation from Section 2.1 is scaled to fit into one texel unit
in the domain of S(u, v), i.e the texture size in u- and v-direction is:

Tu =

⌈
u1 − u0

ε
sup

(u,v)∈[u0,u1]

∥∥∥∥∂S(u, v)
∂u

∥∥∥∥
⌉

(10)

Tv =

⌈
v1 − v0

ε
sup

(u,v)∈[v0,v1]

∥∥∥∥∂S(u, v)
∂v

∥∥∥∥
⌉
. (11)

Since the requested texture size may exceed the maximum texture size of the
graphics hardware, further subdivision of the Bézier patch may be necessary.

Degree reduction and subdivision of the Bézier patches have to be done in each
frame, and may be cached for repetitive viewing of the same region. However
the cache is invalidated if a face needs to be further subdivided in the case of a
closer view.

3.2 Creating the Trimming Texture

The main idea is to render closed trimming polygons as triangle fans in XOR-
mode (Fig. 4). For each curve of a trimming loop the number of samples is
determined according to Equation 9. Then a vertex shader is loaded which eval-
uates a cubic Bézier curve using one ordinate of the vertex position.

Since a single triangle fan must be used for the whole closed polygon, for each
polygon vertex the four control points of its Bézier curve must be provided as
vertex attributes. This dramatically increases the amount of transferred data to
the GPU.
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Fig. 4. A trimming polygon rendered as triangle fan in XOR-mode. In the second
picture the last drawn triangle is partially overwritten by the current triangle (yellow).
The XOR-mode causes the pixels to be unset.

3.3 Applying the Trimming Texture

After the trimming texture has been created, the vertex program is changed to
evaluate cubic Bézier patches. The control points of the patch are set as uniform
variables of the vertex program. Then the number of samples for a patch is
determined and the display list of an appropriate predefined grid is rendered.

Within the fragment program a zero texel value causes a fragment-kill oper-
ation, i.e. the current fragment is not processed anymore and hence no pixel in
the framebuffer is overwritten.

3.4 Thick Border Lines

Since this method does not use any topology information, neighbored surfaces
are tessellated independently. This results in so-called T-vertices which cause
rendering artefacts. At those boundaries, some pixel are not set by either surface
and the background shines through within the whole surface.

In order to avoid this the authors propose drawing the boundary polygons with
a line thickness of two and finally draw the trimmed nodes with a polygonoffset
(Fig. 5).

Fig. 5. Due to rounding errors while rendering boundary triangles the background may
shine through the gaps between patches. Drawing the boundary as thick lines avoids
this. The triangles are rendered with polygonoffset the border lines appear behind the
triangles which just fills the gaps.
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4 Hybrid Tessellation

For surface interrogation it is important, that a displayed vertex and its normal
are exactly evaluated. Due to the approximative degree reduction the above
method is not useful for examining surfaces.

In this paper we build a hierarchy where each node has its pretessellated
untrimmed mesh and the corresponding trimming polygons. While rendering the
active nodes a trimming texture is created similar to Section 3.2 and is applied
to the 3D mesh. Since changing vertex/fragment programs causes a pipeline
stall, we present two efficient methods for processing several patches with one
RGBA-texture.

4.1 Domain Hierarchy

In contrast to [7] the NURBS data remains as is, i.e. no conversion to Bézier rep-
resentation is done. Furthermore subdivision is done by subdividing the domain
which is far more memory efficient than subdividing the surface geometrically.
E.g. a bi-quintic Bézier patch has 36 control points in R

3. Subdividing the ge-
ometry at u = 0.5 results in 72 control points. The domain is defined by two
coordinates in R

2, no matter what degree the surface has. Thus subdivision of
the domain always adds only two more coordinates of R

2 (Fig. 6).

Fig. 6. Regular subdivision of a surface (a) produces two new separate surfaces within
the hierarchy. Each of them has exactly as much control points as the original sur-
face (b). By subdividing the domain only the boundaries of the new sub-domains has
to be stored within the hierarchy while the surface remains as it is (c).

Motivation

The hierarchy is organized so that each level belongs to a certain tolerance for
approximating surfaces. In a preprocessing step, the hierarchy is built up to a
fixed user-specified level as a cache. The idea is if the whole data is viewed at
far distance, only a coarse level is needed. Thus moving the camera around the
car always use cached nodes. A close examination of a part of the car would cull
many surfaces out of the viewing frustum which will not processed. So the CPU
has enough time to extend the hierarchy dynamically. In practice a tolerance of
0.5 units for the fixed levels is reasonable.
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Building the Fixed Hierarchy

Building the hierarchy starts with one node for each surface at level 0. Each node
is recursively tested whether the trimming texture is suitable for that tolerance.
If not, the domain is split in u- or in v-direction at its midpoint (Fig. 7). Which
direction is finally split is determined by testing the remaining half domains. The
split which produces more positive tested half domains is used. The resulting two
nodes replace the input node in the same level. For the next level all nodes of the
parent level are copied and processed as described in the previous paragraph.

Fig. 7. The hierarchy is organized in a fixed number of levels of tolerances and may be
dynamically extended. If the computed trimming texture size exceeds the size of the
real trimming texture the domains are split accordingly and inserted into the hierarchy
at the same level. A Node-Front N̂ marks the valid nodes needed to render the object
at a projected approximation error of less than half a pixel.

Tessellating the Fixed Hierarchy

After all fixed levels have been built, each node in the hierarchy is tessellated.
For fast tessellation the formulas of Section 2.1 are used. The mesh vertices
and normals of the untrimmed surface are stored as points in R

3. The corre-
sponding uv-texture coordinates are mapped to texture size ([u0, u1]× [v0, v1] →
[0,maxTexSize − 1]2) and stored as 16-bit unsigned integers. According to the
Nvidia Vertex-Buffer-Objects (VBO) whitepaper, using 16-bit integers save bus
bandwidth between CPU and GPU.

Finally, the trimming loops are tessellated as well and mapped as explained
above. The trimming polygons are then clipped against the trimming texture
boundaries after a method from [6]. This algorithm creates separate disjoint
closed sub-polygons while the classic clipping method [19] is not able to properly
separate the resulting sub-polygons of a concave trimming polygon (Fig. 8).
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Fig. 8. Clipping the concave trimming polygon in a) against the rectangle with the
classic clipping method [19] produces overlapping line segments in b). The algorithm
of Glassner [6] is able to create separate trimming sub-polygons (c).

Fig. 9. Clipping of trimming polygons against the area of the trimming texture allows
classification of nodes. a) The node is completely visible - no trimming texture is
needed. b) The surface mesh need to be trimmed. c,d) The node is located completely
in a trimmed hole or outside of the first trimming polygon - it is not rendered at all.

The resulting inner polygons are then tested for lying exactly on the boundary
of the trimming texture. If there is exactly one polygon on the boundary and no
other polygon intersects the trimming texture, then this part of the surface is
marked as completely visible and thus the node can be drawn without trimming
texture. In the case of two polygons lying exactly on the boundary, this part
of the surface lies completely within a trimmed hole. The node is marked as
invisible and should not be rendered at all. This is also the case if none of the
polygons intersect the trimming texture (Fig. 9). In any other cases the polygons
are stored as 16-bit unsigned short integers as well. For drawing thick border
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lines, the intersecting segments are lifted into 3D and both points and normals
in R

3 are stored.

4.2 Adaptive Refinement

Through the hierarchy runs a so-called Node-Front N̂ similar to the Vertex-Front
in [10]. This data structure assumes the the camera view has not changed dra-
matically with respect to the previous frame. So the Node-Front can be adapted
very quickly from frame to frame by a simple test of each node in the front.

Adapting Node-Front

With this hierarchy the test is pretty simple. If the node is outside of the viewing
frustum, the front is pushed upwards. If it is visible the distance d of the current
node Ni ∈ F̂ to the camera position is used determine the projected tolerance
ε of Ni. If εi is smaller or equal than εlevel of the current level the front must
be pushed down one level and the test starts again. Otherwise the parent node
and the sister nodes have to be tested for pushing the front upwards.

Extending Hierarchy

If the front has reached the leaves of the tree and more refinements are needed, the
hierarchy is dynamically extended by the same procedure used while building the
fixed hierarchy. When the Node-Front is pushed upwards again and the dynami-
cally created nodes are added to the Obsolete-Node-list. The nodes in this list are
removed from the hierarchy when they have not been visited by a user-specified
time. This lazy clean-up of the hierarchy allows a re-examination of a specific part
within a short time avoiding continuously creating the same nodes.

4.3 RGBA-Trimming-Textures

Each node of the hierarchy represents a specific detail from a single trimmed
surface. The trimming is done using binary trimming textures (see Section 3.2).
Since texel values are fixed-point values in the range [0, 1] the method uses a
complete channel of eight bit to test a fragment within the fragment shader, i.e.
seven bits of a channel are wasted.

Since creating the trimming textures always means changing shader programs
and thus causing pipeline stalls, a more efficient use of trimming textures is
required. In order to use all bits of a channel, the trimming polygons of a bunch
of nodes within N̂ are rendered into one RGBA-texture. Each polygon is drawn
in XOR-mode with a single 32-bit RGBA-color value with just one bit set. A
parameter given to the fragment shader states which bit of the texel has to be
used for the fragment-kill-test.

Since comparing values of a texture in the fragment shader treats texels as fixed-
point float values, it is not possible to use logical bit-operations for the fragment-
kill-test. We present a method which is capable of testing seven bits of a channel
by a very small set of fixed-point operations, i.e. 28 bits of a RGBA-texture can
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be used for trimming at almost the same speed. Using the remaining four sign bits
would demand a more complex fragment shader.

The test of a single bit in a channel c exploits the bit pattern of 8-bit fixed-
point values shown in Tab. 1. To test the channels k’th bit of the current texel
value T , the dot product DTt of T and the shader parameter t, which is a
RGBA-color consisting of just bit k of channel c, are computed.

Table 1. Table of color values used for setting a single bit of a color channel in the
trimming texture. The last column contains the test values used for testing that bit in
the fragment shader.

Bit k Color 2k Fixpoint Representation Test Value 26−k

6 010000002
1
21 = 1

2 = 0.5 1

5 001000002
1
22 = 1

4 = 0.25 2

4 000100002
1
23 = 1

8 = 0.125 4

3 000010002
1
24 = 1

16 = 0.0625 8

2 000001002
1
25 = 1

32 = 0.03125 16

1 000000102
1
26 = 1

64 = 0.015625 32

0 000000012
1
27 = 1

128 = 0.0078125 64

If all higher bits of c and bit k are not set then c < 1
27−k and hence the dot

product with the test vector component 26−k is below 0.5:

c · 26−k <
1

27−k
· 26−k =

1
2

(12)

If additionally bit k is set, then 1
27−k ≤ c < 1

27−(k+1) and the dot product is above
or equal to 0.5 but below 1.0:

1
2

=
1

27−k
· 26−k ≤ c · 26−k <

1
27−(k+1)

· 26−k = 1 (13)

Furthermore, if any bit above k is set then c ≥ 1
27−(k+1) and the resulting dot

product is greater or equal than 1.0:

1 =
1

27−(k+1)
· 26−k ≤ c · 26−k (14)

The last equation indicates that the bits above k only affect the integer part of
the dot product. Hence testing bit k is done by comparing only the fractional
part. The fragment is discarded if the fractional part is below 0.5. A simple
fragment program which implements this algorithm is shown in Fig. 10.

4.4 Efficient Trimming Texture Atlas

With RGBA-Trimming-Textures 28 nodes of N̂ can be processed at once. How-
ever each node occupies a whole bit-plane of the trimming texture, no matter
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uniform sampler2D trimTexture
uniform vec4 testValue

void main() {
// Get texel according to uv-coordinates
vec4 tex = texture2D(trimTexture, vec2(gl TexCoord[0]));
// Compute dot product of texel and testValue
// Kill fragment if fractional part of the dot product is < 0.5
if (fract(dot(tex, testValue)) < 0.5)
discard;

// Set fragment’s color
gl FragColor = gl Color;

}

Fig. 10. A simple fragment shader for using trimming textures

Fig. 11. One bit-plane of the texture atlas consists of 64 sub-textures located in
Floor 0. Four unused sub-textures of a floor may be clustered to form a bigger sub-
texture of the next floor. The test for unoccupied sub-textures is done by masking the
corresponding bits with an bitwise logical AND-Operation.

what size is needed by the trimming polygon. Texture atlases may be used to
increase the number of nodes per trimming texture. They are usually created
offline and thus the time for organizing textures of different size within the atlas
is insignificant. However, a fast administration of free/occupied texture slots is
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inevitable for this application since the texture atlas has to be filled several times
per frame in the case of large models.

The texture atlas presented here consists of 64 quadratic equally sized sub-
textures per bit-plane, i.e. up to 2048 nodes may processed at once for drawing
the trimming texture. In order to incorporate sub-textures of different sizes each
bit-plane is organized in four floors. The above 64 slots are located in floor 0.
Four of them can be clustered to form a sub-texture of doubled size and are
located in floor 1 (Fig. 11) until floor 3 is reached.

It is important that a slot in the upper floors may be only used if all of
the corresponding slots in floor 0 is available. This is ensured by using a 64-bit
integer value - one bit for each slot in floor 0. Requesting a slot of an upper
floor simply consists of a bitwise logical AND-operation of 4, 16 or 64 bits. After
a successful request the corresponding bits of the integer are set by an bitwise
logical OR-operation.

4.5 Rendering

After the Node-Front N̂ has been adapted, it is traversed node by node. Those
nodes marked as invisible are immediately skipped. Nodes whose projected
bounding box occupies less than a half pixel are skipped as well. Nodes marked
as completely visible are drawn in a separate traversal at the end. For each
trimmed node a free slot within the texture atlas is requested, which determines
the position within the texture and the drawing color of the trimming polygon. If
there is no slot available, the traversal stops and the trimming texture is created
by drawing the nodes’ trimming polygons as triangle fans in XOR-mode using
streaming Vertex Buffer Objects (VBOs) and very simple and fast shaders. The
trimming texture is used as render target.

After creation of the trimming texture, the render target is set back to the
framebuffer and the regular shaders are set. The fragment shader must include
the trimming texture test as shown in Fig. 10. Then the surface mesh of the
trimmed nodes are drawn as streaming VBOs as well and the corresponding
test-color for trimming is set according to Tab. 1. In order to use Thick-Border-
Lines from 3.4 the triangles are drawn with polygon offset. After this, the texture
atlas is reset and the traversal continues.

Finally N̂ is traversed again. Now the surface meshes of all nodes marked
as completely visible are drawn together with the 3D trimming polygons of the
trimmed nodes as Thick-Border-Lines.

5 Results

The method was implemented and tested on a regular PC with a Intel Core2 Duo
processor 2.6 GHz and a Nvidia Quadro FX3500 graphics card. The program
uses only one of the two CPUs.

Table 2 shows the average frames per second and some statistics for the
node hierarchy. Since we are using streaming data instead of display lists, the
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Table 2. This table shows some statistics about three single models and an assembly
of a car body at a total view rotating around their centers. The first two columns show
the number of trimmed surfaces each model consists of and the average frame rate.
The other columns show average values per frame of the number of drawn nodes, the
number of drawn triangles in 2D plus 3D, the number of line segments for thick borders
and finally the number of draw texels used while filling the trimming texture. The size
of the render window is 1550 × 888 pixels.

# NURBS avg. fps # nodes # tris (2D+3D) # 3D lines # Mio. Texels

Hood 251 73 320 10564+3841 17480 61

Frame 1730 21 1237 36164+8209 56138 132

Mirror 3970 6 3900 108893+26400 170143 247

Car Body 19781 6 7500 198191+74333 348925 230

Fig. 12. The hood of a car is rendered so that the approximation error is less than
half a pixel on screen. On the left side the boundaries of the single face are shown
as well. In the middle the nodes are drawn color-coded. The hue-value corresponds
to the hierarchy-level of the node. Dark shaded sub-patches indicate that this node is
completely visible, i.e. no trimming textures is used. On the right side a close-up is
shown with nodes closer to the viewer using finer approximation (violett) than nodes
at the horizon (turquois). Data is courtesy of BMW AG.

frame rates may be higher when rendering single parts even with high resolu-
tion meshes. However, our method allows to render a complete car body at an
arbitrary resolution at considerable frame rates.

Basically the frame rate of this method is limited by two factors.

• Number of hierarchy nodes to render: For models consisting of thousands of
small faces, e.g. mechanical parts modeled by Constructed Solid Modeling,
the overhead for trimming each single face is tremendous. The reason is the
large number of batches sent to the graphics card (trimming polygon, trian-
gular mesh and Thick-Border-Lines) for each trimmed node in the hierarchy.

• GPU fill rate while creating the trimming texture: The texture size is usually
40962 or 20482 texels. A node which occupies almost the full size of a bit-plane
will set lots of texels. If many of such nodes are rendered, the fillrate-limit of
the GPU is reached pretty fast and slows down rendering.

Since the hierarchy is extended dynamically a fast evaluation of NURBS sur-
faces is inevitable. In our implementation we are able to evaluate more than 5
Mio. arbitrary points and normals of a bi-cubic NURBS surface per second. For
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Fig. 13. Here the application of reflection lines on a whole car body is shown. Data is
courtesy of BMW AG.

bi-quintic surfaces this value reduces to about 1.8 Mio samples. A fast imple-
mentation of the polygon clipping algorithm is needed as well. Using a deep fixed
hierarchy revealed that extending the hierarchy is neclectable compared to the
other limiting factors mentioned above.

This method also allows a mixture between static and dynamic rendering.
Examination of a whole car can be done by rendering only those parts dynami-
cally which are of special interest. All others are rendered statically. This gives
an overall impression of the whole car while important features can be viewed
in detail.

6 Future Work

This paper demonstrates a powerful method for view-dependent realtime tessel-
lation of large NURBS models. Yet there is still room for improvements. Avoid-
ing the use of Thick-Border-Lines would reduce the number of batches for GPU.
This can be achieved by a combination of two methods

• Dilatation of the trimming polygons of one texel while filling the trimming
texture causes a small overlap in 3D of two neighbored trimmed regions
closing the small gaps.

• Dilatation does not work on trimming polygon segments lying on the domain
boundary. Fractional tessellation [13] of the untrimmed surface ensures a tight
tessellation between neighbored regions at the domain boundaries.

Another improvement concerns the quality of the reflection line visualization.
If the difference of approximation errors between hierarchy levels is too large,
popping artefacts may occur. This is especially noticable when the viewed nodes
change from a coarse mesh, e.g. 4mm, to the next level, e.g. 2mm. Due to the
different approxmation the displayed normals may change abruptly. Since reflec-
tion lines are very sensitive to normals this causes a popping artefact on screen.
This can be solved by either choosing smaller appromation differences at coarse
levels which increases the depth of the hierarchy or by introducing geo-morphing
between two levels.
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Summary. Hand-held laser scanners are used massively in industry for reverse engi-
neering and quality measurements. In this process, it is difficult for the human operator
to scan the target object completely and uniformly. Therefore, an interactive triangu-
lation of the scanned points can assist the operator in this task.

Our method computes a triangulation of the point stream generated by the laser
scanner online, i.e., the data points are added to the triangulation as they are received
from the scanner. Multiple scanned areas and areas with a higher point density result
in a finer mesh and a higher accuracy. On the other hand, the vertex density adapts to
the estimated surface curvature. To assist the human operator the resulting triangula-
tion is rendered with a visualization of its faithfulness. Additionally, our triangulation
method allows for a level-of-detail representation to reduce the mesh complexity for
fast rendering on low-cost graphics hardware.

1 Introduction

In industry, the scanning of surfaces of 3d objects is used for measurement and
analysis of manufactured objects and for reverse engineering. Most scanning de-
vices use a laser to sample points on the surface. Some scanners move the object
while others move the laser device. While some scanning devices measure the
sample points in a regular pattern, hand-held laser scanners have a movable
scanning device that is moved along the surface by a human operator. These
scanning devices generate a vast amount of data in very short time with very
high precision. To process and triangulate this data the used method must pre-
serve the precision while reducing the data to an adequate level, see Figures 1
and 2. Thus, it is necessary to allow for heterogeneous triangulations and point
densities, especially when areas are scanned multiple times. This is particularly
important for hand-held devices, where the operator most likely will scan the
object from different directions and with different speeds. This generates discon-
nected triangulation fragments with highly different point densities.

Since the local point density can become arbitrarily high by multiple scans,
the feature size that can be reconstructed is theoretically arbitrary small. Of
course, the measuring accuracy/error sets a lower bound for the feature size.

For these hand-held laser scanners, the operator has to cover the complete
surface of the object. Because the scanning may take a long time, it is difficult
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Fig. 1. A piggy bank. Original object (left), wire-frame (center), and smooth shaded
triangulation with uncertainty visualization (right).

(a) Original object. (b) Raw points. (c) Vertices and normals.

Fig. 2. Different levels of data reduction shown with a little bronze bird

for the operator to keep track of the already scanned area. Furthermore, there is
no feedback to tell the operator to re-scan a region to increase the point density
to improve the quality of the reconstructed surface. Therefore, a full-automatic
real time triangulation and visualization of the scanned points is crucial to assist
the operator to improve the scans in less time. Thus, the crucial constraints for
our triangulation task are:

A. Handling of large point sets,
B. handling of heterogeneous point densities of incoherently scanned regions,
C. handling of high precision point data with predefined measurement errors,
D. handling of point streams of arbitrary order, i.e., online triangulation,
E. triangulating full-automatically,
F. triangulating in real-time, and
G. assisting the human operator during the scanning process.

In the rest of the paper we first discuss related work in Section 2 and describe
the principle of our method in Section 3. Subsequently we discuss various aspects
of our method in detail, i.e., in Sections 4–6 the neighborhood and normal cal-
culations and local triangulation, in Section 7 our octree-based data structure,
and in Section 8 local improvements of the approximation quality. In Section 9
we present a method to assist the human operator during the scanning process
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and in Section 10 the integrated level-of-detail representation. Finally we show
results of our method in Section 11 and close with an outlook on our future
research plans in Section 12.

2 Related Work

To contrast our approach to other methods for surface reconstruction from un-
organized point clouds, we briefly describe alternative methods and discuss their
pros and cons with respect to the constraints A.–G. given above.

One of the first methods in this field was proposed in [14]. Here, for every point
a surface normal is estimated from its k nearest neighbors and its orientation is
propagated from the orientation of one particular normal to all other normals
using a global minimal spanning tree of the points. This allows to estimate
tangent planes defining an estimated signed distance function to the surface. Its
zero-set is used to compute a triangulation of the surface using marching cubes.
This method can deal with surfaces with boundaries and holes, and no additional
information (such as surface normals) is necessary. On the other hand, it is not
capable of dealing with incremental insertion of data points, since the orientation
propagation is global, and the density of the points on the surface is pre-defined,
otherwise spurious holes are introduced. The minimum feature size that can be
reconstructed is fixed a priori by the edge length of the marching cubes algorithm
and increasing the density of points does not reveal more details. Therefore, at
least constraints B. and D. are not satisfied.

Alpha shapes were defined in [9,10]. For a given real number α > 0, the alpha
shape Sα of a point set P is the set of all k-simplices T ⊂ P (k < d) with vertices
lying on a sphere with radius α that does not contain any other point of P . The
alpha shape can efficiently be determined from the Delaunay triangulation where
α controls how many “details” of the point cloud are “cut” out of the convex hull
of P . If α is too large, details remain hidden under larger faces, if it is too small,
the object may be cut into disconnected pieces. Therefore, the choice of α is
crucial for the optimal reconstruction of a surface from a point cloud. If the
variation of the point density is too high, there may not even exist a suitable α
value, violating constraint B.

For the so-called weighted alpha shapes of [1] every point of P gets an associ-
ated weight. This permits using different values of α for different regions of P . The
weights have to be tuned to the point density very accurately to achieve a good
reconstruction of the underlying surface, making it difficult to achieve B. Another
extension was proposed in [20]. The sphere with radius α is deformed anisotrop-
ically into an ellipsoid, achieving a more accurate separation of surfaces close to
each other. But their approach relies on user input, violating constraint E.

All methods based on alpha shapes can be used to reconstruct surfaces with
borders and holes, an no additional information per vertex other than its posi-
tion is necessary. But, the correct choice of α or the point weights, respectively,
is crucial for the quality of the final triangulation, which is in contrast to con-
straint C. Furthermore, the computed triangulation is not guaranteed to be a
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2-manifold with border. It can contain edges with more than two adjacent faces,
or isolated edges and vertices. Therefore, a postprocessing clean-up step is nec-
essary, violating also constraint F.

The so-called power crust of [4] is based on an approximation of the medial
axis transform of the point set. It is computed from the Voronoi diagram and the
poles of the input points. From this, it calculates in an inverse transformation the
original surface using the power diagram of the poles and taking the simplices
dividing the interior and exterior cells of the power diagram from each other
as triangulation for the surface. The power crust approach produces connected
surfaces possibly with intentional holes. So, it is not suitable for online trian-
gulations (constraint D.) where the triangulation may consist of disconnected
fragments (constraint B.).

The eigencrust method proposed in [16] is specialized to produce high quality
surface reconstructions on noisy point clouds. It labels all tetrahedra in the 3d
Delaunay triangulation of the sample points as either being inside or outside the
surface based on a global optimization. The triangulation of the reconstructed
surface is the set of faces that are adjacent to one inside and one outside tetra-
hedron. Because of the global optimization step, the results are of high quality
even with the presence of noise and outliers. The final surface is always a 2-
manifold without border. Therefore, the eigencrust method cannot be used with
constraint D.

The geometric convection approach for surface reconstruction described in [6]
starts with a Delaunay triangulation of the point set, and shrinks the bound-
ary surface by removing tetrahedra containing a boundary triangle that does
not fulfill the oriented Gabriel property, i.e., the half-sphere centered at the
triangle’s circumcenter and oriented to the inside contains point of the point
set. This procedure is repeated until all boundary triangles fulfill the oriented
Gabriel property. In some cases, cavities are not opened by this algorithm, so
another property has to be defined to remove the involved tetrahedra. The ap-
proach requires the Delaunay triangulation of the complete point set, therefore
it contradicts constraint D.

An extension of [6] for streams of point sets is proposed in [3]. The point set is
divided into slices, and only a limited number of slices is kept in memory. A slice
that cannot have impact on the current slice can be removed from memory, storing
the triangles found for that slice. For the division into slices, all points have to be
known in advance, because they have to be ordered according to one of the spatial
coordinates. Therefore, this method is not suitable for constraint D.

A method suitable not only for surface reconstruction but also for re-meshing
of an existing mesh is presented in [18]. Using an advancing front approach,
triangles are constructed that fulfill two user-defined constraints: the maximum
edge length with respect to the curvature, and ratio bounds of adjacent edges.
For surface reconstruction, a projection operator P and a guidance field g have
to be defined, contradicting constraints B., D., and F.

A common problem of the methods [10,1,20,4,16,6,3] is their computational
complexity, which is too high for real-time applications (constraint F.). Another
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disadvantage of these methods is the fact that the sample points or the same
number of points are used to create the surface mesh. Thus, the complexity of
the meshes increases rapidly while scanning, and the measurement errors are
not corrected. Furthermore, if a region is scanned multiple times, the additional
vertices decrease the area of the mesh faces, but the noise remains constant,
leading to a bumpier surface after every scan pass. These aspects are in contrast
to constraints A. and C.

In [5] an interactive online triangulation method is proposed. The sampled
points are processed in a pipeline. In the first stage the number of points is
reduced by dropping every point that is closer than a specified radius from an
already existing point. In the second stage, the normal at the point is estimated
using the points in a local neighborhood. After another reduction stage with
a larger radius, the points with a stable normal are inserted into the surface
mesh which is re-triangulated locally with a shortest edge criterion to decide
which edges to keep. This approach works well and is fast, but has some major
drawbacks:

• A large fraction of the input is ignored and not used to reduce the noise of
the input data, violating C.

• The size of the smallest features that can be modeled is fix, violating C.
• The size of the mesh triangles is not adapted to the density of sample points

or the curvature of the surface, violating B. and E.

The method proposed in this paper uses some of the ideas of the approach
of [5], but satisfies all constraints A.-G.

3 Online Triangulation

Our method is based on a laser scanner like the FARO Laser ScanArm [11] as
described in Section 11. Scanners of this type generate a stream D = (d1, d2, . . . )
of data points di. Each data point is a pair di = (pi, hi) ∈ R

3×R
3 of a raw point

pi, that is measured by the scanner on the scanned object, and the scan position
hi of the laser scanner at the moment of scanning pi.

A laser scanner of this kind scans an object line by line measuring a certain
number of data points per scan line. The scanner we used scans up to 30 lines
per second measuring up to 640 data points per scan line, see e.g. Figure 2(b).
These scan lines are arranged in scan passes that the human operator triggers
by pressing a button. The pauses between two scan passes are usually used by
the operator to reposition the scanner for a different scan direction.

In order to triangulate this huge data stream online, the data points need to
be reduced. For this the data points are classified by their distance and added
to so-called neighborhood balls bj that represent a subset of data points within
a certain radius and similar scan positions. The radius depends on the point
density and estimated curvature. Subsequently only the averages of data points
of the neighborhood balls are used as vertex positions in the triangulation T
approximating {p1, p2, . . . }. So, the overall process is described schematically as
follows (for the used data structure see Section 7)
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Online-Triangulation(d1, d2, . . . )
Input: Data point stream D = (d1, d2, . . . );
Output: Triangulation T approximating {p1, p2, . . . }.
1: while (D not terminated) do {
2: Add-To-Neighborhood-Balls(di); \\ see Section 4
3: Update normals of affected neighborhood balls; \\ see Section 5
4: Update local approximation; \\ see Section 8
5: Triangulate area of affected neighborhood balls; \\ see Section 6
6: Render triangulation with uncertainty visualization; \\ see Section 9
7: }

4 Neighborhood Balls

A bounding cube of edge length R enclosing the maximal scanning range is

O = [xmin, xmin + R]× [ymin, ymin + R]× [zmin, zmin + R],

i.e., pi ∈ O for all i. Furthermore, a ball with center c ∈ R
3 and radius r ∈ R, r ≥

0, is for the Euclidian norm ‖ · ‖ defined as the set

β(c, r) = {x ∈ R
3 : ‖x− c‖ ≤ r}.

As in [5] we use neighborhood balls bj = (cj , rj , Dj) to represent a set of nj

data points Dj = {dj,1, . . . , dj,nj} ⊂ D contained in the ball βj = β(cj , rj).
Every neighborhood ball corresponds to a local estimate Nj for the oriented
surface normal, which might be undefined (cf. Section 5), and a vertex vj of T .
Thus, neighborhood balls can intersect and serve three purposes:

• Collecting nj data points to reduce the number of visualized data points.
• Estimating a local oriented surface normal.
• Averaging its data points gives the position of a vertex of the triangulation.

The minimal ball radius Rmin = 0.75 mm prevents ball sizes below scanner ac-
curacy. A neighborhood ball may contain up to nsplit = 40 data points. Later this
value is depending on curvature, see Section 8.2. The set of all neighborhood balls
bj is denoted by B. It is initialized with the first data point B = {(p1, R, {d1})}.
Then new neighborhood balls are generated by adding one data point after the
other with Add-To-Neighborhood-Balls(di), using the following steps:

1. To add data point di = (pi, hi), first all k neighborhood balls bj = (cj , rj , Dj)
are determined that contain pi ∈ βj with normals Nj aligned to the scanning
direction, i.e.

NT
j · (hi − pi) ≥ 0 (if Nj is defined). (1)

a) If k = 1, di is added to Dj.
b) If k > 1, di is added to Dj of the neighborhood ball bj with largest radius

and smallest distance ‖cj − pi‖.
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c) If k = 0, a new neighborhood ball b = (p, r, {d}) is generated, with
radius r = 2−µR where µ is the smallest integer such that β(p, r) does
not contain the center of any other bj. The new ball b is added to B.

2. If in cases a) and b) nj equals nsplit after di is added and r > Rmin, the
neighborhood ball bj is removed from B and all data points in Dj are added
using Step 1. If in this process a data point dl ∈ Dj is not contained in
any other neighborhood ball of B \ {bj}, a new ball b = (pl, rj/2, {dl}) is
generated and added to B.

Remark 1. This definition of neighborhood balls has two advantages over the
method of [5]: First all data points are collected in neighborhood balls and not
only the first one to support C. (see Sections 5 and 8.1), and second the radii
of the balls can be adapted to the density of the data points and the estimated
curvature of the surface to support B. and E. (see Section 8.2).

For later triangulation we use the average of a neighborhood ball bj

bj =
1
nj

nj∑
l=1

pj,l,

as position of vertex vj representing bj in the triangulation, see Figure 2(c).

5 Normal Estimation

For every neighborhood ball bj an estimated surface normal Nj is calculated.
First all nl data points dl contained in β(bj , 2rj)  pl are determined. This
provides a more stable normal estimation than using only the data points in
Dj . These data points are used for a principal component analysis as in [5, 15].
Computing the eigenvalues 0 ≤ e1 ≤ e2 ≤ e3 of the 3× 3 covariance matrix

C =
∑

l

(pl − bj)(pl − bj)T

using [19], yields for Nj the direction of the eigenvector ve1 of C corresponding
to the smallest eigenvalue e1

Nj = ve1/‖ve1‖.

To get a stable normal estimate it is necessary that e2 ≥ 2e1. Otherwise bj does
not have a normal estimate and all subsequent computations requiring a Nj are
rejected. Thus, highly curved regions with too low point density are either not
triangulated or marked as regions that need a further scan pass, see Section 9.
This ensures a locally rather planar point distribution. To get the orientation of
Nj , the average scan direction of all determined dl

sj =
1
nl

∑
l

(hl − pl).
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is used. The normal orientation is correct if NT
j ·sj ≥ 0. Otherwise the orientation

is inverted. Finally, all data points of Dj that do not satisfy (1) are removed from
Dj and re-inserted using Add-To-Neighborhood-Balls. Figure 2(c) shows
the estimated normal of each neighborhood ball.

6 Local Triangulation

Because every neighborhood ball corresponds to one vertex in the triangulation,
the latter is updated in five steps if a neighborhood ball is added or removed
from B:

1. Collect potential neighbor vertices in a set Vj . (see Section 6.1)
2. Project Vj onto the estimated tangent plane. (see Section 6.2)
3. Adapt the border of Vj . (see Section 6.3)
4. Determine the triangulation Tj of Vj . (see Section 6.4)
5. Insert Tj into the triangulation T . (see Section 6.5)

6.1 Collecting Potential Neighbor Vertices

Every neighborhood ball bj corresponds to a vertex vj in T with position bj .
Thus, if bj is added or removed from B, the corresponding vertex vj is added
or removed from T . In both cases the local neighborhood of vj needs to be
re-triangulated. To determine the geometric neighbors of vj we define a ball

ηj(r) = {x ∈ R
3 : ‖(x− bj) + ((x− bj)TNj)(fη − 1)Nj‖ ≤ r}.

of radius r around bj flattened along the normal Nj by fη to provide a better
separation of close parallel surfaces sheets. Then, the geometric neighbors are
all bl with bl ∈ ηj(5rj) for fη = 3 and Nl · Nj ≥ 0.5. This yields a set Vj =
{vj1 , . . . , vjm} ⊂ V ∪ {vj} of vertices that will be re-meshed.

6.2 Projection onto the Estimated Tangent Plane

Because the triangulation of the area around bj is computed in the plane per-
pendicular to Nj all vertices vji ∈ Vj are projected along Nj onto this plane,
i.e. bji is projected to tji . Then, because of the one-to-one correspondence of vji

to tji , triangulating the tji is equivalent to triangulating the vji . Therefore, we
will speak of a triangulation of Vj although the triangulation is computed in the
local estimated tangent plane.

6.3 Adapting the Border of the Local Triangulation

Triangulating Vj yields a triangulation Tj of the local neighborhood of vj .
Because most vertices in Tj are also in T , the edges in Tj should match
edges in T . Thus, the border ∂Tj of Tj has to match edges in T . The border
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∂Tj = (vx1 , . . . , vxnx
) is represented as a counter-clockwise oriented, ordered se-

quence of nx border vertices vxl
∈ Vj , l = 1, . . . , nx − 1 with v1 = vxnx

, i.e.,
the index of border vertices is understood modulo nx. Every pair (vxl

, vxl+1) is
a so-called border edge and the border ∂Tj is initialized as the convex hull of Vj

using “Jarvis’ March” [7]. Subsequently Vj and ∂Tj are modified until the border
edges match edges in T as good as possible.

vxl+1

vxl
vxl+2

vxk
vxk+1

vs

vj

Fig. 3. The border ∂Tj before (blue) and after
(red) the modification

If a border edge eb =(vxk
, vxk+1)

does not match any edge in T , de-
termine the edge es = (vxk

, vs) or
es = (vs, vxk+1) ∈ Vj ×Vj in T in-
side ∂Tj with smallest angle ϕ to
eb. Then vs is inserted to ∂Tj be-
tween vxk

and vxk+1 , if es respec-
tively es is either an inner edge or
ϕ < 20◦ and if this does not cause
proper intersections of the interior
of two edges of ∂Tj or any loops
containing more than two border
edges, see Figure 3. This approach
can lead to a border of the form
(. . . , vxl

, vxl+1 , vxl+2 , . . . ) with vxl
= vxl+2 , see Figure 3, which is handled by

removing vxl
and vxl+1 from ∂Tj and vxl+1 from Vj .

Repeating these operations until there are no more edges that can be removed
results in a border that fits the existing triangulation T better. This process
terminates because the border shrinks monotonically in each step.

6.4 Triangulation of the Border

To triangulate Vj first ∂Tj is split into monotone sub-polygons which are tri-
angulated individually, see e.g. [7]. This determines a triangulation T ′

j of ∂Tj.
Second all vertices of vl ∈ Vj \ ∂Tj are added to T ′

j successively by splitting the
triangle of T ′

j that contains tl at tl into three new triangles. This is repeated
for every vertex of Vj \ ∂Tj yielding a triangulation T ′′

j . Finally, the Delaunay
criterion [13] is applied repeatedly constrained by ∂Tj to improve the triangle
quality generating a triangulation Tj of Vj .

6.5 Insertion of the Local Triangulation

Before Tj can be inserted into T , the triangles of T in conflict with Tj must be
removed. We first remove all triangles of T incident to a vertex of Vj \ ∂Tj.

Remark 2. Note that this also removes triangles from vertices in Vj \ ∂Tj to
vertices in V \ Vj outside of ηj(5rj). Thus, the global topology of the surface is
corrected due to the increased local point density.

At this stage T contains no triangles connected to vertices of Vj\∂Tj. All triangles
remaining in T conflicting with Tj involve only vertices on ∂Tj. For such a vertex
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vl vl vl

e1

e1e1
e2

e2e2

∂Tj∂Tj ∂Tj

Fig. 4. Topologically preparing the border ∂Tj (red) for the new triangulation Tj by
deleting the blue faces. All triangles shown in the figures are in T , Tj is not shown.

vl ∈ ∂Tj with border edges e1 = (vl−1, vl) and e2 = (vl, vl+1), all faces potentially
pointing to the inside of the border are deleted. Thus, there are three different
cases that are solved topologically:

1. If both edges e1 and e2 belong to T , all faces of the one-ring of vl are removed
if they are left of e1 or e2 or if they are not connected to the right faces of
e1 or e2. This removes triangulated areas of T that are also covered by Tj

and reduces the complexity of the one-ring, see Figure 4 (left).
2. If only e1 belongs to T , the face of the one-ring of vl left of e1 and all faces

not connected to the right face of e1 are deleted, see Figure 4 (middle).
3. If both e1 and e2 do not belong to T and vl has a closed one-ring, the face

pointing the most inside the triangulated area is removed, which is e.g. the
triangle of the one-ring of vl intersected by the bisector of e1 and e2 in the
local estimated tangent plane, see Figure 4 (right).

α
α

β
β

∂Tj

Fig. 5. Border ∂Tj (black) with edges (red)
not connected by faces to the border

Finally, if there are two vertices
vl1 and vl2 from ∂Tj that are con-
nected by an edge e that does not
belong to Tj and lies inside of the
polygon spanned by ∂Tj, the cor-
responding triangles are removed.
To test if such an edge is inside the
polygon spanned by ∂Tj the angle
β, the inner angle of the polygon
at vl1 , must be larger than the an-
gle α between the incoming border
edge at vl1 and e, see Figure 5.

Remark 3. This also changes the global topology of the surface.

7 The Octree

To support the geometric neighborhood searches in Sections 5 and 6.1 efficiently
we use an octree data structure to manage the neighborhood balls. The root
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node of the octree represents the cube O. Every node in the tree represents a
sub-cube

o = [x, x + δ]× [y, y + δ]× [z, z + δ]

o

o1 o2

o3 o4
o5 o6

o7 o8

Fig. 6. The cube o of an octree node and its
child-node’s sub-cubes o1, . . . , o8

of O and has no or exactly eight
child-nodes holding the eight sub-
cubes o1, . . . , o8 with side length
δ/2, see Figure 6. To accelerate
searches in the local neighborhood,
every node stores additional links
to the 26 face-, edge- and corner-
neighbor nodes on1 , . . . , on26 on
the same level, as in [5].

Remark 4. The main advantage of
using an octree instead of a grid as
in [5] is the use of different levels of detail corresponding to the levels of the
octree to create a finer triangulation in regions with higher point density.

Every neighborhood ball bi belongs to one cube in the octree which contains its
center point ci. The radius ri equals the edge length of the cube. Every cube in
the octree has a list of the neighborhood balls it contains.

Every data point dj = (pj , hj) is inserted into the octree by searching for
the neighborhood ball bi containing the raw point pj ∈ βi and, if bi is found,
inserting it to that ball as in Section 4. To search for bi the octree is descended
from the root node O traversing on any level of the octree the cube o containing
pj . For the traversal all 26 neighbor cubes are tested to find the ball with ci

closest to pj . If no bi is found, the search descends one level in the tree and
repeats the neighbor traversal. This is repeated until a ball is found or the leaf
nodes are searched unsuccessfully. In the latter case a new neighborhood ball b
containing dj is created in leaf node cube containing pj , see Section 4.

To make b as large as possible the highest level in the octree with sufficient
space is determined, such that the ball βi does not contain the center of any
other ball of B. These centers can only be in the siblings of the 26 indirect
neighbor cubes, which share at least one corner with the actual cube o. The set
of these cubes is denoted by S(o). In S(o) the center ck that is closest to pj is
determined with ∆ := ‖ck − pj‖.

1. If ∆ is smaller than the radius of b, i.e. the edge length � of o, the cube o is
split into sub-cubes until the radius of b is small than ∆. Thus, b is added
to a sub-cube o′ that is !log2(�/∆)" levels below the node of o in the octree.

2. If ∆ is larger than the radius of b, it can be added to the cube o or one of
its ancestors. Thus, the ancestors o′ of o are tested if their siblings of S(o′)
contain a center too close to pj. Finally, b is added to the highest ancestor
above o for which this test is negative.



426 K. Denker, B. Lehner, and G. Umlauf

8 Improving the Approximation

For every neighborhood ball bi a least square fit fi for its raw points is computed
to smooth the triangulation and to reduce noise in the raw points. The fit fi is
a cubic approximation of the raw points of bi parametrized over the estimated
tangent plane of bi as in [2] computed by a singular value decomposition. It
serves two purposes:

• correction of vertex positions and
• curvature dependent ball sizes.

8.1 Correction of Mesh Points

The position of a vertex v corresponding to a neighborhood ball bi is approxi-
mated by the arithmetic mean of all its raw points bi. On curved surfaces this
results in a displaced position. In local coordinates of the estimated tangent
plane bi has coordinates (0, 0, 0)T . Thus, the point b̃i with local coordinates
(0, 0, fi(0, 0))T is a better approximation of the raw points. In order to guaran-
tee that the vertices of T are within scanner precision the raw point pj closest to
b̃i is determined. If ε is the scanner precision and b̃i is not contained in β(pj , ε),
b̃i is projected onto β(pj , ε) in direction pj − b̃i. This new point is the position
of the corresponding vertex vi.

Remark 5. Because the laser scanner has different precisions in different direc-
tions, i.e. along the scan line, between scan lines, and in laser beam direction, b̃i

is projected onto an ellipsoid around pj .

8.2 Curvature Dependent Ball Size

The fits fi are also used to estimate the curvature of T in the vertex vi. Then
the size of the neighborhood balls is controlled by the curvature measure Ci :=
(|κ1| + |κ2|)/2 at vi, where κ1 and κ2 are the principle curvatures of fi at b̃i

before the projection onto β(pj , ε). A small value of Ci indicates that the region
is rather flat. So, for each neighborhood ball with a valid normal the curvature
Ci is computed and the neighborhood ball is split if

arctan (4rjCj) · 2nj/π ≥ nsplit.

This results in larger triangles in flat regions.

9 Uncertainty Visualization

Regions with a high uncertainty in the triangulation should be highlighted, to
enable the operator of the laser scanner to increase the point density by multiple
scan passes. To measure the uncertainty, the stability of the normal estimation
is used. It can be calculated for each neighborhood ball bi by the two smallest



Online Triangulation of Laser-Scan Data 427

eigenvalues e1 and e2 of the principal component analysis in Section 5. The
uncertainty ui is defined as

ui = arctan ((e2/e1 − 2) /20) · 2/π.

It is restricted to [0, 1] and visualized by coloring the vertices using a transition
from red (ui = 0), yellow (ui = 0.25), green (ui = 0.5) to white (ui ≥ 0.75).

10 Level of Detail

For very complex or large objects it may be necessary to use a further reduced
mesh for fast rendering on low cost graphics hardware. The octree contains
different levels, each containing neighborhood balls bj of a certain size. These
levels can be used for a reduced level of detail on the mesh.

To make use of the levels in the octree, the data points di are also added
to so-called LOD balls bLOD

k on the levels above the enclosing neighborhood
ball. These LOD balls bLOD

k are modified neighborhood balls containing all data
points di of the neighborhood balls bi on the levels below. Each data point di

belongs to one neighborhood ball bj = (cj , 2−lR,Dj) on the level l and one LOD
ball bLOD

k = (ck, 2−λR,Dk) for all 0 ≤ λ < l in each level above.
The global level of detail lLOD is the depth of the deepest level in the

octree used to determine T . If lLOD changes, the complete mesh has to be
re-triangulated. First all faces of the mesh are deleted. Then the neighbor-
hood balls or LOD balls necessary for re-triangulation are selected according

l
LOD = 1

l
LOD = 2

Fig. 7. Schematic illustration of the level of
detail re-triangulation in the octree

to their depth in the octree. An or-
dinary neighborhood ball is used
if its depth is less or equal to
lLOD. If the depth of a neighbor-
hood ball is larger than lLOD its
corresponding LOD ball on level
lLOD is used. With these balls the
triangulation is computed as de-
scribed above. Figure 7 shows a
schematic illustration of neighbor-
hood balls (white) and LOD balls
(gray) used for re-triangulation on
different levels of detail.

11 Results

We used a hand-held laser scanner “Laser ScanArm” from Faro [11] (Figure 8).
That is a measurement arm with seven joints and an assembled laser scanner
“Laser Line Probe”. The scanner driver provides 3d point data relative to the
foot of the measurement arm. Lines of up to 640 points can be scanned up to 30
times per second. For each of these lines the position and the viewing direction
of the laser scanner is tracked.
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Fig. 8. The measuring arm “FaroArm” with
laser scanner “Laser Line Probe” [11]

In Figure 1 a scanned piggy
bank is shown, while Figure 11
shows the result of scanning
the bronze bust “Bildnis Theodor
Heuss” by Gerhard Marcks. The
uncertainty visualization in the
wire-frame and smooth shaded
representations reveal the regions
that can be improved by additional
scan passes.

The reduction of the input
points is demonstrated in Figure 2,

Fig. 9. Flat shading (top) and wire-frame (bottom) of triangulation of a license plate
after 250, 2000, 5000, 9000 scan lines with uncertainty visualization

Fig. 10. Smooth shading and wire-frame representation of triangulation of a sheet of
paper with holes after 585, 1895, and 3149 scan lines
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Fig. 11. Gerhard Marcks - Bildnis Theodor Heuss, [17]. Original object (left), wire-
frame (center), smooth shaded triangulation with uncertainty visualization (right)

Fig. 12. Flat shaded mug with different levels of detail (top row) and wire-frame
(bottom row)

where Figure 2(b) shows the data generated by the scanner, and Figure 2(c)
shows the averages bj of the neighborhood balls, together with the estimated
normal for every ball.

Figure 9 shows how the triangulation is adaptively refined for several scan
passes of the same region. The edge of the protruded digit becomes more pre-
cise after each scan pass. Furthermore, the wire-frame representation (bottom
row) shows that the triangles near the protruded edge are smaller, because the
neighborhood balls are dissolved earlier in this region of higher curvature.

Another example of increasing accuracy for multiple scan passes is shown in
Figure 10. The reconstructed surface of a piece of paper with holes of different
size is shown after the first, the second and the third scan pass. While after the
first scan pass two small holes are still closed by the triangulation procedure,
after the third scan pass all holes are correctly detected.
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Four levels of detail of a scan of a mug are shown in Figure 12. The number of
triangles is 20,758 for the finest level of detail (left), 17,678 for the next coarser
level, and 11,277 and 3,584 triangles for the two subsequent levels. Choosing a
coarser level of detail reduces the complexity of the triangulation, but can result
in more reconstruction errors, especially at sharp edges.

All examples are computed on an Intel Core2 Quad Q6600, 2.4 GHz computer
with 4 GB RAM. To demonstrate the efficiency of the proposed method we list
in Table 1 the sizes of the models on the fines level in terms of data points
di and vertices vi and the times spend for the different computations: number
of data points processed per second, number of vertices processed per second,
and the overall times for the computation of the triangulation and the scanning
process. The times for the scanning process do not include the pauses between
scan passes. It is apparent from Table 1 that our method works in real time even
for complex objects. A video of a live scanning process is available at [8].

Table 1. Table of number of data points di and vertices vi in the final triangulation,
times for processing data points and vertices, overall time for the computation of the
triangulation and the scanning process for all models presented in this paper.

Data Vertices Data points Vertices CPU time Scan time
Fig. points per second per sec. [sec] [sec]

Piggy bank 1 1280387 30130 4198 98.9 304.6 318
Bronze bird 2 181731 6247 4432 152.0 41.1 143
License plate 9 1866413 29703 4392 69.9 424.8 504
Sheet of paper 10 478900 2538 7483 39.9 63.6 105
Theodor Heuss 11 2451014 35412 4300 62.1 570.0 623
Mug 12 358232 8866 5778 143.7 61.7 105

12 Conclusion and Outlook

Our experiments show that the proposed method is suitable to assist the op-
erator of a hand-held laser scanner to produce fast and complete high quality
triangulations satisfying all constraints A.–G. of the Introduction. The online
visualization helps to reduce the time for the scanning process significantly. The
final surface mesh is a correct triangulation that can be used without further
postprocessing for measurement, surface analysis or reverse engineering.

The robustness of our method is derived from the fact that the human operator
can increase the point density by additional scan passes in regions that are not yet
reconstructed topologically correct, or where important features are still missing.

Nevertheless, there are some requirements for the proposed method to work
satisfactorily. Only those parts of the object that are covered by scan lines can
be reconstructed. Because of the interactive rendering the human operator can
easily detect uncovered regions, fill the remaining holes and scan a topologically
correct reconstruction of the target object. Regions of the object that cannot
be scanned, because of occlusions or limitations of the scan arm, cannot be
reconstructed and remain as holes in the triangulation.
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Some extensions to improve the usability are worth further investigation. The
detection of sharp features and surface borders could improve the final mesh.
The method of [12] can be used to detect sharp features within the scan and
move the vertices onto these features.

Experiments show that the orientation of the scanning device during the scan
has an impact on the quality of the input data. Scanning the same region with
different orientations improves the stability of the computation significantly. Ad-
ditionally to the uncertainty visualization the optimal orientation for the next
scan of an uncertain region could be visualized to aid the operator to achieve
better and faster results.
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Abstract. Neurons are cellular compartments possessing branching morphologies,
with information processing functionality, and the ability to communicate with each
other via synaptic junctions (e.g. neurons come within less than a nano-meter of each
other in a specialized way). A collection of neurons in each part of the brain form a
dense forest of such branching structures, with myriad inter-twined branches, inter-
neuron synaptic connections, and a packing density that leaves only 5% - 10% volume
fraction of exterior-cellular space. Small-scale variations in branching morphology of
neurons and inter-neuron spacing can exert dramatically different electrical effects that
are overlooked by models that treat dendrites as cylindrical compartments in one di-
mension with lumped parameters. In this paper, we address the problems of generating
topologically accurate and spatially realistic boundary element meshes of a forest of
neuronal membranes for analyzing their collective electrodynamic properties through
simulation. We provide a robust multi-surface reconstruction and quality meshing so-
lution for the forest of densely packed multiple branched structures starting from a
stack of segmented 2D serial sections from electron microscopy imaging. The entire 3D
domain is about 8 cubic microns, with inter-neuron spacing down to sub-nanometers,
adding additional complexity to the robust reconstruction and meshing problem.

1 Introduction

Biological modeling problems have long been an inspiration for geometry process-
ing and meshing research. A relatively recent technique known as serial section
transmission electron microscopy (ssTEM) presents a new set of challenges to
the computational geometry community. The technique employs a CCD camera
to capture high resolution images of parallel slices of a collection of cells, usually
neurons. The resolution on a single image slice is 5-10 nanometers, small enough
to identify features on the boundaries of the cells, as well as organelles within
the cells. [18, 36] Trained neuro-anatomy aware users can approximate the cell
boundaries by visual inspection and label their polygonal contours consistently
through the stack so that slice images of a single cell (dendrite, glial, axon, etc.)
can be traced through the entire volume, as shown in Figure 1. This suggests the
following computational problem: develop a method to create a watertight mesh
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Fig. 1. Neuronal modeling from imaging uses serial section transmission electron mi-
croscopy (ssTEM), producing a stack of image slices. [18, 36] The imaging data is
courtesy of Dr. Kristen Harris from the Section of Neurobiology at UT Austin. On the
left, a single slice is shown with contours representing cell boundaries shown in red.
The contours are tagged based on the neuronal process they belong to - purple for
dendrites, green for axons, yellow for glial - as shown on the right. The tagged contours
are used for accurate surface reconstruction, such as the purple dendrite model shown
here, so that surface area, volume, and other properties of the cells can be calculated.

of a multi-component, compact 2-manifold passing through the labeled bound-
aries on each slice with biologically-accurate topology and spatially-accurate ge-
ometry. A sample of meshes created by our lab solving this problem are shown in
Figure 2. The meshes will be used to research quantitative morphology [21] and
to calibrate time-dependent electrophysiological simulation of voltage potentials
[33]. We discuss this further in Section 5.

The unique challenge in processing and modeling neuronal cell data is the
multi-component nature of the problem. Reconstruction of a single component
surface from 2D slices has been heavily researched in recent decades. A sem-
inal paper in this vein is the work of Fuchs, Kedem, and Uselton [22] which
focused on triangulating a stack of polygonal contours using a toroidal graph to
guide construction. Christiansen and Sederberg [15] helped to characterize the
branching problem and potentially ambiguous situations that may arise. Mey-
ers, Skinner and Sloan [32] identified the subproblems of correspondence, tiling,
branching and surface-fitting and gave a resolution based on a minimum span-
ning tree. Barequet and Sharir [7] developed an algorithm focused on medical
applications such as Computerized Tomography (CT) and Magnetic Resonance
Imaging (MRI); this was expanded upon by Bajaj, Coyle and Lin [4] who intro-
duced the use of the medial axis to aid in topologically accurate surface meshing.
Similar approaches used the Voronoi diagram [34] or a discrete distance func-
tion [28] to guide reconstruction. Barequet et al. [6] have also used the straight
skeleton to aid in the case of nested contours. Related to these surface mesh-
ing approaches are techniques for volume meshing [9, 24, 14], non-linear surface
fitting [11, 27, 37, 8], and recently non-parallel plane methods [10, 31].

Unfortunately, resolving the multi-component problem by separating it into
independent single-component problems is not sufficient to guarantee an
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appropriate solution for neuronal models. Image data reveals that neurons have
widely varying cross-sectional areas and boundary shapes and are packed very
densely (an example is shown in Figure 3), with as little as 5-10% of the image
representing extra-cellular space [26, 35]. Even if the contours approximating
the boundaries on each slice are non-overlapping, an under-constrained surface
reconstruction might create intersections in three dimensions.

(a) (b)

Fig. 2. The approach provided in this paper allows for quality and accurate meshing
of intertwined and branching structures, such as the neuronal meshes shown here. (a)
A meshed dendrite is shown in grey with an adjacent axon passing nearby, shown in
green. (b) A zoomed in portion of the meshes shows the triangles of the mesh are of
good quality, making the mesh fit for electro-physiological simulations.

In this paper, we present a solution to the general problem of simultaneously
reconstructing a densely packed forest of intertwined branching surfaces from
point samples lying on a finite set of parallel slices through the volume. Our ap-
proach uses the medial axis on each slice to help construct a 3D fencing between
contours, thereby preventing the intersection of distinct surfaces. In Section 2,
we formalize the problem and provide additional explanation of background con-
cepts. In Section 3, we describe in detail an algorithm to resolve the problem and
prove its correctness. In Section 4, we show some initial mesh results. Finally, in
Section 5 we conclude and describe the various uses these types of meshes will
have in our future work.

2 Problem Statement and Background

In Section 2.1, we formally state the multi-component reconstruction problem we
aim to solve and fix notation for use in the description of our solution. In Section 2.2
we describe the three main problems of the single component problem - correspon-
dence, tiling, and branching - which are relevant to the multi-component problem.
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(b) (c) (d)(a)

Fig. 3. A visualization of a portion of neuronal data indicating the difficulty in the
forest of branching structures problem. The reconstruction visualization was prepared
by Justin Kinney, Thomas Bartol, and Terrence Sejnowski of the Salk Institute using
our tiling program [4]. (a,b) Surfaces representing dendrites and axons, shown in yellow
and green, respectively. (c) Surfaces representing glial cells are shown in purple in this
view, along with some of the axonal and dendritic surfaces for reference. (d) All three
types of surfaces share this densely packed volume. Since each surface is reconstructed
independently of the others, we have to resolve any possible intersections that result
when the individual models are assembled in the same volume. Here, the green surface
has been made partially transparent to show how the surfaces wind and branch around
each other. The glial cells are present but not visible in this view.

In Section 2.3 we explain the basic theory behind the medial axis which is used
prominently in our solution.

2.1 Formal Problem Statement

With the goal in mind of designing an algorithm for neuronal modeling, we now
describe the more general surface reconstruction problem we aim to solve.

Suppose we are given a positive integer M and the input ({Zi}, {gi}, {cj
i},

G) as follows:

• Input 1: A set of M horizontal planes Z1, . . . ZM where Zi is the plane
z = zi ∈ R with z1 < · · · < zM .

• Input 2: A set of curves (contours) in each Zi plane described implicitly by
gi(x, y) = 0.

• Input 3: A list {cj
i} of the contours of the set gi(x, y) = 0 where cj

i denotes
the jth contour on the plane Zi.

• Input 4: A directed graph G with vertices
⋃

i,j c
j
i and edges only pointing

to an element of list index incremented by one. That is, every edge of G can
be written as (cj1

i , cj2
i+1) for some indices i, j1, and j2.

Our goal is to construct a smooth function g : R
3 → R such that the following

properties hold:

• Property 1: The surface g(x, y, z) = 0 is a compact 2-manifold.
• Property 2: The function g restricts to gi on Zi. That is, for all i,

g(x, y, zi) = gi(x, y) for all (x, y) ∈ R
2.
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• Property 3: The surface g(x, y, z) = 0 has local connectivity corresponding
to the graph G. That is, if (cj1

i , cj2
i+1) is an edge in G, then cj1

i and cj2
i+1 are

homologous (meaning one smoothly deforms into the other) on the surface

{(x, y, z) : g(x, y, z) = 0, z ∈ [zi, zi+1]}

We note that the set {g−1(0)} is the desired surface passing through the contours
with the correct connectivity. A general analytical solution to this problem is
difficult and unnecessary for implementation, hence we make the following sim-
plifying assumptions based on the application context.

Definition 1. (adapted from [1]) A homeomorphism h of R
3 is isotopic to the

identity if there is a homotopy H : R
3× [0, 1] → R

3 such that for each t ∈ [0, 1],
ht := H(·, t) : R

3 → R
3 is a homeomorphism, h0 is the identity and h1 = h. A

mesh M ⊂ R
3 of a surface S ⊂ R

3 is called an isotopic mesh if and only if
there exists a homeomorphism h of R

3 carrying M to S with h isotopic to the
identity.

• Assumption 1: The contours are described by simple polygons whose ver-
tices lie on the contour. If the geometry of a particular polygon needs to be
refined, the appropriate gi can be referenced to increase the sampling density.

• Assumption 2: If M is a compact piecewise linear 2-manifold such that it
restricts to the contours on each slice and has local connectivity correspond-
ing to the graph G, then M is an isotopic mesh of the surface g(x, y, z) = 0.

• Assumption 3: The distance between consecutive zi values is small enough
that the slice sampling of each component in the surface g(x, y, z) = 0 meets
the requirements of the single-component meshing algorithm.

Each assumption is based on practical considerations from neuronal data. To
satisfy Assumption 1, we fit each polygonal contour data as tagged by biologists
with a regular algebraic spline curve called an A-spline. By using the error-
bounded spline method described in [5], we can construct smooth approximations
of the contours while preventing overlaps between adjacent contours. The splines
are defined locally based on a scaffolding mesh, allowing us to efficiently increase
the sampling of a contour in a particular region if needed. Assumption 2 is made
to distinguish the surface meshing problem from the smooth surface construction
problem. In this paper, we are only interested in how to create an isotopic mesh of
the smooth surface approximation and leave the surface fitting to future work.
Assumption 3 is stated so that we can tackle the multi-component problem
without inheriting existing difficulties from the single component problem. As
is discussed in [4], it is desirable to produce a mesh such that any vertical line
between two adjacent slices passes through the mesh at most once. We clarify
this criterion in the next subsection.

2.2 Correspondence, Tiling, and Branching

The single component surface reconstruction problem faces three major sub-
problems: the correspondence problem, the tiling problem and the branching
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problem. Our solution to the multi-component problem requires an effective
single component solver, hence we will review the three problem types here. The
single component solver we use is denoted SingleSurfRecon and resolves the
problems in full generality under the assumptions previously stated. The method
is summarized below, but is given in full detail in [4]. To describe the problems,
we consider two planes Z1 and Z2 with z1 < z2 and let {cj

1}, {ck
2} denote the lists

of contours in the respective planes. Figure 4 illustrates some of the difficulties
in meshing such intricate data.

(a) (b)

Fig. 4. (a) The region between two consecutive slices is shown, with portions of many
dendrites (grey) and axons (green) present. The mesh has been filled in and smoothed
slightly for the purpose of visualization. The contours on the top plane must be tiled to
the contours on the bottom, subject to the correspondence constraints of the data. (b)
Zooming in on a portion of the previous image reveals that branching has occurred in
an axon and dendrite in close geometric proximity, resulting in this unwanted surface
intersection. We will present a method for detecting and removing such intersections
in Section 3.

The correspondence problem is to decide how the contours of {cj
1} will match

up to the contours of {ck
2}. This requires either a priori knowledge of the con-

tours’ connectivity or a geometric criterion for declaring correspondence. In the
context of our problem domain, the correspondence problem for SingleSurfRe-

con is resolved by consulting the graph G as it prescribes the connectivity be-
tween contours.

The tiling problem is to decide, given contours c1 ∈ {cj
1} and c2 ∈ {ck

2}, how
c1 and c2 will be joined in the interslice region. In the context of meshing, c1 and
c2 are given as polygons and the problem is to decide how to add edges between
them so that a suitable mesh of the ribbon surface between the contours is
produced. A line segment connecting c1 to c2 is called a slice chord and a triangle
formed by two slice chords an edge of a contour is called a tiling triangle. Even
in very simple cases, there are many choices available for how to choose slice
chords and tiling triangles. One resolution to this problem is to define a quality
measure on possible tilings and seek a tiling with the optimal quality [22, 15].
A summary of different quality metrics used in early methods is given in [32].
Alternative approaches, such as the one we use, project contours from Z2 to Z1
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and use planar geometry properties to lift a watertight surface mesh from the
projection [4, 34, 28, 6].

The choice of tiling method is highly relevant to the types of guarantees one
can provide on the output meshes. We have selected the method of [4] because
it only outputs surfaces that meet the following three criteria.

• Criterion 1: The reconstructed surface forms a piecewise closed surface of
polyhedra.

• Criterion 2: Any vertical (meaning parallel to the z axis) line segment
between two adjacent slices intersecting the reconstructed surface does so at
exactly one point or along exactly one line segment.

• Criterion 3: Resampling of the reconstructed surface on any slice reproduces
the original contours.

Criterion 1 ensures that self-intersecting surfaces and other incorrect meshes are
not formed. Criterion 3 ensures that all the contours are interpolated and no
new ones are created. Criterion 2 is especially important because it ensures that
the reconstructed surface is functional from its nearest planes. That is, barring
the case of vertical surface patches, the projection of any triangle in the mesh
to either of its two nearest Zi planes is a one-to-one mapping. This prevents
unlikely topologies from being formed and aids in the proof of the correctness of
the multi-component method as discussed in Section 3.7. We note that Criterion
2 may not be satisfiable if the distance between consecutive zi values is too large
relative to the surface feature size, however, by Assumption 3, this is not the
case. In practice, exceptions to Assumption 3 are rare and therefore Criterion 2
is not particularly restrictive on the input type.

We will now summarize the approach that the SingleSurfRecon algorithm
uses to resolve the tiling problem. We will appeal to intuitive notions of the
left side and right side of a vertex on a contour relative to its clockwise (CW)
or counterclockwise (CCW) orientation; these definitions are made explicit in
[4]. Let {ck

2
′} denote the projection of {ck

2} vertically onto Z1. We compute
the points of intersection between {cj

1} and {ck
2
′}; without loss of generality we

assume that these points of intersection are vertices on contours in both sets.
Such vertices that are common to both sets are called an overlapping vertices;
all other vertices are called non-overlapping. If a tiling of {cj

1} and {ck
2} satisfies

the three Criteria, the following two theorems must hold.

Theorem 1. ([4], Theorem 2) Let v be a vertex on a contour in c1 ∈ {cj
1} and

T a slice chord from v. (i) If v is a non-overlapping vertex, the projection of
T onto Z1 is contained entirely on one side (right or left) of c1. The side is
determined by the orientation of the nearest enclosing contour from the set {ck

2}
when v is projected to Z2. (ii) If v is an overlapping vertex, v also belongs to
some c′2 ∈ {ck

2
′} by hypothesis. In this case, the projection of T onto Z1 does not

intersect the region to the left of both c1 and c′2 at v, nor the region to the right
of both c1 and c′2 at v.

Theorem 2. ([4], Theorem 4) Let T be a slice chord and c1 ∈ {cj
1}. Then the

projection of T onto Z1 cannot intersect both the inside and outside of c1
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The tiling algorithm proceeds as follows. For each vertex v ∈ {cj
1}, make a list

of all the slice chords that could be formed to a vertex of {ck
2} (based on the

resolution of the correspondence problem). Select the shortest length chord from
this list which satisfies the results of Theorems 1 and 2. If no chord from the list
satisfies both Theorems, tag the vertex as “untiled.” The boundaries of untiled
regions are later collected and meshed separately while resolving the branching
problem.

The branching problem arises when the result of the correspondence problem
yields a matching of more than one contour in {cj

1} to any number of contours
in {ck

2} (or vice versa). Solutions to the problem include adding edges to the
contours on one of the planes or adding vertices in between the planes to create
an appropriate mesh. Since the former approach violates Criterion 3, we employ
the latter. The branching problem occurs only in regions previously tagged as
“untiled” by SingleSurfRecon, so we collect the boundaries of these regions
and project them to a plane half way between the two planes in consideration. We
triangulate these untiled regions based on their Edge Voronoi Diagram using the
algorithm of Lee [29]. Any new vertices added are given a z value of .5(z1+z2). A
summary of alternative approaches to the branching problem and further details
are given in [4].

The output of SingleSurfRecon is a mesh with the desired Properties
and satisfying the given Criteria. In practice, SingleSurfRecon can be im-
plemented in a numerically stable manner and will provide an output for many
types of real data.

2.3 Medial Axis

The main tool employed by our algorithm to ensure accurate surface reconstruc-
tion is the medial axis of the region exterior to the contours. We give a thorough
explanation of the medial axis in Appendix A. The medial axis of a set O is often
approximated based on a point sampling P of the boundary ∂O and the Voronoi
and Delaunay diagrams Vor P and Del P . A definition of these diagrams and

Fig. 5. A collection of contours representing cell boundaries and their interiors are
shown in red along with the approximate medial axis of intracellular space MP shown
in blue
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how to compute them can be found in any standard computational geometry
textbook, e.g. [19]. The medial axis is approximated by the graph of the vertices
of Vor P along with those edges of Vor P not intersecting the contours. We
denote this graph MP ; an example is shown in Figure 5. For 2D cellular con-
tour data, MP will have one component for each cell interior plus a component
for the extracellular region, assuming P is a sufficiently dense sampling of ∂O.
We discuss sampling density and our robust medial axis computation method
further in Section 3.2.

3 Algorithm

In this section we describe an algorithm to solve the multi-component problem
under the Assumptions given in Section 2.1. In the next six subsections, we will
explain the input to the algorithm and its five major steps. We conclude this
section with a proof of the correctness of the approach.

3.1 Algorithm Input

As stated in Section 2.1, our input is the following objects: ({Zi}, {gi}, {cj
i}, G).

By our stated Assumptions, we may suppose that the contours {cj
i} are simple

polygons with sufficiently dense sampling of the level sets gi(x, y) = 0. Define
Pi = {v : ∃j such that v is a vertex on cj

i}. We pass these polygonal contours
and the associated point sets Pi to our algorithm instead of the functions gi.

For ease of description and to maintain consistency with our neuronal data,
we explain the algorithm for the case where G has just two components, with
one colored yellow and one colored green. Each contour can thus be uniquely
assigned as belonging to the set of yellow contours Y C or green contours GC,
i.e.

{cj
i} = Y C

∐
GC

The notation we will use for calling the algorithm with this input is

MultiSurfRecon

(
{Zi},

{
cj
i

}
, {Pi}, G

)
3.2 Step 1: Construct and Partition 2D Medial Axes

Overview

Compute the approximated medial axis MPi for each 1 ≤ i ≤M and discard the
portions interior to the contours. Each remaining edge e separates two unique
contours, call them ce1 and ce2. Partition these edges into three sets:

EY Y = {e : ce1, ce2 ∈ Y C}, EGG = {e : ce1, ce2 ∈ GC},

EGY = {e : ce1 ∈ Y C, ce2 ∈ GC or ce1 ∈ GC, ce2 ∈ Y C}
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Details

It is crucial that the medial axes on each slice be computed robustly and with
topological accuracy for the remainder of the algorithm to work. Thus, we turn
to a criterion established by Edelsbrunner and Shah known as the closed ball
property [20] which we state here for polygonal contours in a plane. Let P be the
vertices of all the contours and Σ the union of all the contours on a particular
plane. A Voronoi object V from Vor P of dimension k satisfies the closed ball
property if and only if V ∩ Σ = ∅ or V ∩ Σ is homeomorphic to a closed ball
of dimension k − 1. If all V ∈ Vor P satisfy the closed ball property and Σ
intersects each V transversally, then Σ is a subgraph of Del P [20]. This implies
that MP is a subgraph of Vor P . Cheng, Dey, Ramos, and Ray used this criterion
to create Delaunay-conforming meshes without approximating local feature size
[13]. We provided an efficient algorithm exploiting their approach for use with
image data [25] and we adopt that algorithm for computation of MP . Figure 5
shows a zoomed in picture of a slice of extracted contours with MP displayed.

By construction, MP is a multi-component piecewise linear graph. We discard
all components of MP which are interior to the contours, leaving a single medial
axis approximation of extracellular space. From this point on, we will take MP

to mean this single connected graph. Each edge of MP is a Voronoi edge and
thus its dual Delaunay edge connects two points of P . We assign each edge to
EGG, EY Y , or EGY based on whether its associated points of P are both on
green contours, yellow contours, or one of each, respectively.

3.3 Step 2: Construct Medial Surface

Overview

Dilate the edges in EGY so that they form contours and color these contours red.
Run SingleSurfRecon on the red contours, producing a partial, approximate
medial surface MS.

Details

On each plane, we consider only those edges of MP which belong to EGY . We
dilate EGY by setting a distance parameter ε and defining the contours to be the
locus of points at distance ε from EGY . For small enough values of ε, this produces
a collection of contours to which we assign the color red. We denote the dilated
contours RC. Once we have done this for all the slices, we call SingleSurfRe-

con on the whole set RC to produce a partial medial surface approximation
denoted MS. In this computation, we also compute the intersection of MS with
each intermediate plane z = .5(zi + zi+1).

3.4 Step 3: Create Single Component Surfaces

Run SingleSurfRecon on Y C and GC separately, producing meshes of the
yellow and green contours. In this run, we also keep a list of those i values for
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which vertices were added on the intermediate plane z = .5(zi + zi+1). This
occurs whenever there are dissimilar contours or branching in a portion of the
tiling.

3.5 Step 4: Remove Overlaps on Intermediate Planes

Overview

For those i values on the list created in Step 3, compute the yellow, green, and
red contours that occur on plane z = .5(zi + zi+1), which we denote Zi,i+1. Do
a plane sweep to detect overlaps between contours and remove them so that
the mesh now avoids overlaps on each intermediate plane. Output the modified
meshes of Y C and GC.

Details

From Steps 2 and 3, we have calculated red, yellow, and green contours on each
intermediate plane Zi,i+1. Geometrical problems may arise on those Zi,i+1 planes
which have yellow and/or green vertices. For those planes, we do a plane sweep
to detect overlap regions. We distinguish between two types of overlaps: simple
transversal overlaps and exotic overlaps. A simple transversal overlap is one in
which the border of the region is exactly two colors and each of these colors forms
a connected component of the border. We resolve simple transversal overlaps by
first computing the medial axis associated to the interior of the overlap. This is
then used as a dividing line to guide vertex movement; the overlap is resolved
by moving each vertex on the boundary across this axis. Note that this method
does not add or remove vertices, does not change the mesh connectivity, and
does not change the z value of any vertex.

(c)(b)(a)

Fig. 6. (a) A few overlaps have occurred on an intermediate plane Zi,i+1 between
green contours, yellow contours, and red medial surface contours. We attempt to resolve
them by searching for simple transversal overlaps such as the green/yellow overlap in
this case. (b) After removing the green/yellow overlap, we are left with only red/yellow
and red/green overlaps. (c) Removing the final overlaps, all the contours are separated.

An exotic overlap in a region Q can often be resolved by finding simple
transversal overlaps within Q and resolving them in the manner described above.
Such a case is shown in Figure 6. If this is not possible, we resolve the ex-
otic overlap by changing the z values of vertices in the overlap region to either
.25(zi + zi+1) or .75(zi + zi+1). An example of such a case and how it is resolved
is shown in Figure 7.
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z i+1

z i,i+1

(a) (b) (c) (d)

z i

Fig. 7. A toy example of how our algorithm works in the case of exotic overlaps (see
Section 3.5). (a) Green and yellow contours are detected in adjacent planes Zi, Zi+1

and the medial axis MP in each plane is computed, shown in red. Those portions of the
medial axis which lie between same color contours are discarded, such as the dashed
red portion in the upper plane. (b) An approximate medial surface MS is computed
by dilating the MP into contours and calling SingleSurfRecon. The intersection
of MS and the separately computed green and yellow surfaces with the intermediate
plane Zi,i+1 is shown. The overlap of the contours cannot be resolved by removing
simple transversal overlaps. (c) To remove the overlap, we move the green vertices on
Zi,i+1 to a lower z value and the yellow vertices to a higher z value, without changing
connectivity of the mesh. We show the intersections of the yellow and green surfaces
on the two intermediate planes where the vertices have been moved. (d) The skeletons
of the yellow and green meshes are shown to illustrate that the overall topology is now
correct and no geometrical overlaps occur.

3.6 Step 5: Quality Improvement

We decimate and improve the quality of our output meshes in the following
manner. For decimation, we first do edge contractions based on the Delaunay
diagram, using the QSlim software by Michael Garland [23]. We then do normal-
based triangle decimation based on the method presented in [3]. Finally, we
improve the shape of triangles in the mesh using a geometric flow technique [38]
which is a library in Level Set Boundary Interior and Exterior Mesher (LBIE)
[16], part of the Volume Rover (VolRover) [17] software developed by our lab.

3.7 Correctness of the Algorithm

The goal of MultiSurfRecon is to output an isotopic mesh M of the multi-
component surface S representing neuronal membranes such that the Hausdorff
distance between M and S is small. Since SingleSurfRecon produces such
meshes for individual components, the main question is whether the unioning
and separating processes employed by MultiSurfRecon truly remove all in-
tersections between the component surfaces in three dimensions. We will show
that removing mesh intersections on certain horizontal planes suffices to pre-
clude any 3D intersections in the complete mesh. To state this more precisely,
we introduce the following definitions and lemmas.
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Definition 2

• An original contour is any contour cj
i from Input 3 (described in Section

2.1). By Assumption 1, each cj
i is a simple polygon.

• A branching point is a vertex added by MultiSurfRecon whose z-value
is not one of the zi values from Input 1.

• An intermediate plane is a horizontal plane which, after running Multi-

SurfRecon, contains at least one branching point.
• The branching set of a mesh component C on an intermediate plane P is

the collection of branching points on P which belong to C, along with any
edges of C between these points.

• An intermediate contour is a contour formed by intersecting M with an
intermediate plane P . Note that an intermediate contour may contain some
of the branching set of the component in which the contour lies.

• Let c1, c2 be contours in the same plane and I(c1), I(c2) their respective inte-
riors. Then c1 and c2 are said to overlap if and only if (I(c1)∪ c1)∩ c2 �= ∅
and (I(c2)∪ c2)∩ c1 �= ∅. Note that if one contour is completely contained in
the other, they do not overlap.

Lemma 1. Suppose that for each i, there are no pairwise overlaps between the
original contours on plane Zi. Then the output of SingleSurfRecon run on
any subset of the original contours is not self-intersecting.

Lemma 1 is a consequence of the three Criteria laid out in Section 2.1 and
the tiling method; if the original contours do not overlap, SingleSurfRecon

cannot create self-intersections.
Next, observe that for the output of MultiSurfRecon with components

Y C and GC, there are three types of overlap that may occur on an intermediate
plane P :

• An intermediate contour of Y C intersects an intermediate contour of GC.
• An intermediate contour of Y C intersects the branching set of GC (or vice

versa).
• The branching sets of Y C and GC intersect.

This characterization of types of overlaps extends naturally to outputs with more
than two components. The following lemma shows that detecting and removing
these types of overlaps is equivalent to removing self-intersections of the entire
mesh. The lemma makes use of Assumption 2 from Section 2.1, without which,
problems could arise from contours on consecutive planes being nested inside
each other in contradictory ways. Since this should not happen with real data,
we feel we are justified with the Assumption as stated.

Lemma 2. If there are no overlaps of any of the three types on any intermediate
plane, then the output of MultiSurfRecon has no self-intersections in the
entire volume. Conversely, if the output has no self-intersections in the volume,
it does not have any overlap on any intermediate plane.
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Proof. For the forward direction, consider the stack of all the original and inter-
mediate planes in the output. By hypothesis, there are no overlaps and hence
no surface intersections on any of these planes. Further, between any pair of
consecutive planes there are no branching problems, as otherwise the planes
would not be consecutive in the stack. Therefore, the surface between consecu-
tive planes is a linear interpolation of the contours by Criterion 2 from Section
2.2. By Assumption 2 from Section 2.1, the true surface is a 2-manifold in this
region meaning the linear interpolation is not self-intersecting. Therefore, the
entire output is not self-intersecting. For the converse, if the output is not self-
intersecting, the components do not intersect each other and therefore do not
overlap on any intermediate plane. $%
By Lemma 2, the removal of simple transversal and exotic overlaps done in
Step 4 of the algorithm suffices to separate the components of the forest of
branched surfaces in the entire volume. In future work, we plan to examine
whether knowing the type of overlap on an intermediate plane can be used to
simplify the procedure of Step 4.

4 Implementation and Results

We show examples of our final, quality improved meshes in Figures 2 and 8.
The entire computational pipeline - imaging → contours → tiling → quality im-
provement - is handled by the Volume Rover (VolRover) [17] software developed
by our lab, including a library for the Level Set Boundary Interior and Exterior
Mesher (LBIE) [16].

(a) (b)

Fig. 8. (a) A quality-improved mesh of three components - a dendrite shown in grey
and two axons. (b) A zoomed in portion of the meshes.

5 Conclusion and Future Work

In this paper, we have presented a solution for creating isotopic meshes resolving
the forest of branching structures problem and have demonstrated the feasibil-
ity of our approach. This is only the first step, however, in the simulation-based
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morphological studies we plan to explore. With topologically accurate and error-
bounded meshes of neuronal forests, we can begin to quantify properties of these
forests in a variety of manners, e.g. computing the packing density of the cells in
the volume and measuring the size and dimension of various spines along the den-
dritic structures. These quantitative measurements can be used for comparison
among different brain samples; studies have already found that certain neuro-
logical disorders correlate with atypical dendritic spine formations and densities
[21]. Additionally, the meshes we create can be used to simulate voltage po-
tentials traveling along a dendrite or axon. The models will be calibrated with
real electrophysiological measurements and then used to study morphological
dependence on neuronal potentials.
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A Medial Axis Definition

There is some disagreement in the literature about the definition of the medial
axis as its intuitive notion is not the most general or accurate formulation. We
will give the most general definition of the medial axis as used in [30, 12]. Let O
be an open subset of R

n. The medial axis M is defined to be the set of points
x ∈ O for which there are at least two closest points to x on the complement Oc.
For the 2D images of cells we consider, O will denote the union of all inter- and
intracellular regions. This makes Oc exactly the same as ∂O, the boundary of O,
which is the collection of closed curves meant to represent the cellular boundaries.
Note that authors frequently refer to the “medial axis of ∂O” to mean M (or
sometimes just a subset of M) so our definition encompasses commonly held
notions. The skeleton S is defined to be the locus of centers of maximal inscribed
balls in R

n\∂O where a maximal ball is an open ball in R
n\∂O which is not

contained in any other open ball in R
n\∂O. In two dimensions, M and S are

often nearly identical and so we will treat them as such; we refer readers to [2]
for a careful comparison of the two concepts.
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Frédéric Hecht1, Raphaël Kuate2, and Timothy Tautges3

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Abstract. The modification of hexahedral meshes is difficult to perform since their
structure does not allow easy local refinement or un-refinement such that the modifi-
cation does not go through the boundary. In this paper we prove that the set of hex
flipping transformations of Bern et. al. [1] is the only possible local modification on
a geometrical hex mesh with less than 5 edges per vertex. We propose a new basis
of local transformations that can generate an infinite number of transformations on
hex meshes with less than 6 edges per vertex. Those results are a continuation of a
previous work [9], on topological modification of hexahedral meshes. We prove that
one necessary condition for filling the enclosed volume of a surface quad mesh with
compatible hexes is that the number of vertices of that quad mesh with 3 edges should
be no less than 8. For quad meshes, we show the equivalence between modifying locally
the number of quads on a mesh and the number of its internal vertices.

1 Introduction

The using of hexahedral or quadrilateral meshes has its advantages. For example,
the smaller number of elements obtained for a given number of vertices than
tetrahedral or triangle meshes. But one difficulty within hexahedral meshes is
to transform it locally without touching a large region of the mesh, due to its
structure as set of layers. In [1] Bern et. al. propose the set of hex flipping
transformations as local transformations of hex meshes i.e., the modifications
does not change the boundary quads of the local domain where they are applied.

In the second section, we prove that modifying locally quad meshes is equiv-
alent to modifying the number of its internal vertices. In the third section, we
propose a necessary condition for meshing a volume with hexes from its bound-
ary quad mesh. We study the problem of local transformations on hex meshes
with less than 5 edges per vertex. That brings us to the next section where we
look at the hex flipping transformations of Bern et. al. as the unique set of lo-
cal transformations on that type of hex meshes. In the fifth section, we extend
those local transformations to hex meshes with less than 6 edges per vertex and
propose a new set of geometrical hex local transformations.
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1.1 Definitions and Notations

A polyhedron is a set of closed planar polygonal faces in R
3 that intersect only

at shared vertices and edges, and such that each edge is shared by exactly two
faces and each vertex is shared by exactly one cycle of faces.1 A polyhedron
divides R

3 into a bounded interior and an unbounded exterior , each of which
may contain more than one connected component.

A quad surface mesh is a polyhedron whose faces are all quads. A hex mesh is
a quad surface mesh, along with interior quads that subdivide the polyhedron’s
interior into hexes. The intersection of any pair of hexes is either empty, a single
vertex, a single edge, or a single quad. Quad surface meshes and hex meshes
are both examples of cubical complexes [2, 8, 10], the analogue of simplicial
complexes in which each k-dimensional face is a k-dimensional cuboid.

In the following, if not mentioned, we’ll consider only non singular simply
connected meshes (without holes): simply connected meshes where each element
(quad or hex) has at least one common facet (edge for quad mesh or quad for
hex mesh) with the rest of the mesh.

We call elementary hex mesh a conformal hex mesh without holes where every
vertex has at the most 4 edges.
We call interior of a hex mesh the rest of the hex mesh obtained without its
boundary vertices (boundary quads).
On a mesh, let us denote:

P the number of Hexes (polyhedrons), F the number of faces (quads),
F̄ the number of boundary faces, F̊ the number of internal faces,
E the number of edges, Ē the number of boundary edges,
E̊ the number of internal edges, V the number of vertices,
V̊ the number of internal vertices, V̄ the number of boundary vertices,
V k

j the number of vertices with k boundary edges and j internal edges.

We’ll use Euler’s and Cauchy’s formulas [7, 3]:

F − E + V − P =, 1 (1)

for a complex of polyhedrons, and

F − E + V = 2, (2)

for a single polyhedron.

2 Quad Mesh and Local Modifications

In hexahedral and quadrilateral mesh generation, the existence of a mesh need
some conditions such as an even number of facets on its boundary [5]; we give a
generalization of this property to any mesh whose elements have an even number
of boundary facets even if they are of different type.
1 This definition of polyhedron allows multiple connected components (two cubes can

be one polyhedron!), as well as voids and tunnels model objects made from two
different materials.



A New Set of Hexahedral Meshes Local Transformations 453

Theorem 1. Any conformal mesh whose elements (of the same type or not) have
each an even number of facets, has an even number of facets on its boundary.

Proof. Let us consider a mesh with n elements.This is true for n = 1.
We suppose that this is the case for any mesh with n elements. For a mesh
with n + 1 elements, we have to add one element to some previous n-element
mesh. So the added element intersects the boundary of the previous mesh at m
facets, 1 ≤ m ≤ k − 1, if k is the number of facets of the added element. If b is
the number of facets of the previous mesh, the boundary of the new mesh has
b−m + (k −m) = b + k − 2m. Which is even.

It is known that quad meshes give a smaller number of elements than triangle
meshes for a given set of vertices. Knowing the number of boundary and internal
vertices, we have exactly the number of quads and edges in a quad mesh.

Proposition 1. In a 2D simply-connected mesh with h holes and k vertices per
element (k ≥ 3) the number F of elements, V̄ of boundary vertices, V̊ of
internal vertices and E of edges satisfies the relations:

F =
V̄ + 2(V̊ + h− 1)

k − 2
.

E =
(k − 1)V̄ + k(V̊ + h− 1)

k − 2
.

Proof. In a 2D mesh each internal edge E̊ belongs to two elements and each
boundary edge Ē belongs to one element. So

2E̊ + Ē = kF.

As the boundary is a union of closed lines (only one if there are no holes), Ē = V̄ .
Thanks to the Euler formula [3],

F + V − E = 2− h.

A quad mesh is solution of the following equations:{
V − E + F = 2− h

2E̊ + V̄ = kF
(3)

whose solutions give the formulas.

For quad meshes, to locally transform a mesh (i.e., a sub-domain of the mesh)
when keeping the boundary of that sub-domain unchanged, amounts to moving
only its internal vertices and re-meshing the sub-domain.

Theorem 2. The variation of the number of quads equal the variation of the
number of internal vertices between two quad meshes (mesha and meshb), if and
only if the two meshes have the same number of boundary vertices:

V̊a − V̊b = Fa − Fb ⇐⇒ V̄a = V̄b.
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In other words, adding or removing some elements in a quad mesh without
changing its boundary is equivalent to adding or removing exactly the same num-
ber of its internal vertices.

Proof

• Let us suppose that V̄a = V̄b. As we have said, on a quad mesh each internal
edge is shared by exactly two quads so we can write:

4F = 2E̊ + Ē. (4)

Thanks to the first equation of (3) the difference between two meshes that have
the same boundary satisfies

(Fa − Fb) + (Va − Vb)− (Ea − Eb) = 0,

so
(Fa − Fb) + (V̊a − V̊b)− (E̊a − E̊b) = 0.

Thanks to equation (4),

E̊a − E̊b = 2(Fa − Fb),

so
(V̊a − V̊b)− (Fa − Fb) = 0.

• Let us suppose that V̊a − V̊b = Fa − Fb. Then

(Fa − Fb) + (Va − Vb)− (Ea − Eb) = 0

gives
2(V̊a − V̊b) + (V̄a − V̄b)− (Ea − Eb) = 0.

Equation (4) gives 4(V̊a − V̊b) = 2(E̊a − E̊b) + (Ēa − Ēb), so

2(
−
Ea − Ēb)− 2(V̄a − V̄b) = Ēa − Ēb.

But on each quad mesh,
−
E = V̄ so

Ēa = Ēb.

3 Hexahedral Meshing and Local Modifications

As a complex of polyhedrons, a hex mesh satisfies the equation (1). Its boundary
is a polyhedron so it satisfies (2). On its boundary, each edge belongs exactly
to two quads and the number of hex times the number of faces per hex equals
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the number of boundary faces plus two times the number of internal faces. Then
any hes mesh is subject to the following system:⎧⎪⎪⎨⎪⎪⎩

V − E + F − P = 1
V̄ − Ē + F̄ = 2

Ē = 2F̄
F̄ + 2F̊ = 6P.

(5)

Proposition 2. A simply-connected hex mesh satisfies the following equations:

V̄ = F̄ + 2,

∑
j≥0, k≥3

(4− k)V k
j = 8,

P =
1
2

(
E̊ − V̊ − 1

)
+

F̄

4
.

Proof

• The second equation of system (5) combined with the third gives

V̄ = F̄ + 2.

• The number of boundary edges satisfies
∑

j≥0, k≥3

kV k
j = 2Ē = 4F̄ . As

F̄ = V̄ − 2, we have ∑
j≥0, k≥3

(4− k)V k
j = 8.

• The first minus the second equation of system (5) gives

V̊ − E̊ + F̊ − P = −1,

so with
◦
F= 3P − F̄

2 , we obtain

P =
1
2

(
E̊ − V̊ − 1

)
+

F̄

4
.

Mitchell [11] gives some necessary conditions for meshing a domain with compat-
ible hexes from an existing boundary quad mesh. This proposition gives another
one.

Theorem 3. The enclosed volume of a surface quad meshed with an even num-
ber of quads can be mesh with compatible hexes only if the number of vertices
with 3 edges of that surface mesh is greater than or equal to 8.

Proof. The second equation of the previous proposition gives∑
j≥0

V 3
j = 8 +

∑
j≥0, k≥5

(k − 4)V k
j .

Since k − 4 > 0 ∀k ≥ 5, we have
∑
j≥0

V 3
j ≥ 8.
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3.1 Elementary Hex Meshes Local Modifications

Considering a hex mesh, we want to modify it locally such that in some region we
modify a sub-mesh without changing the boundary. We also wish to investigate
the changes of parity (i.e., a transformation between two configurations, one
with an even number of hexes and the other with an odd number). As this is
not an easy problem, we consider first a simple case.

We want to deal with the simplest (in terms of connectivity between vertices)
sub-domain (sub-mesh) with more than one hex of any mesh. A mesh with only
3 edges per vertex is reduced to only one hex, so the simplest mesh should have
some vertices with more than 3 edges. That is why we’ve define the elementary
hex mesh and it implies some consequences.

Lemma 1. The interior of an elementary hex mesh is a mesh (internal mesh)
with at most one hex, one quad, one edge or one vertex.

Proof. We suppose that the interior of an elementary hex mesh is a union of non
connected (single) edges, vertices or faces. Then there is at least one boundary
vertex sharing one edge with at least one single part of that interior, and one
other edge with another boundary vertex or another single part of the interior of
that elementary hex mesh. So that boundary vertex will have five edges which
is not permitted. So, the interior of an elementary hex mesh has no single part;
it is an internal mesh (1 dimension mesh, quad mesh or hex mesh).

If the interior of an elementary hex mesh is a mesh with more than one hex,
there will be at least one boundary vertex of that internal mesh with four edges
(a vertex shared by two hexes) plus the edge connecting that vertex to the
boundary of that elementary hex mesh. This will give five edges, which is not
admitted. If it has no hex but more than one quad, each face of those quads
should belong to at least two different hexes (one per side). So each vertex of
the intersection of two of those quads will have at least five edges. This is not
admitted. If there is more than two aligned vertices, three for example, there will
be at least two internal faces around the middle vertex which should be coplanar.
So there is no way to have hexes above and below those faces by adding only
one edge to that middle vertex.

As each internal vertex has 4 edges, we have

4(V̊ + V 4
0 + V 3

1 ) + 3V 3
0 = 2E.

Each internal vertex belongs to exactly 4 hexes and to 6 faces, each boundary
vertex with no internal edge belongs to two hexes and to five faces, each boundary
vertex with one internal edge belongs to 3 hexes and to six faces and each
boundary vertex with only 3 edges belongs to only one hex and to 3 faces. So
we have

4V̊ + V 3
0 + 2V 4

0 + 3V 3
1 = 8P,

6V̊ + 3V 3
0 + 5V 4

0 + 6V 3
1 = 4F.
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Euler’s and Cauchy’s formulas (1),(2) give:

F − E + V − P = 1, F̄ − Ē + V̄ = 2.

Then
F̊ − E̊ + V̊ − P = −1.

We can say that an elementary hex mesh is a solution of the following system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2F̊ + F̄ = 6P
F̊ − E̊ + V̊ − P = −1

4(V̊ + V 4
0 + V 3

1 ) + 3V 3
0 = 2E

4V̊ + V 3
0 + 2V 4

0 + 3V 3
1 = 8P

6V̊ + 3V 3
0 + 5V 4

0 + 6V 3
1 = 4F

V 3
0 + V 4

0 + V 3
1 = 2 + F̄ .

(6)

It solution satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F̊ = 3P − F̄
2

V̊ = 2P + 1− F̄ + V 3
1

2
E̊ = 4P + 2− 2F̄ + V 3

1
2

V 4
0 = F̄ − 6

V 3
0 = 8− V 3

1 ,

(7)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F̊ = 6(V̊ − 1) + F̄ + 3V 3
1

4
P = 2(V̊ − 1) + F̄ + V 3

1
4

E̊ = 2V̊ + V 3
1
2

V 4
0 = F̄ − 6

V 3
0 = 8− V 3

1 .

(8)

Theorem 4

1. No elementary hex mesh with more than 7 hexes can be transformed into
another elementary hex mesh without changing its boundary quads.

2. The parity of an elementary hex mesh can’t be changed without modifying its
boundary quads.

Proof. Let us suppose that we have an elementary hex mesha that we want to
transform into another elementary hex meshb with the same boundary quads.

The number of transformations of any elementary hex mesh is the sum of the
number of different ways to connect the boundary of that mesh to its internal
mesh, each way times the number of possibles transformations of the interior
of the internal mesh associated. This because if we modify the position of any
boundary edge it will modify boundary quads. Thanks to the previous lemma,
the interior of any internal mesh of an elementary hex mesh is empty (no vertex).
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So the number of transformations is only the number of different possibilities to
connect the boundary of the elementary hex mesh to each of its possible internal
mesh. Let us examine how to modify the connection between the boundary and
the interior of an elementary hex mesh.

Of course we have that V 4
0 = F̄ − 6 as part of the solution of the system (6),

any transformation will keep the number of V 4
0 constant. The only possible mod-

ifications that can change the connection between the boundary and the interior,
is to interchange V 3

1 and V 3
0 . This means that any transformation will modify any

boundary vertex of the first configuration (mesha) that has 3 edges to a boundary
vertex of the second configuration (meshb) that has 3 boundary edges and one in-
ternal edge. If there is a boundary vertex that has 3 boundary edges not modified
while the others are modified, the hexes that it belong to will not be transformed.
So all the vertices that have 3 edges on the boundary will be modified by any trans-
formation. Then there is at the most one possible transformation of the mesha into
the meshb with the same boundary quads, which satisfies{

V 3
0 a = V 3

1 b

V 3
1 a = V 3

0 b

(9)

or {
V 3

0 a + V 3
0 b = 8

V 3
1 a + V 3

1 b = 8

Thanks to the previous lemma any internal mesh has at most one hex, so
V̊ ≤ 8.

Remark 1

•V 3
1 a is always even because the number of edges going from the internal mesh

(previous lemma) to the boundary is always even and when a boundary vertex
of the mesh a that has one internal edge is not connected to an internal vertex,
it is connected to the same type of boundary vertex.
• Thanks to the solutions (8) of the system (6), we have

Pa − Pb =
V̊a − V̊b + V 3

1 a − 4
2

.

This means that V̊a − V̊b have the same parity because V 3
1 a is always even.

Since F̄ is always even (by theorem 1), let us look at the possible values of V̊ in
the solutions (7).

• If V̊a = 8,
then V 3

1 a = 8 (each internal vertex will have one boundary edge). V 3
0 a =

0, V̊b = 0, Pa = 7; one internal hex + six around its faces; since those 7 hexes
have already 4 edges per vertex there is no way to add another one. In this
case, we have Pa − Pb = 6, so Pa + Pb = 8.

• If V̊a = 4,
those internal vertices form one face around which there are 6 hexes: one
above, one bellow and four around the four edges. Since each internal vertex
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has four edges we will have V 3
1 a = 8 and V 1

3 = 0. We have V 3
1 b = 0 so

V̊b = 0. As there is no way to add another hex to the first six hexes, Pa = 6;
we have Pa − Pb = 4 so Pa + Pb = 8.

• If V̊a = 2,
each internal vertex has four edges. We will have V 3

1 a = 6. Since V̊a and
V̊b have the same parity, V̊b = 0 or 2; the cases V̊ = 4 and V̊ = 8 have
been examined above. If V̊b = 2, then V 3

1 b = 6 which is absurd because of
system (9) and the fact that V 3

1 a = 6. So V̊b = 0 gives Pa − Pb = 2. For
the same reasons as in the previous cases Pa = 5 (around 2 internal vertices
there cannot be more or less than five hexes in an elementary hex mesh) then
Pa + Pb = 8.

• If V̊a =, 1
then V̊b = 1 (parity of both internal vertices); V 3

1 a = V 3
1 b = 4, Pa =

4, Pa −Pb = 0. With one internal edge, there is no way to have more or less
than four hexes in an elementary hex mesh; so Pa + Pb = 8.

• If V̊a = 0,
We will examine only the case V̊b = 0 because the other cases are contained
in the previous ones. Let us examine the number of V 3

1 a:
– If V 3

1 a = 0 we have Pa − Pb = −2, V 3
1 b = 8 and E̊b = 4 (see (8)).

So Pb = 5 (around four internal edges there cannot be more or less than
five hexes in an elementary hex mesh), so Pa + Pb = 8.

– If V 3
1 a = 2,

Then Pa − Pb = −1, V 3
1 b = 6, E̊a = 1 and E̊b = 3 (see (8)) so

Pa = 3. With one internal edge, we have at least 3 internal faces and 3
hexes. Each hex has four V 4

0 (two with each of the other hexes) and the
two V 3

1 , then we can’t have four V 3
0 on the same hex. This means that

there is no way to add another hex (you can extend an elementary hex
mesh by adding a hex to its boundary if and only if there is at least four
V 3

0 on the same boundary’s face). As Pa − Pb = −1 we have Pb = 4
which is absurd because E̊b = 3 with V̊b = 0.

– If V 3
1 a = 4,

then Pa − Pb = 0, E̊a = 2. There is no way to have Pa �= 4 because of
two internal edges. So once more Pa + Pb = 8.

– The cases V 3
1 a = 6 or 8 correspond to V 3

1 b = 2 or 0. They were already
examined for V 3

1 a.

Finally, in an elementary hex mesh transformation into another elementary hex
mesh with the boundary unchanged,

Pa + Pb = 8.

4 Flipping Quad and Hex Meshes

For Hexahedral and quadrilateral meshes, Bern and Eppstein’s operations de-
scribed in [1] as flipping for Hexahedral meshes and which are the extension
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in 3D of some of the quad refinement operations of Canann, Muthukrishnan
and Phillips [4] (figure 2), can be use to modify locally hexes inside a mesh
(figure 1). One property suggested in [1] for 2D flipping is that together with
the parity-changing operation, it should form a complete set. Here we show that
those flipping operations for quad or hex meshes are not linked.

Theorem 5. [9]
Each set of flipping transformations [1] represented in figures 2 and 1 is topolog-
ically free; i.e., you can’t go from one configuration to the other in a transforma-
tion using a combination of other transformations in a topological or geometrical
mesh.

Proof. The dual theory of mesh transformations and its sheet diagrams projec-
tions (see figure 3), [12], [13],[1] are more useful in this context, but it is not easy
to use them in this case for relationships between different flipping operations.
Our way is more algebraic.

Considering the number of new internal edges without a boundary vertex ne,
internal vertices nv, internal faces without any boundary edge nf , hexes nh in
3D and quads nq in 2D created or removed within each transformation, we model
them as follows:

(0, 0) ←→ (0, 0) =⇒ ± (0h, 0f , 0e, 0v)
(1, 1) ←→ (1, 1) =⇒ ± (0h, 0f , 0e, 0v)
(1, 0) ←→ (0, 1) =⇒ ± (2h, 0f , 1e, 2v)
(2, 0) ←→ (0, 2) =⇒ ± (4h, 1f , 4e, 4v)
(3, 0) ←→ (0, 3) =⇒ ± (6h, 6f , 12e, 8v)
(2, 1) ←→ (1, 2) =⇒ ± (2h, 0f , 0e, 0v) in 3D,

(0, 0) ←→ (0, 0) =⇒ ± (0q, 0e, 0v)
(1, 1) ←→ (1, 1) =⇒ ± (0q, 0e, 0v)
(1, 0) ←→ (0, 1) =⇒ ± (2q, 1e, 2v)
(2, 0) ←→ (0, 2) =⇒ ± (4q, 4e, 4v) in 2D.

So if each set of flipping operations is not free, we can write one of the right
right-hand side of the previous relationships as a linear combination of some
others with coefficients in Z. Let us look at these operations except (0, 0) ←→
(0, 0) and (1, 1) ←→ (1, 1) because those change nothing numerically; we have
to solve the following equations in Z for each of the unknowns fixed at 1 or
−1 (for example x = 1 means that you are going from the (1, 0) to the (0, 1)
configuration and x = −1 is for the (0, 1) to the (1, 0) configuration). We obtain

⎧⎪⎪⎨⎪⎪⎩
x + 2y + 3z + t = 0

y + 6z = 0
x + 4y + 12z = 0
x + 2y + 4z = 0

(10)
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Fig. 1. The Flips for hex meshes

for the hexes flipping, and {
x + 2y = 0
x + 4y = 0 (11)

for the quads flipping.
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(0,0) (0,0) (1,0) (0,1)

(1,1) (1,1) (2,0) (0,2)

Fig. 2. The Flips for quad meshes

Fig. 3. Hex mesh with three elements (top); dual surfaces (sheets) and dual vertices
shown. Two dimensional projection into “sheet diagrams” shown below.

For these two systems, x = y = z = t = 0 is the only solution. So there is
no linear combination with those transformations. Then each set of operations
without (0, 0) ←→ (0, 0) and (1, 1) ←→ (1, 1) is free. If we add the two other
operation, it will not change the equations, nor their solutions. The possible
solutions of those systems could have been considered as result of one of the two
previous operations when combining all the others, so we can conclude that each
set of flipping transformations is topologically free.

Theorem 6. (existence of elementary mesh transformations)
The set of hexahedral flipping operations [1] figure 1 form the set of transforma-
tions that keep unchanged the boundary of any mesh in the subset of elementary
hex meshes.
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Fig. 4. some 3 hexes configurations

Proof. As the Theorem 4 says that any elementary mesh transformation needs
at most 7 hexes and the sum of the hexes of the two configuration of the trans-
formation is always 8, this is the case with all the operations of the set of hex
flipping. Let us examine what happens for each number P of hexes between 1
and 7:

• If P = 1 we have only one possibility, F̄ = 6 and it gives the (3, 0) ←→ (0, 3)
flipping transformation.

• If P = 2 we have only one possibility, F̄ = 10 and it gives the (2, 0) ←→ (0, 2)
flipping transformation.

• If P = 3 we have two possibilities:
1. F̄ = 12 and it gives the (1, 0) ←→ (0, 1) flipping transformation.
2. F̄ = 14 for the left configuration of the previous figure, there is no pos-

sible transformation without having five edge on a boundary vertex. But
numerically, the solution of system (6) gives

Pb = 5, F̊b = 8, V̊b = 0, E̊b = 4

which corresponds to the (2, 1) ←→ (1, 2) flipping transformation.
• If P = 4, we have F̄ ≤ 18:

1. If F̄ = 18, the four hexes should be aligned, the solution of system (6)
tell us that the second configuration has a negative number of internal
edges, so there is no possible transformation.

2. If F̄ = 16, we will have V̊ = 1− V 3
1
2 . It means that V̊ = 0 or 2 any way V̊

will be negative in one of the two configurations, so there is no solution.
3. If F̄ = 14, we obtain the (1, 1) ←→ (1, 1).
4. If F̄ = 12, we obtain the (0, 0) ←→ (0, 0).
5. If F̄ ≤ 10, we will have F̊ ≥ 7. But a mesh with 4 hexes could not have

more than 6 internal faces, so there is no solution.
• If P = 5 we have F̄ ≤ 22 :

1. if 22 ≤ F̄ ≤ 16, there is one configuration where V̊ is negative.
2. For the case 14 and 12, it corresponds to the solutions obtained with

P = 3.
3. As a mesh with 5 hexes couldn’t have less than 10 boundary faces, if

F̄ = 10 the second configuration will have 3 hexes with 10 boundary
faces which is not realizable.
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• If P = 6, we have F̄ ≤ 26 :
1. If 26 ≤ F̄ ≤ 12 there is one configuration where V̊ is negative.
2. For the case F̄ = 10, it corresponds to the solution obtained with P = 2.
3. If F̄ < 10 the second configuration will have 2 hexes with less than 10

boundary faces which is not realizable.
• If P = 7, we have F̄ ≤ 30 :

1. If 30 ≤ F̄ ≤ 8, there is one configuration where V̊ is negative.
2. For the case 6, it corresponds to the solution obtained with P = 1.

So apart from the set of hex flips, there is no other transformation of an ele-
mentary hex mesh into another elementary hex mesh that keeps the boundary
unchanged.

5 Some New Hex Mesh Local Modifications

We have previously observed that there is no other local hex transformation with
an elementary hex mesh. So we are trying here to see what happens on a general
hex mesh. Let us call Me/v-hex mesh a hex mesh where the maximal number of
edges per vertex is M .

We tried to build local hex transformations for a 5e/v-hex mesh and obtained
four basic transformations: See figure 5, where (x, y) denotes x the number of
boundary faces and y the number of hexes. Those mesh files in medit [6] format,
are available at http://www.ann.jussieu.fr/∼kuate/meshes.html

These basic transformations can be extended by adding k layers of suitable
hexes, k ∈ N, between the group of hexes on each side of those transformations
(figure 6).

Fig. 5. Some basic 5e/v-hex meshes local transformations
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Fig. 6. Some 5e/v-hex meshes local transformations, k ∈ N

Theorem 7. For each fixed value of k, k ∈ N, the set of four transformations
obtained by adding k layers of suitable hexes on each configuration of the four
basic 5e/v-hex meshes local transformations (figure 6), is topologically free.

Proof. The same reasoning done in Theorem 5 gives the result.

6 Conclusion

We have described some properties of local transformations on quad meshes
and essentially of the hex flipping transformations of Bern et. al. [1], from a
geometrical and combinatorial point of view. This view allow us to propose a
new set of basic local transformations for hexahedral meshes. We find that the
sum of the number of hexes on both sides of each existing hexahedral local
transformation equals 2 + 6k, k ∈ N, k = 1 corresponds to the set of Bern
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et. al. and k ≥ 2 to ours. Then all those geometrical transformations cannot
change the parity of the mesh. It would be interesting to prove that the previous
relationship is the only one that is possible to have on any geometrical hex mesh
with less than 6 edges per vertex. Therefore the problem of parity changing on a
geometrical hex mesh in more complicated situations (some vertices should have
more than 5 edges) may be considered.

We thank the reviewers for their comments which helped to improve the
quality of this paper. We thank Paulo Amorim who helped us. We also thank
the CEMRACS 2007 and its organizing committee P. Frey et. al. who where
at the origin of this collaboration between Laboratoire Jacques-Louis Lions and
Sandia National Laboratories, which produced this work.
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Summary. This paper presents a new method for handling non-conforming hexahedral-
to-hexahedral interfaces. One or both of the adjacent hexahedral meshes are locally mod-
ified to create a one-to-one mapping between between the mesh nodes and quadrilaterals
at the interface allowing a conforming mesh to be created. In the finite element method,
non-conforming interfaces are currently handled using constraint conditions such as gap-
elements, tied contacts, or multi-point constraints. By creating a conforming mesh, the
need for constraint conditions is eliminated resulting in a smoother, more precise nu-
merical solution. The method presented in this paper uses hexahedral dual operations,
including pillowing, sheet extraction, dicing and column collapse operations, to affect the
local mesh modifications. In addition, an extension to pillowing, called sheet inflation,
is introduced to handle the insertion of self-intersecting and self-touching sheets. The
quality of the resultant conforming hexahedral mesh is high and the increase in number
of elements is moderate.

1 Introduction

The finite element method is an indispensable part of the design through analysis
process. Mesh generation is often a key bottleneck preventing broader use of
the finite element method. The method utilized to handle interface conditions
between assembly components can have a dramatic impact on the quality of
the solution. Commonly, two spatially adjacent geometric volumes must behave
as a single component, and under ideal conditions, a conforming mesh will be
created between components. A conforming mesh ensures a smooth and accurate
interpolation of the solution to the governing equations over the interface, and
also improves solution efficiency by minimizing the number of equations that
must be solved. Although conforming meshes are preferable, non-conforming
meshes are regularly encountered for a variety of reasons including:

1. Different engineers created the mesh on the different components.
2. The meshing algorithm used on the model did not honor boundary meshing

constraints [1, 2].
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under Contract DE-
AC04-94AL85000.
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3. Difficulties in generating the mesh required a different mesh topology on the
interfacing surfaces for the two components. For example, utilizing hexahe-
dral sweeping [3, 4], one interface surface may be required to be a linking-
surface requiring a mapped mesh, while the other interface surface may be
a source surface allowing a paved mesh.

4. The desired density of elements is different in the two components.

The current state of the art is to artificially constrain the non-conforming
meshes with multi-point constraints, tied contacts, or gap elements [5, 6, 7, 8]
to maintain solution continuity across the interface. However, these methods
typically result in solution quality degradation, disjoint solution fields, and/or
adverse effects on solution convergence. Thus, these non-conforming interface
conditions should only be used in non-critical regions of the model. A conforming
interface is preferred, whenever possible.

In this paper, we present a new algorithm, entitled ‘mesh matching’, which
converts non-conforming hexahedral-to-hexahedral interfaces into conforming in-
terfaces. This new method locally modifies the topology of the hexahedral ele-
ments in one or both of the adjacent hexahedral meshes to create a one-to-one
pairing of nodes and quadrilaterals on the interface surfaces so that the meshes
can be merged into a conforming mesh across the interface. As with any mesh
modification procedure, the quality of the modified elements may be reduced
from the initial mesh quality; however, assuming the element quality remains
above prescribed element quality thresholds, the benefits of having a conforming
mesh may compensate for the reduction in element quality.

This paper is organized as follows: Section 2 reviews existing hexahedral mesh
topology and modification theory used during mesh matching. In Section 3 a new
mesh topology operator is defined. In Section 4, the mesh matching algorithm is
presented. In Section 5, two examples of mesh matching are provided. Finally, in
Section 6, we provide some concluding remarks along with some areas of current
and future efforts.

2 Previous Research – The Hexahedral Mesh Dual

The dual of a hexahedral mesh [9, 10] is an alternate representation of the mesh
composed of sheets and columns of hexahedral elements in the interior of the
mesh, and chords and vertices on the boundary of the mesh.

Fig. 1. A hexahedral element has 12 edges organized as 3 sets of 4 parallel edges
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Dual Sheets and Columns

Figure 1 illustrates how the 12 edges on a hexahedral element can be divided into
three sets of four edges. The four edges in each set are topologically parallel to
each other (i.e. do not share any nodes, but have one or more common adjacent
hexahedra). Given one edge, the other three topologically parallel edges in each
adjacent hexahedra can be identified. From each of these edges a similar set of
topologically parallel edges can be recursively gathered from each of the adjacent
hexahedra extending through the mesh. Thus, a dual sheet, Si, can be defined
as a set of topologically parallel edges. Alternatively, Si can also be defined as
the set of hexahedral elements traversed to build this set of edges. Figure 2b
shows a single dual sheet uniquely defined by traversing starting from edge A
in Figure 2a. A dual sheet is self-intersecting if any hexahedron in the sheet has
more than one of its three edge sets in the definition of the sheet (Figure 2c). A
dual sheet is self-touching if two or more edges defining the sheet use the same
mesh node (Figure 9d and Figure 10c).

A hexahedral element contains six quadrilateral faces, grouped into three pairs
of topologically opposite quadrilaterals. From a single quadrilateral, a column
of hexahedra is defined by traversing adjacent hexahedra through their topolog-
ically opposite quadrilaterals. Thus a dual column, Ci, is defined as the set of
topologically opposite quadrilaterals of adjacent hexahedra. Alternatively, Ci is
defined as the set of hexahedral elements traversed to locate this set of quadrilat-
erals. Figure 3b illustrates the dual column defined by quadrilateral face A speci-
fied in Figure 3a. An important link between sheets and columns is that a column
defines the intersection of two sheets (Figure 3c). A column is self-intersecting
if any hexahedron in the column has more than one of its quadrilateral pairs in
the definition of the column (Figure 3d).

Fig. 2. Hexahedral Dual Sheets: (a) A simple mesh with two edges, A and B, identified.
(b) The dual sheet uniquely identified by edge A. (c) A self-intersecting sheet identified
by edge B.

Dual on the Boundary of a Hexahedral Mesh

The boundary of a mesh is the set of quadrilaterals which have exactly one
adjacent hexahedron. These quadrilaterals can be grouped based on their as-
sociated geometric surface. Quadrilateral meshes have a dual representation of
dual chords and vertices. The four edges on a quadrilateral are grouped into two
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Fig. 3. Hexahedral Dual Columns: (a) Hex mesh with highlighted quadrilateral A. (b)
The column of hexahedra defined by quadrilateral A. (c) The sheets which intersect to
form the column in (b). (d) A self-intersecting column.

Fig. 4. Boundary quad meshes and their dual: (a) A hexahedral mesh. (b) One bound-
ary surface mesh. (c) A single dual chord. (d) The complete surface dual.

pairs of topologically opposite edges. A dual chord is uniquely defined starting
from a single edge and traversing adjacent quadrilaterals through opposite edges
(Figure 4). This process is repeated until every edge in the quadrilateral mesh
has been associated with a dual chord. Thus, a dual chord, ci, can be defined as
a set of the topologically opposite edges on a quadrilateral mesh. Alternatively,
ci can also be defined as the quadrilaterals that were traversed to build this
set of edges. Finally, a dual chord ci can also be defined as the collection of line
segments connecting the centroids (dual vertices, vi) of this set of quadrilaterals.
A dual chord is self-intersecting if any quadrilateral in the chord has all four of
its edges in the definition of the chord. Associated with each dual chord, ci, is
the dual sheet, Si, defined by traversing topologically parallel edges from any
edges in ci. Likewise, associated with each dual vertex, vi, is a dual column, Ci,
defined by traversing topologically opposite quadrilaterals from the quadrilateral
associated with vi.

2.1 Dual Topological Operators

The matching procedure described in Section 4 performs a series of topological
operations on hexahedral dual sheets and columns. Sheet extraction [11] removes
a dual sheet by collapsing all edges that define it, reducing it to a continuous set
of quadrilateral faces (Figure 5). Any sheet topology, including self-intersecting
and self-touching sheets, can be extracted. Sheet extraction is not always possible
due to geometric nodal associativity. That is, when collapsing the edges that
define a sheet, the two nodes on each edge are merged. If two edge nodes have
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Fig. 5. Hexahedral sheet extraction: (a) A hexahedral mesh with one dual sheet. (b)
The edges are collapsed to extract the sheet. (c) The sheet is extracted. (d) The sheet
becomes a continuous set of quadrilaterals.

Fig. 6. Pillowing: (a) A hexahedral mesh with a shrink set of five hex elements iden-
tified. (b) A pillow is inserted. (c) The pillow sheet.

Fig. 7. Dicing: (a) A hexahedral mesh with one dual sheet indicated. (b) The sheet is
diced into three sheets.

conflicting geometric associativities, the edge cannot be collapsed. However, the
sheet can be extracted if preceded by a sheet insertion to add sufficient mesh
topology. In addition, low node valency in the region of the sheet extraction can
sometimes lead to doublets [12], resulting in ill-shaped elements with zero or
negative scaled Jacobians [13].

Pillowing [10, 12, 14] is a method of inserting new dual sheets into a mesh. Pil-
lowing is performed by identifying a set of hexahedral elements as the shrink set
(Figure 6a). The hexahedra in the shrink set are separated from the remainder
of the mesh by a ‘shrink’ distance, allowing the placement of a new sheet be-
tween the shrink set and the other hexahedra in the mesh (Figures 6b and 6c).
The new sheet is always non-self-intersecting and non-self-touching. In contrast to
sheet extraction, pillowing is always possible given a well-defined shrink set. Since
its introduction by Mitchell [12], it has been applied in many mesh modification
procedures [10, 15, 16, 17, 18].
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Dicing [19] is another method of inserting dual sheets into a mesh. Dicing is
performed by splitting the edges that define an existing dual sheet. Dicing can
insert multiple sheets at once by splitting each edge multiple times (Figure 7).
The new sheets inserted with dicing are duplicates of the input sheet; if the
input sheet is self-intersecting, the new sheets will also be self-intersecting. The
disadvantage of dicing is that it can only copy existing sheets (i.e., it cannot
create new sheets that did not already exist in the mesh). In addition, dicing
cannot create self-touching sheets.

The column collapse operation is also an important dual operation (Figure 8).
A column is collapsed by merging one pair of opposite nodes of each quadrilateral
defining the column. As described in Section 2, a dual column defines the inter-
section of two dual sheets. This intersection is removed by collapsing the column.
In addition, the paths of the two sheets is altered. Collapsing self-intersecting
columns creates doublets [12] and should be avoided.

Fig. 8. Column collapse: (a) A hexahedral mesh with one dual column indicated.
(b) The sheets that intersect to define the column drawn separate from the mesh. (c)
Opposite nodes are merged to collapse the column. (d) The sheets defining the column
no longer intersect. (e) The entire mesh after the column collapse.

3 Sheet Inflation – Generalized Sheet Insertion

The mesh matching algorithm presented in Section 4 requires the ability to in-
sert any kind of sheet including both self-intersecting and self-touching sheets.
Previous research allows the insertion of sheets through pillowing and dicing.
However, neither pillowing nor dicing can insert self-touching sheets, and pillow-
ing is unable to insert self-intersecting sheets. Dicing can insert self-intersecting
sheets, but only if an existing self-intersecting sheet exists in the correct location
of the mesh. Hence, a sheet insertion operator which inserts both self-intersecting
and self-touching sheets is required.

Sheet inflation can be thought of as the reverse of sheet extraction. In sheet ex-
traction, a dual sheet is reduced to a continuous set of quadrilaterals. This process
can be reversed by inflating the quadrilaterals to re-introduce the extracted sheet.
Knupp et al. [14] introduced a similar operator with the inflate hex ring which
inflates a set of quadrilaterals into a new dual column. For sheet inflation, the
boundary of the quadrilateral set must lie on the boundary of the hex mesh. Self-
intersecting and self-touching sheets are inserted by inflating quadrilateral sets
with non-manifold edges. A set of non-manifold edges with four adjacent quadri-
laterals (i.e. 4NMEsets) can be inflated as either a self-intersecting (Figure 9c)



Mesh Matching – Creating Conforming Interfaces 473

Fig. 9. Sheet inflation example #1: (a) A simple hex mesh with boundary edges
indicated. (b) A non-manifold continuous set of quadrilaterals bounded by the indicated
boundary edges in (a). The highlighted edges form a 4NMEset. (c) A self-intersecting
sheet inflation option. (d) A self-touching sheet inflation option.

Fig. 10. Sheet inflation example #2: (a) A simple hex mesh with boundary edges
indicated. (b) A non-manifold continuous set of quadrilaterals bounded by the indicated
boundary edges in (a). The highlighted edges form two 3NMEsets. (c) A self-touching
sheet inflation option. (d) A self-touching and self-intersecting sheet inflation option.

or a self-touching sheet (9d). A set of non-manifold edges with three adjacent adja-
cent quadrilaterals (i.e. 3NMEsets) can be inflated as either self-touching (Figure
10c), or self-touching and self-intersecting (Figure 10d). Thus each non-manifold
edge set can be inflated in two different ways. The input to sheet inflation requires
each non-manifold edge set have a flag indicating which option should be per-
formed. 3NMEsets must appear in the quadrilateral set in pairs, or be paired with
a boundary.

For manifold sets of quadrilaterals, sheet inflation is the same as pillowing
the hexahedra on one side of the quadrilaterals set. Thus, sheet inflation can be
implemented in a manner similar to pillowing, with the following three differences
caused by the non-manifold edge sets:

1. Multiple shrink sets are required, partitioned from each other by the non-
manifold edge sets.

2. Nodes along non-manifold edge sets must be duplicated either twice for self-
touching sheets, or three times for self-intersecting sheets.

3. Quadrilaterals which lie between two 3NMEsets must be duplicated twice,
and the resulting gap is filled with two hexahedra instead of one.
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4 Hexahedral Mesh Matching

4.1 Mesh Matching Input Requirements

The input requirements of the mesh matching algorithm are:

1. Two geometric surfaces, A and B, that are:
a) Topologically identical (The number of boundary curves, loops, and ver-

tices defining the two surfaces must be the same),
b) Geometrically similar (each boundary curve/vertex on Surface A must

have a corresponding boundary curve/vertex on Surface B that is within
a tolerance, β), and

c) Both adjacent to hexahedral mesh elements.
2. An integer value for a depth parameter indicating how many layers into the

adjacent hexahedral meshes the modifications can propagate.
3. A flag indicating which (or both) of the surfaces can have their mesh topology

modified. The simplest case is that both meshes can be modified, but all
changes can be done on one side of the interface if necessary.

If input requirement 1a or 1b are not met by the initial hexahedral meshes, the
Graft Tool [18] can be used to imprint the boundaries of the interface surfaces
onto each other.

4.2 Mesh Matching Procedure

Figure 11a illustrates a two-volume model positioned such that Surface A on Vol-
ume A overlaps exactly with Surface B on Volume B meeting the input require-
ments in Section 4.1. However, as seen in Figures 11b and 11c, the quadrilateral
meshes on Surfaces A and B do not match. In this case, the non-conforming
mesh was created because the topology of Volume B requires Surface B to be
a linking surface for sweeping, while the topology of Volume A requires Surface
A to be a source surface for sweeping. The resulting mesh is non-conforming
as shown in Figure 11d and 11e. The objective is to modify the mesh topology
of one or both of the adjacent hexahedral meshes such that the quadrilateral
meshes on Surfaces A and B match, node-for-node and quad-for-quad. The node
pairs can then be merged resulting in a conforming mesh across the interface.

We make the following assertion:

Assertion 1: Given two geometric surfaces, A and B, which meet the input
requirements stated in Section 4.1, the topology of the two adjacent hexahedral
meshes can always be modified to create identical quadrilateral mesh topology
on both Surfaces A and B, which can then be merged to create a conforming
hexahedral mesh across the interface.

Rationale: Two quadrilateral meshes will be topologically identical iff the duals
of the two quadrilateral meshes are identical. Let ΩcA and ΩcB be the sets of
chords, ci, in the quadrilateral meshes on Surfaces A and B respectively. Initially
ΩcA �= ΩcB. However, through sheet insertion and extraction, dual chords can
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Fig. 11. Non-Conforming mesh example: (a) Geometric model composed to two vol-
umes, A and B. (b) The mesh on Volume A. (c) The mesh on Volume B. (d) The complete
mesh showing the discontinuity in the mesh. (e) Zoom-in of mesh discontinuity.

be inserted and extracted from boundary quadrilateral meshes. Thus, one or
both of ΩcA and ΩcB can be modified such that they do match. The algorithm
of mesh matching is then:

1. For each ci ∈ ΩcA:
a) Search for a cj ∈ΩcB such that cj = ci within a tolerance, δ. If an equal cj

is found, insert ci and cj into Ωc−pairs, else, insert ci into ΩcA−unmatched.
2. For each cj ∈ ΩcB:

a) If cj /∈ Ωc−pairs insert cj into ΩcB−unmatched.
3. For each ci ∈ ΩcA−unmatched:

a) Use the following rules to determine if ci should be inserted into ΩcB or
extracted from ΩcA:
i. No ci should be extracted if doing so violates geometric associativity

(see Section 2.1).
ii. No ci should be extracted if doing so creates doublet topology.
iii. Sheet insertions should be done if mesh density has already been

decreased bordering upon acceptability thresholds.
iv. Sheet extractions should be done if mesh density has already been

increased bordering upon acceptability thresholds.
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v. If insertion is done:
A. Project ci onto Surface B, and find a continuous set of mesh

edges, EB , on Surface B which approximate this projection.
B. Use dicing if ∃ cj ∈ ΩcB such that cj = EB with a tolerance, γ,

where γ >> δ.
C. Use pillowing if a well-connected shrink set can be defined behind

the quadrilaterals on one side of EB .
D. Otherwise, use sheet inflation on a continuous quadrilateral set

which contains EB on its boundary.
vi. If extraction is done, consider doing a column collapse (see example

1 in Section 5.1) in order to avoid global changes.
b) If ci is to be extracted, remove ci from ΩcA and ΩcA−unmatched

c) If ci is to be inserted, remove ci from ΩcA−unmatched, and insert it along
with the newly inserted chord into Ωc−pairs.

4. Repeat Step 3 for each cj ∈ ΩcB−unmatched

5. Smooth all nodes local to the interface surface modifications to improve
element quality [21].

The ‘Chord Equals’ Operator

In order to perform Step 1a and Step 3avB, ci = cj must be defined:

Definition 1. ci = cj, within a tolerance, δ, iff the maximum distance between
ci and all vk in cj is less than δ AND the maximum distance between cj and all
vk in ci is also less than δ.

ci = cj does not require ci and cj to have the same number of dual vertices.
Rather, ci = cj if the two chords are spatially close to each other. For example,
in Figure 12 the two indicated chords have 16 and 15 chord vertices. However,
when the two surfaces are overlaid, the maximum distance between the two
chords is less than δ. Thus, these two chords are equal.

In short, mesh matching implements Shepherd’s [20] 2nd assertion which
states: There exists a transformation that converts one set of fundamental sheets

Fig. 12. The mesh topology of example Surfaces A and B. Although the indicated
chords have different number of dual vertices, they are still spatially within δ when
overlaid.
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into an alternative set of fundamental sheets. This assertion can be generalized
as follows:

Assertion 2: There exists a transformation that converts one hexahedral mesh
into any other hexahedral mesh on a given geometry.

Rationale: Any sheet can be extracted from a mesh. If geometric associativity
would be violated by sheet extraction, the sheet can be extracted after a sheet
insertion to adequately add the appropriate mesh topology. In addition, any
sheet can be inserted, including self-touching and self-intersecting sheets. Thus
any sheet not matching the goal topology can be extracted, and any missing
sheet can be inserted. In the case of mesh matching, the hexahedral mesh to
convert to is a mesh which matches across the interface.

5 Examples

5.1 Simple Example

We now illustrate mesh matching on the simple example from Figure 11. Figure
13a identifies a chord, ci, in Surface A, which has no pair in Surface B. In Figure
13b, a string of edges, EB , on Surface B is identified which roughly matches the
projection of ci. EB partitions the surface quadrilaterals into two sets, of which,
one is chosen (normally the smaller set). A pillow shrink set is then defined as
the hexahedral elements behind the chosen quadrilateral set. The input depth
parameter is used to determine how far into the volume to propagate to build the
shrink set. Figures 13c and 13d show the mesh after the pillow is inserted using
depth=2, followed by appropriate smoothing [21]. The resulting new chord in
Surface B is then paired with the identified unpaired chord in Figure 13a. Figure
14 repeats this process for another unpaired chord in Surface A.

Figure 15 illustrates the use of dicing to introduce topology required for mesh
matching. In Figure 15a, three topologically parallel chords are indicated. One
of these three chords is paired with the chord indicated in Figure 15b, which
is diced, followed by smoothing, introducing the required topology to match all
three chords. After these three operations, the topology on the left side of Surface
B is beginning to match the topology on the left side of Surface A. Additional
sheets are inserted and extracted until the mesh topology on these two surfaces
matches.

Sheet Extraction for Mesh Matching

Although all required topology can be introduced with sheet insertion, doing
so will have the potentially undesirable side-effect of increasing the density of
the mesh local to the interface surfaces. Sheet extraction is useful in reducing
or eliminating the increase in mesh density. For example, Figure 16a shows the
mesh topology on Surface A with one unpaired chord indicated. Figure 16b shows
the mesh topology of Surface B; clearly the chord indicated in Figure 16a has
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Fig. 13. Pillowing during mesh matching: (a) The mesh topology on Surface A with
one non-paired chord, ci, indicated. (b) The mesh topology on Surface B with a string
of mesh edges, EB, indicating where pillowing will be performed. (c) Surface B after
pillowing is performed. (d) Volume B after pillowing is performed.

Fig. 14. Pillowing during mesh matching: (a) The mesh topology on Surface A with
one non-paired chord, ci, indicated. (b) The mesh topology on Surface B with a string
of mesh edges, EB, indicating where the 2nd pillow will be inserted. (c) Surface B after
pillowing is performed. (d) Volume B after pillowing is performed.

Fig. 15. Dicing during mesh matching: (a) The mesh topology on Surface A with
three chords indicated. (b) The mesh topology on Surface B with a single chord to be
diced indicated. (c) Surface B after dicing is performed. (d) Volume B after dicing is
performed.

no match in Surface B. Figure 16c shows the mesh in Volume A. The indicated
sheet is extracted from the mesh as shown in Figure 16d which removes the
unpaired chord in 16a from Surface A as shown in Figure 16e.
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Fig. 16. Sheet extraction during mesh matching: (a) The mesh topology on Surface A
with one unpaired chords indicated. (b) The mesh topology on Surface B. (c) Volume
A with the sheet extending from the chord indicated in (a) highlighted. (d) Volume A
after indicated sheet is extracted. (e) Surface A the sheet is extracted.

Fig. 17. Localized sheet extraction during mesh matching: (a) The mesh in Volume
A with two sheets identified, the one to extract, and one that remains local to the
interface surface. (b) The column where the two indicated sheets intersect has been
collapsed, redirecting the sheet to extract to remain local to the interface region. (c)
After sheet extraction; all changes are local to interface surfaces.

One potentially undesirable side-effect of sheet extraction is that the entire
sheet must be extracted in order to maintain a conforming all-hexahedral mesh.
Figure 16c clearly shows that the sheet to be extracted extends far away from
the interface surfaces, resulting in a global change. However, the changes can be
kept local to the region around Surface A if we first perform a column collapse
operation (see Section 2.1). For example, in Figure 17a one additional sheet,
which remains local to the interface surfaces, is identified. If such a local sheet
does not exist in the mesh, one can be inserted by pillowing a few layers of
hexahedra away from the interface surfaces. As described in Section 2, the two
sheets indicated in Figure 17a intersect in a column of hexahedra. By collapsing
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Fig. 18. Final mesh after mesh matching: (a) Final conforming mesh on example model
after all topology on interface surfaces was matched. (b) The final mesh topology on
the interface surface.

Table 1. Element Quality Results for Simple Example Model

Number of Minimum Scaled
Elements Jacobian

Before Matching 5,925 0.7334
After Matching 6,024 0.5335

this column, we redirect the sheet to extract in such a way that it now remains
local to the interface surfaces as illustrated in Figure 17b. The extraction sheet
can then be extracted as illustrated in Figure 17c keeping all changes local to
the interface surfaces.

The pillow, sheet inflation, sheet extraction, dicing and column collapse op-
erations can be applied repeatedly until the topology on the interface surfaces
matches allowing the mesh to be merged into a single conforming mesh. Figure 18a
shows the final mesh with the final interface quadrilateral mesh shown in
Figure 18b. Table 1 shows the element counts and element quality before and af-
ter mesh matching. As with any hexahedral mesh modification, mesh matching
introduces irregular nodes into the mesh topology which will tend to decrease ele-
ment quality. In this case, the resulting mesh has a minimum scaled Jacobian [13]
of 0.5335, which is still well suited for analysis.

In the case that one side of the interface cannot be changed, the dicing, pillow-
ing, and sheet extraction operations are restricted to be performed only where
changes are allowed. For example if Surface A cannot be modified, all unpaired
chords in Surface B are removed through sheet extraction in Volume B. Like-
wise, any unpaired chords in Surface A are inserted into Surface B through sheet
insertion in Volume B. Thus, Surface and Volume A remain unchanged. If ex-
traction of a sheet is required that would result in invalid geometric associativity,



Mesh Matching – Creating Conforming Interfaces 481

Fig. 19. Industrial example: (a) An I-beam structure for a civil engineering application.
(b) Close look at interface between diagonal stiffener and corner I-Beams. The meshes
do not matches at the interface. This model provided courtesy of Tyler Josephson and
Professor Paul Richards from the Civil and Environmental Engineering Department at
Brigham Young University.

this sheet can be redirected before the extraction using a column collapse thus
allowing it to be extracted.

5.2 Industry Example

Figure 19a shows an I-beam structure used in a civil engineering application. The
critical component to be analyzed is the diagonal stiffener. In fact, as part of the
analysis, several different designs of the stiffener as well as adaptive studies using
different size elements will be used. The mesh on the rectangular I-beams has
approximately one million hexahedral elements, and required significant effort
to generate. Ideally each time a new stiffener is introduced, the existing mesh on
the rectangular I-beam structure can be re-used rather than requiring it to be
re-meshed. The concepts of mesh matching presented in this paper apply to this
application since every time a new mesh is generated for the stiffener, the mesh
matching algorithm can be run on the connection with the rectangular I-beam
structure to create a conforming mesh.

Figure 19b shows a close up of the corner of the structure where the stiffener
connects to the corner plate. The stiffener is meshed with hexahedral elements
that are slightly smaller than that of the corner plate. As a result, we have a

Table 2. Element Quality Results for I-beam Model before and after mesh matching

Number of Element Minimum Scaled
in Corner Plate Jacobian

Before Mesh Matching 4,611 0.6624
After Mesh Matching - course Stiffener 7,221 0.5872
After Mesh Matching - fine Stiffener 17,883 0.4924
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Fig. 20. Industrial example: (a) The mesh on the interface surface on the corner plate.
(b) The mesh after mesh matching. The mesh topology was matched and merged into
a single all-hexahedral mesh. The highlighted elements indicate the sheets that were
inserted during mesh matching.

Fig. 21. Industrial Example: (a) The same I-beam model before mesh matching, this
time stiffener is meshed at a much higher density. (b) After mesh matching.

non-conforming mesh. Figure 20a shows the interface surface on the corner plate.
It is meshed with 21×24 mapped quadrilateral mesh. The interface surface on
the stiffener is meshed with a 29×30 mapped quadrilateral mesh. The mesh
matching algorithm will need to increase the density of elements in the corner
plate so that it also has a 29×30 mapped quadrilateral mesh so that the mesh
on the interface can be merged. Figure 20b illustrates the mesh after successfully
creating a conforming mesh using mesh matching.

Figure 21a shows the same I-beam model, however, the stiffener has been
meshed at a much higher density of elements. The element size difference be-
tween the stiffener and the corner plate is 2.3 to 1. Rather than remeshing the
rectangular I-beam structure, mesh matching is used to enforce a conforming
mesh across the interface. Figure 21b shows the mesh after mesh matching has
successfully matched the mesh topology on the interface creating a conforming
all-hexahedral mesh through the interface. Table 2 shows the element count and
element qualities before and after mesh matching. As with the first example, al-
though element quality is reduced some by mesh matching, the resulting element
qualities are still suitable for analysis.



Mesh Matching – Creating Conforming Interfaces 483

6 Conclusion and Future Work

A new computational method, called mesh matching, for converting non-
conforming hexahedral-to-hexahedral mesh interfaces into conforming interfaces
utilizing localized hexahedral topology modification methods has been presented.
Mesh matching eliminates the need for artificial constraint conditions, such as
tied contacts, gap elements, and multi-point constraints. Mesh topology is mod-
ified using the dual operators of column collapse, dicing, pillowing, and sheet
extraction, along with a new operator, sheet inflation.

Many meshing algorithms require entire assemblies to be meshed at once
in order to have conforming meshes between components [1, 2]. Mesh match-
ing relaxes this requirement by creating conforming meshes between assembly
components after each component is meshed individually. Further, Tautges [22]
asserts that hex meshing would be greatly simplified if global coupling between
assemblies could be reduced or eliminated. Mesh matching reduces global cou-
pling by enforcing a conforming mesh after the initial meshes have been created.
Thus, mesh matching has the potential to greatly simplify the generation of
conforming assembly hexahedral meshes.

Research on mesh matching continues with focus in the following areas. First,
mesh matching requires repeated dicing, pillowing, sheet extraction, and sheet
inflation. The example in Figure 21 required more than 50 pillowing operations.
Manually specifying 50 shrink sets is a tedious task that is best automated.
Second, mesh matching requires the interface be limited to two topologically
identical and spatially similar surfaces. In practice, interface conditions often
include multiple adjacent surfaces on each component. Compared to a serial
approach, simultaneous matching of all interface surfaces will likely result in a
more optimal mesh. Third, mesh matching theory depends upon Assertion 1 in
Section 4.2. Future research to prove this assertion will guarantee the usefulness
of mesh matching. The unproven elements of Assertion 1 involve guaranteeing
that sheet inflation is always possible for any possible hexahedral topology.
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Summary. The paper presents an inside-out method for conformal meshing of mul-
tiple domains in contact applicable to meshes consisting of arbitrary polyhedra. The
method is automatic and does not require high-quality surface triangulation. It is an
extension of AVL’s automatic polyhedral mesh generator FAME with an additional
step during which the cells are distributed to their domains and the internal interfaces
are captured. Several industrial examples are provided to demonstrate the potential of
the method.

1 Introduction

Problems occurring in engineering practice often include two or more materials in-
teracting with each other. Some examples of such problems are: heat exchange be-
tween coolant in the cooling jacket of an engine and the engine block, flow and heat
transfer in a heat exchanger, multiphase flows, fluid-structure interaction, balance
of masses in crankshafts, etc. The geometries of such devices are very complex and
their simulation often requires high amount of manual work, which is often tedious
and time consuming. The main reason for these problems lies in the mesh gener-
ation process, which is usually the bottleneck of the simulation [22].

Automatic mesh-generation methods can be classified into two main groups,
namely, boundary-to-interior and inside-outmethods. Boundary-to-interiormeth-
ods start the mesh-generation process at the boundary and then proceed to the
generation of the volume mesh. These methods fall into two categories: Advanc-
ing front methods [9, 12] and Delaunay methods [5, 6]. On the contrary, inside-out
methods start the meshing process by generating the interior mesh template first
which is then connected with the boundary. Thesemethods [21, 1, 11, 19, 15, 16, 14]
have received a great deal attention during the last decade, and have enjoyed a
great deal of success in the industrial environment due to the fact they do not
require high quality surface triangulations and complex algorithms to analyse the
topology of the geometryunder consideration. The method implemented in FAME
is based on the template, generated from a background octree, mainly consisting
of hexahedral cells, while the transition regions between the fine and coarse mesh
are filled with prisms and pyramids. Treatment of outer boundaries follows the
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approaches of Wang et. al. [21] and Tchon et. al. [19] because they are not very
sensitive to the quality of the surface mesh.

Methods for capturing internal surfaces have mainly been used in the context
of adaptive re-meshing. Some examples where the interface is tracked during
the calculation can be found for mould casting [13], two-phase flows on Voronoi
meshes [2], rising of air bubbles in the water [20] and many more. However,
the literature on mesh generation methods for multiple domains in contact are
quite limited. Sullivan et. al. [18] have presented a method generating tetrahe-
dral meshes in multiple complex domains. Surface facets are determined based
on nodal distances from the surface, which is not reliable in case of bad qual-
ity surface meshes. Kim et. al. have discussed their approach in [10] aimed for
modelling of composite materials and cloths. The position of the internal sur-
faces is prescribed by using analytical functions for the threads in the composite
matrix, and the internal surfaces are captured by using element splitting and
node relocations. Togashi et. al. [8] developed a method for multiple bodies in
contact using overset meshes. Shepherd [17] has implemented a similar method
for capturing internal surfaces to the one presented in this paper. The method
finds the template cells intersected by the internal surface and distributes all of
them to one of the materials at inner boundaries. The approach presented in this
paper distributes the intersected cells depending on the number of neighbours an
intersected cell shares with each material, and distributes the cell to the material
with most neighbours. This results in the lowest number of cells with more than
one face at the inner boundary and the lowest number of deformed cells after
the mapping stage.

This paper presents an inside-out method, applicable to arbitrary polyhedral
meshes, which generates a mesh for multiple domains in contact in a single mesh
generation process. The paper is organised as follows. Section 2 gives an overview
of the mesh generation process. The procedure generating internal boundaries
is discussed in section 2.5. The examples of problems under consideration are
shown in section 3. Conclusions and suggestions for future work are given in
section 4.

2 Methodology

2.1 Input Data

The method requires the following input:

1. A surface triangulation and a mesh of edges user wants to capture. All the
facets in the surface triangulation belonging to each material have to be
collected in a selection and given a name. By doing this, it is possible to
identify facets at internal surfaces because they must appear in exactly two
such selections. This information is used later in the meshing process.

2. The second part are the settings enabling the user to set cell sizes in different
parts of domains, number of boundary layers in each domain or at specified
parts of the boundary, etc. The settings are stored in a xml file and can be
generated using a GUI application.
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2.2 Octree Creation

The meshing process starts by generating an octree based on the settings given in
the xml file. The octree is needed to generate the mesh template and to perform
inside/outside calculations applicable to bad quality surface triangulations. The
octree is refined level-wise until no further refinement is requested. In order to
achieve the desired cell size for every domain it is necessary to refine the octree
accordingly. The leaves belonging a particular domain, which shall be refined,
are selected using the following procedure:

1. Mark all leaves with a box type. Available types are: OUTSIDE, DATA
(leaves containing some surface elements), INSIDE and ENCLOSED (do-
mains having no connection with the outer boundary). The marking process
starts by marking all OUTSIDE leaves first, followed by INSIDE leaves and
then the ENCLOSED ones.

2. Once the box types are known, it is possible to find leaves belonging to the
domain of interest. Leaves in partially-enclosed domains, containing a por-
tion of some outer boundary, are of INSIDE type and are marked using the
frontal-marking algorithm starting from an initial INSIDE leaf near a DATA
leaf containing a portion of domain under consideration. Leaves in enclosed
domains are also marked using the frontal-marking algorithm starting from
an initial ENCLOSED leaf near a DATA leaf containing a portion of the
enclosed domain.

2.3 Mesh Template

Once the octree is created it is used for generating the initial mesh template.
The template mesh consists of standard cell types, namely, hexahedra, prisms
and pyramids. Please note that it encompasses all domains of interest and the
existence of internal surfaces is also ignored at this stage. An example of the
surface mesh with two domains and the resulting template is shown in figures
1(a) and 1(b), respectively.

(a) Surface mesh (b) Mesh template

Fig. 1. An example with internal surfaces
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2.4 Fitting the Mesh to Outer Boundaries

The current step is aimed at creating a mesh fitting the external boundaries; from
the existing mesh template. This is performed by pre-smoothing the outer surface
and mapping each outer vertex to its nearest points at the outer boundaries
of the surface triangulation as described in [21, 15]. Surface facets belonging
to internal boundaries are not considered for proximity searches. In addition,
capturing edges and corners sometimes requires some topological changes of the
quadrilateral boundary faces, which are decomposed into triangles and their
cell owners are decomposed into tetrahedra and pyramids [7]. The mesh at this
stage may become tangled as a consequence of the boundary-fitting procedure.
In order to speed-up the untangling process and improve the near-boundary
topology, an O-topology boundary layer is generated. The process of fitting the
mesh to the outer boundary finishes with the smoothing/untangling procedure
which is a combination of Laplacian smoothing [4] and metric-based untangling
[3]. An example of boundary-fitting mesh for the example shown in figures 1(a)
and 1(b) is given in figure 2.

Fig. 2. A mesh fitted to the outer boundary

2.5 Capturing of Internal Surfaces

The process for capturing internal surfaces starts once the mesh is fitted to the
outer boundary and has the following workflow:

1. Find and mark the cells intersected by the internal-surface facets. The quality
of the surface is not critical here as long as the cell size is larger than the
possible gaps in the surface. The marked cells are not assigned to any domain
here. The figures 3(a) and 3(b) show the intersected cells coloured in white.

2. Start marking cells belonging to partially-enclosed domains using the frontal-
marking algorithm. The process is performed on domain by domain basis.
For each domain it starts from a cell at the outer boundary and stops when
the front reaches cells intersected by the internal surface, see figure 3(a).
Cells in fully-enclosed domains are not marked yet. Those cells are also
marked using the frontal-marking algorithm starting from a cell which has
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(a) Partially-enclosed materials (b) Enclosed material

Fig. 3. Meshes after the second step of the algorithm for capturing internal surfaces

a neighbour cell intersected by a facet belonging the corresponding enclosed
domain. And example with a partially and a fully-enclosed domain is given
in figure 3(b).

3. Distribute the cells intersected by the internal surfaces to their domains. It
is performed on a cell-by-cell basis unlike the method of Shepherd [17] which
assigns all those cells to a single domain. The main criterion for distribut-
ing an intersected cell is the number of neighbours already assigned to the
neighbouring domains. The cell is assigned to the domain which contains
most of its neighbours. Cells having equal number of neighbours in other
materials are not assigned in that sweep. The process is iterative in nature
and is repeated as long as some cells matching this criterion are found. The
remaining undetermined cells, if there are any, are assigned to the domain
with the smallest number of cells. Please note that this procedure does not
require any floating point calculations and is therefore applicable to bad-
quality surface triangulations. Figures 4(a) and 4(b) show an example of the
mesh before and after the cells are distributed to their domain. It is clearly
visible that the mesh would get tangled in case if all intersected cells were
distributed to the same domain. However, the procedure presented here has
generated the interface with the smallest possible number of faces.

(a) Before distribution (b) After distribution

Fig. 4. Meshes before and after distribution of intersected cells
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(a) Invalid connection (b) After correction

Fig. 5. Internal surface of the volume mesh

4. Check if the internal surface of the volume mesh is singly-connected. If any
such problems occur, see figure 5(a), cells are locally-transferred from the
domain with higher number of cells to the other one, until the surface be-
comes singly-connected, see figure 5(b). This check has proven sufficient in
the tests carried so far.

5. Pre-smooth the internal surface of the volume mesh and project the points
onto the nearest location on the surface mesh. Internal corners and edges are
also captured at this stage. This may also require some topological changes of
quadrilateral faces; such faces are decomposed into two triangles and the cells
sharing that face are decomposed into tetrahedra and pyramids. Please note
that this procedure for treating surface faces is the same as the procedure
for outer boundaries [7]. However, in case a quad face is decomposed into
triangles; cells at both sides of the internal surface must be decomposed.
With the currently used mesh templates, this approach is robust for internal
surfaces where two domains meet, but does not guarantee that the edges
and corners where three or more domains meet will be preserved in the
final mesh. Figure 6 shows an example where the domains, which should
only share a common edge, share common faces, too. The reason for this is
the insufficient number of degrees of freedom in the mesh template, which
shall be increased in order to capture such edges accurately. Even though,

Fig. 6. An example with a poorly captured edge
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the approach is still considered acceptable for most engineering applications
where the modelling and the discretisation errors are still larger than the
error introduced by the inaccurate inner-boundary description.

Once the domains are created and the internal surfaces captured, it is still
necessary to generate boundary layers for each domain, in order to create a
sufficient number of degrees of freedom needed by the smoothing/untangling
procedure to produce a valid mesh. The layers are generated separately for each
domain. The process is started by activating the cells in the domain of interest
and deactivating the other ones. Once the domain cells are active, it is possible
to find boundary faces of the active domain which will serve as the extrusion
front. Create a new co-located vertex for every vertex in the front and move
the original vertices inside the active domain in the direction of their normals.
This is followed by the generation of the layer cells, one per boundary face, from
the face vertices and the newly created vertices. Inactive cells near the internal
surface are renumbered to use the newly created vertices instead of the original
ones. An example of boundary layers of O-topology is shown in figure 7(a), and it
is not preferred for inlet and outlet boundaries. However, it is possible to change
the mesh topology by simply removing the first layer of cells at the selected
boundaries, see figure 7(b). This topology performs better in terms of higher
accuracy and the number of computational cells is slightly decreased.

(a) O-topology (b) Improved topology

Fig. 7. Mesh with improved topology at the outer inflow/outflow boundary

After the layers are created, the mesh is checked if any negative volume cells
exist. The smoothing/untangling procedure, mentioned before, is not allowed to
move nodes at the internal surface during the initial iterations. If the procedure
is not capable of untangling all problematic regions, it may be allowed to move
constrained nodes as long as the problems persist. The experience shows that
the constrained nodes are moved mainly in the case of coarse settings which are
anyway prone to high modelling and discretisation errors.

Finally, a figure showing the final mesh with two domains in contact is given
in figure 8.
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Fig. 8. A view through the final mesh with two domains

3 Examples

This section presents the behaviour of the method on two examples of industrial
interest. The first example presents the mesh of a crankshaft in order to analyse
the stiffness and displacements of each part. The second example is a mesh of
an engine needed to analyse the exchange of heat between the coolant and the
metal parts.

The surface mesh for the crankshaft, consisting of three parts, is shown in the
figure 9(a) and the section through the resulting volume mesh is given in figure

(a) Surface mesh (b) Volume mesh

Fig. 9. A mesh for the crankshaft example
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Table 1. Mesh quality measured in minimal scaled jacobians for the crankshaft case

Number of cells Minimum Percentage of cells below 0.1 Average

All cells 336923 0.0015 0.01 0.915

Cell type

Hexahedra 198892 0.1204 0.00 0.949
Prisms 24290 0.0015 0.09 0.646
Pyramids 13375 0.1318 0.00 0.650
Tetrahedra 366 0.0544 11.5 0.424

(a) Surface mesh (b) Volume mesh

Fig. 10. A mesh for the engine example

9(b). The resulting volume mesh consists of 336923 cells, out of which 47392
belong the shaft connected to the conrod (coloured in dark grey), 224606 are
used to mesh the counterweight, and 64925 are in the shaft domain coloured in
light grey. The meshing process lasted 2 minutes on a HP nx9420 notebook with
3 Gb of RAM and a Centrino Duo processor with the clock speed of 2.16 GHz and
the peak virtual memory usage was 250 Mb. The quality of the mesh is measured
in minimal scaled jacobians, defined in [23], and is given in table 1. The table
shows that the average cell quality is high. The analysis by cell type indicates
that high percentage of tetrahedral cells is of low quality. The tetrahedra are only
generated as a consequence of the edge-capturing procedure, and are therefore
located near edges where the smoother is limited by the geometric constraints.
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Fig. 11. A cut through the mesh for the engine example

Table 2. Mesh quality measured in minimal scaled jacobians for the engine case

Number of cells Minimum Percentage of cells below 0.1 Average

All cells 3884472 8.91e-6 0.5 0.847

Cell type

Hexahedra 3572221 2.04e-5 0.4 0.871
Prisms 200547 4.54e-4 0.5 0.581
Pyramids 103416 8.91e-6 2.2 0.573
Tetrahedra 8288 1.22e-3 23.5 0.283

The surface of the engine example is shown in figure 10(a) where three domains
can be identified, namely, the cylinder head, the block and the cooling jacket.
The surface is of bad quality with many high aspect ratio triangles and some
holes due to missing parts. The volume mesh, shown in figures 10(b) and 11,
consists of 3884472 cells, 574469 belonging to the cooling jacket, 1321737 to
the cylinder head and 1988266 to the block. The figure 11 shows the cooling
jacket, coloured in white, and a cut through the head (light grey) and block
(dark grey), and the conformal interfaces between the domains. Quality measures
of the mesh are given in table 2 and are again measured in minimal scaled
jacobians. The table shows that the average cell quality is high. However, a
considerable percentage of tetrahedra are of low quality due to very complex
geometry and coarse settings which can barely resolve some feature edges of the
geometry.
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4 Conclusions

The paper presents a new mesh-generation method for multiple domains in con-
tact. It is designed for industrial problems, and the resulting meshes are not
dependent on the quality of the surface triangulation. The meshes are of accept-
able quality for AVL’s CFD solver FIRE. The procedure for generating internal
surface is applicable for any mesh type, and could also be applied standalone
tool for generating internal interfaces in a mesh generated by some other meshing
tool.

The method can be further improved by developing a method for automatic
generation of surface selections belonging to each domain. This will be tackled
using the “octree” approach for inside-outside calculations due to its applicability
to bad-quality surface triangulations. Treatment of internal edges and corners
where three or more domains meet shall also undergo some development in order
to be able to capture them more accurately.

References

1. Aftosmis, M.J., Berger, M.J., Melton, J.E.: Robust and Efficient Cartesian Mesh
Generation for Component-Based Geometry. In: 35th AIAA Aerospace Sciences
Meeting, no. AIAA-97-0196 (1997)

2. Dukowitz, J.K., Cline, M.C., Addesso, F.L.: A General Topology Godunov Method.
J. Comput. Phys. 82, 29–63 (1989)

3. Escobar, J.M., Rodriguez, E., Montenegro, R., Montero, G., Gonzalez-Yuste, J.M.:
Simulataneous untangling and smoothing of tetrahedral meshes. Comput. Methods
Appl. Mech. Engrg. 192, 2775–2787 (2003)

4. Field, D.: A Laplacian Smoothing and Delaunay Triangulation. Comm. Appl. Nu-
mer. Meth. 4, 709–712 (1988)

5. George, P.L., Hecht, F., Saltel, E.: Automatic parallel generator with specified
boundary. Comput. Methods Appl. Mech. Engrg. 92, 269–288 (1991)

6. George, P.L., Hermeline, F.: Delaunay’s mesh of a convex polyhedron in dimension
d. Application to arbitrary polyhedra. Int. J. Numer. Meth. Engng. 33, 975–995
(1992)

7. Masayuki, H., Nishigaki, I., Kataoka, I., Hiro, Y.: Automatic Hexahedral Mesh
Generation with Feature Line Extraction. In: Proceedings, 15th International
Meshing Roundatable, pp. 453–468. Springer, Heidelberg (2006)

8. Togashi, F., Ito, Y., Nakahashi, K., Obayashi, S.: Extensions of Overset Unstruc-
tured Grids to Multiple Bodies in Contact. Journal of Aircraft 43, 52–57 (2006)

9. Jin, H., Tanner, R.I.: Generation of unstructured tetrahedral meshes by Advancing
Front Technique. Int. J. Numer. Meth. Engng. 36, 1805–1823 (1993)

10. Kim, H.J., Swan, C.C.: Algorithms for automated meshing and unit cell analysis
of periodic composites with hierarhical tri-quadric tetrahedral elements. Int. J.
Numer. Meth. Engng. 58, 1683–1711 (2003)

11. Kraft, P.: Automatic Remeshing with Hexahedral Elements: Problems, Solutions
and Applications. In: Proceedings, 8th International Meshing Roundtable, pp. 357–
367 (1999)
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Abstract. This paper presents a computational method for converting a non-conformal hex-
dominant mesh to a conformal hex-dominant mesh without help of pyramid elements.  During 
the conversion, the proposed method subdivides a non-conformal element by applying a subdi-
vision template and conformal elements by a conventional subdivision scheme. Although many 
finite element solvers accept mixed elements, some of them require a mesh to be conformal 
without a pyramid element.  None of the published automated methods could create a confor-
mal hex-dominant mesh without help of pyramid elements, and therefore the applicability of 
the hex-dominant mesh has been significantly limited. The proposed method takes a non-
conformal hex-dominant mesh as an input and converts it to a conformal hex-dominant mesh 
that consists only of hex, tet, and prism elements.  No pyramid element will be introduced.  The 
conversion thus considerably increases the applicability of the hex-dominant mesh in many  
finite element solvers. 

1   Introduction 

This paper presents a computational method for converting a non-conformal hex-
dominant mesh to a conformal hex-dominant mesh without introducing a pyramid 
element.  The input hex-dominant mesh can include hex, tet, and prism elements (also 
known as wedge elements), and some quadrilateral faces of the input mesh can be 
non-conformal; i.e., a triangular face can directly be connected to a quadrilateral face.  
The proposed method subdivides non-conformal hex-elements by conformal conver-
sion templates and other elements by a conventional subdivision scheme.  The con-
version makes the hex-dominant mesh fully conformal without introducing a pyramid 
element, which is often rejected by a finite element solver. The output mesh thus can 
be used in a finite element solver even when it accepts neither a non-conformal face 
nor a pyramid element. 

The accuracy of the finite element simulation depends on three factors: (1) mesh 
resolution, (2) mesh element quality, and (3) type of the mesh.  A high-resolution 
mesh with good-quality elements yields an accurate solution.  In addition, the mesh 
type also has a considerable impact on the accuracy of the finite element simulation.  
The type of a mesh depends on the type of elements included in the mesh.  A volume 
mesh typically consists of four types of elements, tet, hex, prism, and/or pyramid ele-
ments as shown in Figure 1.  Each type of element performs differently in the finite 
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element simulation due to the difference of the shape functions, which interpolate 
physical quantity within the element. 

A physical quantity within an element is interpolated as a linear combination of the 
shape functions, and higher-order shape functions can approximate a complex finite 
element solution better than lower-order shape functions. A shape function of an  
8-node hexahedral element includes tri-linear, bi-linear, and linear terms, whereas  
6-node prism and 5-node pyramid elements consist of bi-linear and linear terms, and a 
4-node tetrahedral element consists only of linear terms. Therefore, a hexahedral ele-
ment yields the most accurate solution, and an all-hexahedral mesh is preferred for a 
finite element analysis when available.  Although a tetrahedral mesh can be created 
easily by an automatic mesh generation scheme [1-3], it requires more elements than 
an all-hexahedral mesh to obtain an equally accurate finite-element solution. 

An all-hexahedral mesh, however, turned out to be difficult to create automatically for 
a complicated shape.  Despite numerous attempts, none of the known methods can create 
an all-hexahedral mesh of adequate quality for an arbitrary geometric domain [4-18]. 

A hybrid mesh is an alternative to an all-hexahedral mesh and consists of hexahedral, 
tetrahedral, prism, and pyramid elements.  The most common form of a hybrid mesh is a 
hex-dominant mesh [19-22], in which most of the volume is filled with hexahedral ele-
ments, and the rest with prism and tetrahedral elements, and pyramid elements are in-
serted between a quadrilateral face of a hexahedral or prism element and triangular faces 
of tetrahedral or prism elements as shown in Figure 2. However, some finite-element 
solvers do not accept a pyramid element.  During the finite element calculation, an ele-
ment is transformed into a master element, in which partial differential equations are 
numerically integrated [23]. Such a transformation utilizes Jacobian determinant, which 
is defined at every corner of an element where three edges converge. However, four 
edges converge at one of the nodes of the pyramid, where Jacobian determinant be-
comes ambiguous.  Due to this ambiguity, some finite element solvers do not accept a 
pyramid element, and it becomes necessary to connect two triangular faces to a quadri-
lateral face. Such a connection is called a non-conformal connection. Some solvers  
accept neither pyramid element nor non-conformal transition, and applicability of a hex-
dominant mesh is significantly limited. 

This paper proposes a set of mesh conversion templates that are applied to hex 
elements with non-conformal faces. The templates are based on HEXHOOP templates 
[13] and subdivide a non-conformal face into eight triangles (triangular pattern) and a 
conformal face into four quadrilaterals (rectangular pattern) as shown in Figure 3. 
Other elements are subdivided by a conventional subdivision scheme so that the  
elements become conformal after the subdivision. The conversion templates are con-
structed by a family of modular sub-templates that can be assembled to form confor-
mal conversion templates for hex elements. The template design uses two types of 
modular sub-templates, called a core and a cap. A core module defines the subdivi-
sion patterns of two opposite faces of a hex element.  Four caps define the subdivision 
patterns of the rest of the faces.  The advantage of this method is that two subdivision 
patterns, rectangular and triangular patterns, can be mixed and matched freely on the 
exterior surfaces of a hex element. 

The conversion makes a fully-conformal hex-dominant mesh that consists of tet, 
hex, and prism elements, and does not include pyramid elements.  The mesh can be  
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used by a finite element solver that rejects both non-conformal faces and pyramid 
elements. Hence, the conversion significantly increases the applicability of the hex-
dominant mesh. 

In the rest of the paper, Section 2 explains the construction of the subdivision tem-
plates, and Section 3 explains the non-template subdivision.  Section 4 discusses the 
requirement of the input non-conformal hex-dominant mesh.  Section 5 describes a 
post-process called cap-suppression.  Section 6 shows some conversion examples, and 
Section 7 demonstrates the performance of the conformal hex-dominant mesh in finite 
element simulation.  Section 8 discusses potential improvements, and Section 9 con-
cludes the paper. 

2   Construction of the Conversion Templates 

The goal of the proposed method is to develop a system of conformal conversion 
templates for hex elements.  The difficulty is that two face subdivision patterns, rec-
tangular pattern and triangular pattern, need to be freely mixed on the exterior faces.  
Since a hex element consists of six faces, there are 6426 =  of the combinations of the 
subdivision patterns per element.  Due to symmetry, the total number of combinations 
is reduced to ten as shown in Figure 4.  Among the ten cases, there are three cases for 
which a known simple solution exists.  H0 template can be achieved by a basic mid-
point subdivision. H3 template can be constructed by sweeping a triangular pattern  
 

H0 H1 H2 

H3 H4 H5

H6 H7 
H8 

H9  

Core 
Cap 

Cap 

Cap 

Cap 

Conversion template 
 

Fig. 4. Ten required conversion tem-
plates 

Fig. 5. Modular approach to a all-hex template 
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for two layers.  H9 template can be constructed by adding a node in the middle of the 
template and making tet elements by connecting the mid node and exterior triangles.  
All other seven cases are non-trivial. 

To construct all non-trivial conversion templates, the proposed method constructs a 
conversion template by assembling sub-templates, each of which has either rectangu-
lar or triangular pattern on its external faces.  The new template design uses two types 
of modular sub-templates, called core, and cap.  A core module defines subdivision 
patterns of two opposite faces, and four caps define subdivision patterns of the other 
four faces as shown in Figure 5.  Two subdivision patterns can be freely mixed and 
combined on the exterior faces of a hex element. 

2.1   Construction of a Cap Module 

Exterior faces of a cap module are grouped into four groups: T-face, which is exposed 
to the exterior after assembled together with other modules, B-face, which is con-
nected to a slot of a core module, and F-face, which is connected to an adjacent cap 
module as shown in Figure 6. 

F-face

T-face

B-face
F F F

FF

F FF
FF

B B B B T T 

 (d) (c) Pipe 

Swept triangular 
pattern.

(a)

Join two corners 

(b)

 

Fig. 6. Faces of a Cap Fig. 7. Construction of a triangular cap 

 

Slot 0

Slot 1Slot 2

Slot 3 

Wing face 
Wing face

 

Fig. 8. Construction of a rectangular cap Fig. 9. Two wing faces and four slots of a core  
module 

A cap that exposes a triangular pattern on the T-face can be constructed as follows.  
First, sixteen prism elements are created by sweeping four triangles as shown in  
Figure 7 (a). Next, the two corners of the two ends are joined together as shown in 
Figure 7 (b). Joining two corners yields a volumetric region surrounded by inside 
faces of the mesh as shown in Figure 7 (c).  The region is called a pipe and is filled by 
two hex elements.  The mesh is then deformed so that neither gaps nor overlaps re-
main when the cap is assembled with a core and other caps as shown in Figure 7 (d).  
This particular cap module consists of 16 prism elements and 2 hex elements. It is  
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called a triangular cap and subdivides a corresponding quadrilateral face into eight 
triangles.  Similarly, a rectangular cap, which exposes the rectangular pattern to the 
corresponding quadrilateral face, is constructed by applying a rectangular pattern to 
the T-face as shown in Figure 8. 

2.2   Construction of a Standard Core 

A core module has two wing faces and four slots as shown in Figure 9. Two wing 
faces are exposed to the exterior of the conversion template, and define subdivision 
patterns of the two opposite faces of the template.  A slot is connected to a B-face of a 
cap module. 

There are two types of standard cores, in which the subdivision patterns of the two 
wing faces are identical, called triangular core and rectangular core as shown in  
Figure 10. A standard core is created by sweeping a wing-face subdivision pattern 
four times and then deforming the middle section so that a cap module fits in a slot.  
A rectangular core shown in Figure 10 (a) consists of 16 hex elements, and a triangu-
lar core shown in Figure 10 (b) consists of 32 prism elements. 

(a) 2x2 rectangular core (b) 2x2 triangular core  

Fig. 10. Rectangular and Triangular cores 

2.3   Assembling a Conversion Template 

A core module and four cap modules can be assembled to form a conversion template 
for a hex element as shown in Figure 5.  A B-face of a cap module is connected to a 
slot of a core module, and an F-face of a cap module is connected to an F-face of a 
neighboring cap module.  After assembling, only T-faces of the four cap modules and 
wing faces of the core module are exposed to the exterior.  This assembly is possible 
because the subdivision pattern of the B-face of a cap module matches the subdivision 
pattern of a slot of a core module, and the subdivision pattern of an F-face of a cap 
module always matches the F-face of the neighboring cap module regardless of the 
combination of four cap modules. 

By combining appropriate core and caps, all templates except H5 shown in Figure 
4 can be assembled.  In H5 template, however, none of the opposite faces has an iden-
tical subdivision pattern, and it cannot be assembled with a standard core.  H5 tem-
plate requires a special type of core called a double-hoop core as explained in the next 
section. 

2.4   Constructing a Double-Hoop Core 

A standard core constrains at least one pair of opposite faces to have identical subdi-
vision pattern.  Since none of the opposite faces in H5 template shown in Figure 4 has 
identical subdivision pattern, standard core cannot be used for assembling H5  
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template. H5 template requires a core that has a triangular pattern on one of the wing 
faces and a rectangular pattern on the other. 

A double-hoop core is created as follows.  First, a H1 template is assembled from a 
rectangular core, a triangular cap, and three rectangular caps.  The H1 template is ori-
ented so that a triangular pattern is on the top face.  The H1 template can be split into 
top and bottom halves as shown in Figure 11 (a).  The cross-section between the top 
and bottom halves lies on a plane and exposes interior faces of cap and core modules 
as shown in Figure 11 (b).  Two layers of hex elements are then created by sweeping 
the cross-sectional pattern and inserted between top and bottom halves as shown in 
Figure 11 (c).  The result is a conformal mesh consisting of hex and prism elements.  
The top face of the mesh has a triangular pattern, and the bottom face a rectangular 
pattern.  Four side faces are also rectangular pattern, however, each face has four rec-
tangles vertically and two horizontally as shown in Figure 11 (d).  The mesh is then 
re-oriented so that the triangular pattern face to the left, and then the middle section of 
the mesh is shrunk so that four caps fit to the mesh as shown in Figure 11 (e).  Interior 
nodes should be re-located by an appropriate mesh-smoothing scheme. 

Since this double-hoop core exposes a triangular pattern on one of the two wing 
faces, and a rectangular pattern on the other, the H5 template can be assembled by a 
double-hoop core, two rectangular caps, and two triangular caps.  This core is called a 
double-hoop core because two ‘hoops’ of pipe volumes exist in the H5 template as 
shown in Figure 12. 

(a) Splitting a H1 template into 
top and bottom halves 

Slot 

Slot 

(c) Inserting two layers of hex ele-
ments between top and bottom halves
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Fig. 11. Inserting two layers of hex elements in the middle of the H1 template 

3   Subdividing Other Elements 

3.1   Subdividing Prism Elements 

A prism element is subdivided into six hex elements as shown in Figure 13 (c), or 
eight prism elements as shown in Figure 13 (b) or Figure 13 (c).  The subdivision pat-
tern is chosen based on the constraint on the triangular faces.  A triangular face of a 
prism element is constrained if it is connected to a non-conformal face of the 
neighboring hex element or a triangular face of the neighboring tet element.  Since the 
subdivision patterns on both triangular faces of a prism element needs to be identical, 
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when one triangular face of a prism element is constrained, the opposite triangular 
face is also constrained.  If multiple prism elements are chained by triangular faces, 
the constraint on one end of the chain propagate through the chain of the prism ele-
ment to the other end, and all triangular faces of the prism chain are constrained. 

If the two ends of a prism chain are exposed to the exterior of the mesh, each of the 
prism elements in the chain is subdivided into six hex elements as shown in Figure 13 (a). 
If one of the ends of a prism chain is connected to a tet element, and the other end is also 
connected to a tet element or exposed to exterior of the mesh, each of the prism elements 
in the chain is subdivided into eight prism elements as shown in Figure 13 (b). 

If one of the ends of a prism chain is connected to a non-conformal face of a hex 
element, each of the prism elements in the chain is subdivided into eight prism ele-
ments as shown in Figure 13 (c).  In this case, the subdivision pattern of the triangle 
connected to the non-conformal face must match half of the subdivision pattern of the 
non-conformal face as shown in Figure 14.  However, due to the asymmetry of the 
triangle subdivision pattern, if both ends of a prism chain are connected to non-
conformal faces, constraints from the two ends may conflict to each other as shown in 
Figure 15.  Such a conflict can be resolved by subdividing one of the prism elements 
in the chain into two tet elements and three prism elements by adding two nodes in-
side the original prism element.  However, this resolution often yields a low-quality 
element.  The hex-dominant mesh generator thus needs to avoid such conflict when it 
creates an input hex-dominant mesh.  Discussion on the requirement of the input hex-
dominant mesh is also found in Section 4. 

3.2   Subdividing Tet Elements 

A tet element is subdivided by (1) adding a node at the center of the element, (2) sub-
dividing triangular faces so that it satisfies the constraints imposed by the neighboring 
prism element or a non-conformal face, and then (3) connecting each triangle to the 
node created at the center of the original tet element. 

A triangular face of a tet element can be constrained by the neighboring prism ele-
ment, or a non-conformal face connected to the triangular face.  All non-constrained 
faces of tet elements are subdivided into the pattern shown in Figure 16 (a), and con-
strained faces into the pattern shown in Figure 16 (b) so that the faces conform to the 
neighboring elements after the subdivision. 

The nodes added at the center of the original tet element will be deleted by mesh 
smoothing [24-27], local transformation [28, 29], and edge collapse [30] as many as 
possible after the conversion. 

 

 

 

(a) (b) (c)  

 

 

Fig. 12. Double hoop 
in the H5 template 

Fig. 13. Three possible subdivi-
sion patterns of a prism element 

Fig. 14. Subdivision pattern of a tri-
angular face connected to a non-
conformal face 
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(a) (b)  

Fig. 15. Conflict of triangle subdivision pat-
terns from the two ends of a prism chain 

Fig. 16. Two subdivision patterns of a face 
of a tetrahedral element 

 

Half exposure 

Partially-shared 
quadrilateral 

 

Fig. 17. Permissible non-conformal connections 

4   Requirement of the Input Hex-Dominant Mesh 

The input to the proposed method is a non-conformal hex-dominant mesh, which can 
include a triangular face directly connected to a quadrilateral face of a hex element.  
The conversion templates are flexible and can convert even more complex connection 
such as a partially-shared quadrilateral and half-exposed quadrilateral to a conformal 
connection as shown in Figure 17.  Such flexibility helps a hex-dominant mesh gen-
erator to create more hex elements in the input mesh. 

Nonetheless, the input hex-dominant mesh needs to satisfy certain conditions dis-
cussed in this section.  A hex-dominant mesh that satisfies those conditions can easily 
be created by a conventional algorithm [19, 21, 31] with a slight modification. 

4.1   Hex Element 

A quadrilateral face of a hex element can be connected to a quadrilateral face of a 
neighboring hex or prism element, or one or two triangular faces of neighboring tet 
and/or prism elements. 

 

Fig. 18. Impermissible connection: Two quadrilateral faces sharing three nodes are not sharing 
a diagonal 



 Subdivision Templates for Converting a Non-conformal Hex-Dominant Mesh 505 

However, when a quadrilateral face is sharing three nodes with a quadrilateral face 
of a neighboring hex element, two quadrilateral faces must share the diagonal. The 
connection shown in Figure 18 is thus impermissible. 

4.2   Prism Element 

All quadrilateral faces of prism elements need to be conformal.  I.e., a quadrilateral 
face of a prism element needs to be completely shared by the neighboring prism or 
hex element, or completely exposed to the exterior.  No triangular face can be con-
nected to a quadrilateral face of a prism element. 

A HEXHOOP template for a prism element can also be assembled as described in 
the original HEXHOOP paper [32], and such a template can subdivide a non-
conformal prism element into conformal elements.  However, the experiments  
performed in this research showed that applying a prism template often yields very 
low-quality elements. The possible reason why a prism template yields a low-quality 
element is because prism element are created in the difficult region where hex ele-
ments cannot be placed and the quality of the original prism element is often not high 
enough.  The original element needs to be of reasonably high quality to have reasona-
bly good elements after the conversion.  Therefore, the current implementation does 
not utilize prism templates. 

As already discussed in Section 1, the subdivision pattern of one of the two trian-
gular faces of a prism element must match the pattern of the other triangular face.  
The hex-dominant mesh generator must avoid a prism element with two conflicting 
subdivision patterns on the two triangular faces. 

If the input non-conformal hex-dominant mesh satisfies the above-mentioned con-
ditions, the proposed conversion templates create a topologically-valid conformal 
hex-dominant mesh. 

5   Cap Suppression 

Some elements from cap modules may be deleted after the conversion. If two 
neighboring cap modules are sharing T-face as shown in Figure 19 (a), elements in-
cluded in both cap modules can be eliminated by joining corresponding nodes as 
shown in Figure 19 (b). The subdivision pattern between the two conversion tem-
plates is shown in Figure 19 (c). Since the quality of the elements in cap modules 
tends to be relatively lower than for other elements, the overall mesh quality can be 
improved by eliminating cap modules. 

Cap Cap 

(a) Two cap modules fac-
ing each other 

(b) Joining corre-
sponding nodes 

(c) After suppressing caps 
 

Fig. 19. Suppressing two cap modules facing each other 
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6   Conversion Examples 

Figure 20 and Figure 21 show conformal hex-dominant meshes created by the pro-
posed method.  The input non-conformal hex-dominant meshes are created by first 
converting a tet mesh into a prism-tet hybrid mesh by the method described in [33], 
and then merging pairs of neighboring prism elements into hex elements.  Table 1 
shows the mesh statistics, including Scaled Jacobian, which is defined at each node as 
a triple scalar product of the edge vectors of three converging edges of an element di-
vided by the product of the lengths of the three vectors. 

Table 1. Statistics of the sample meshes 

# element Volume Ratio (%) Minimum Scaled 
Jacobian 

 # node

Hex Prism Tet Hex Prism Tet Hex Prism 

Max Tet 
Radius  
Ratio  

Max 
Quad  
Warpage 

Leg-bone 10,001 3,288 3,872 16,352 36 23 41 0.20 0.17 59.32 46 deg 
AAA 13,462 7,468 6,728 2,772 68 30 2 0.20 0.20 59.86 54 deg 

 

 

 
 

Fig. 20. Leg-bone model Fig. 21. Abdominal aortic aneurysm model 

7   Experimental Finite Element Analysis 

This section presents results from a series of structural analyses of a connecting rod of 
an automotive engine.   Four sets of analyses, each with (1) linear hex-dominant, (2) 
linear tet, (3) quadratic hex-dominant, and (4) quadratic tet meshes have been per-
formed with different node density to compare the characteristics of different types of 
meshes.  Statistics of the meshes used in the analyses are shown in Table 2. 

The analyses are calculated by Abaqus/CAE Version 6.7 [34] on a PC with a Dual 
Core AMD Opteron Processor at 2.0GHz and with 3GB RAM.  A load of 18,000N is 
applied to the internal surface of the crankshaft bearing housing in form of uniform 
pressure, and one half of the surface of the wrist pin seat is constrained against  
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displacements in the XY-plane, and symmetry boundary conditions are also applied.  
Figure 22 shows a von Mises stress plot calculated with one of the hex-dominant 
meshes. 

Figure 23 and Figure 24 plot in-body maximum displacement and von Mises stress 
vs. the number of nodes calculated by using linear and quadratic elements, respec-
tively.  In both plots, the solutions from tet meshes show a smoother convergence, and 
the solutions from hex-dominant mesh show an oscillatory behavior.  Nonetheless, the 
solutions from tet meshes and hex-dominant meshes both converge to a similar values 
as the number of nodes increases, and virtually no difference was observed between 
tet mesh and hex-dominant meshes if the number of node reaches 25,000 (linear) and 
110,000 (quadratic). 

Figure 25 depicts von Mises stresses along a path starting in the middle of the rod 
and moving toward the surface at the fillet location, calculated from quadratic tet and 
hybrid meshes.  The path plot also indicates that the results from a tet mesh and a hy-
brid meshes converge to the same solution as the mesh resolution increases. 

The results imply that hybrid meshes exhibit unsmooth convergence pattern when 
the mesh resolution is relatively low.  However, the solution becomes as accurate as 
tet meshes when node density becomes high. 

When the number of nodes is equal, a hex-dominant mesh is expected to take 
shorter computational time to obtain a solution than a tet mesh.  The dominant com-
ponent of the finite element computation comes from the matrix solver.  If the number 
of nodes is equal, the size of the stiffness matrix is equal. However, as can be seen 
from Table 2, average number of elements per node is much smaller in a hybrid mesh 
than a tet mesh, and the bandwidth of the stiffness matrix from a hex-dominant mesh 
is thus smaller. Hence, the matrix solver should take shorter time to solve a stiffness 
matrix from a hex-dominant mesh. 

The expectation was confirmed for quadratic meshes.  As can be seen from Figure 26,  
a quadratic hex-dominant mesh required shorter CPU time than a quadratic tet mesh.  The 
difference becomes significant as the number of nodes increases.  Results from the linear 
 

Table 2. Statistics of the meshes used in the analyses 

Hex dominant mesh Tet mesh 

# node 
# elem. / 
# node 

# node quad. 
# elem. / 
# node 

lin. quad. 
# elem 

lin. quad. 

Hex vol.
ratio  
(%) lin. quad. 

# elem 
lin. quad. 

4,196 17,850 5,571 1.33 0.31 57 4,182 28,260 17,588 4.21 0.62 
5,208 22,151 6,894 1.32 0.31 57 5,522 37,785 23,844 4.32 0.63 
6,075 25,599 7,778 1.28 0.30 59 7,355 50,998 32,689 4.44 0.64 
8,692 37,909 12,517 1.44 0.33 51 10,156 71,456 46,556 4.58 0.65 
9,977 42,406 13,166 1.32 0.31 64 12,927 91,542 60,106 4.65 0.66 

12,849 54,304 16,591 1.29 0.31 67 14,616 104,280 69,014 4.72 0.66 
15,835 66,332 19,804 1.25 0.30 75 16,783 120,133 79,835 4.76 0.66 
16,173 69,292 21,900 1.35 0.32 62 19,371 139,655 93,528 4.83 0.67 
16,456 70,053 21,824 1.33 0.31 66 22,504 162,980 109,694 4.87 0.67 
23,751 101,915 32,367 1.36 0.32 68 24,075 174,708 117,851 4.90 0.67 
24,456 104,610 32,930 1.35 0.31 70 26,249 190,928 129,169 4.92 0.68 
29,991 125,860 37,610 1.25 0.30 75 28,979 211,373 143,414 4.95 0.68 
30,914 130,977 40,222 1.30 0.31 73 30,126 220,152 149,666 4.97 0.68 
31,952 135,154 41,306 1.29 0.31 75 31,171 227,889 155,031 4.97 0.68 
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Fig. 22. Connecting rod 
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Fig. 23. Results with linear elements 
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Fig. 24. Results with quadratic elements 

 

meshes, however, contradicted the expectation; a linear hex-dominant mesh took more 
CPU time than a linear tet mesh.  It could be due to the characteristic of the solver used 
in the experiment.  Further study is required to find the cause of the contradiction. 
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Fig. 25. Path plot of the von Mises stress through the rod 

 

0

100

200

300

400

500

10000 30000 50000 70000 90000 110000 130000 150000
Number of nodes 

C
P

U
 t

im
e 

[s
] 

tet mesh quadratic
hex-dominant mesh quadratic
tet mesh linear
hex-dominant mesh linear

 

Fig. 26. CPU time plot 

The experimental results imply that a quadratic hex-dominant mesh is advantageous 
especially when the mesh resolution is high compared to a tet mesh.  Since the differ-
ence between a linear element and a quadratic element becomes significant in a non-
linear analysis, a quadratic hex-dominant mesh should be particularly effective for a 
large-scale non-linear analysis.  Further research is needed to test this speculation. 

8   Potential Improvements 

The quality of the output conformal hex-dominant mesh can be further improved by 
taking as input a higher quality non-conformal hex-dominant mesh.  If a subdivision 
template is applied to a low-quality element, the output mesh will include an even 
lower-quality element.  Such a low-quality element should be avoided by eliminating 
low-quality elements included in the input non-conformal mesh. 

The quality of the output mesh can also be improved by avoiding certain configu-
ration of the input mesh can be avoided.  The quality of the elements included in non-
trivial templates (H1, H2, H5, H6, H7, and H8 templates) is relatively low due to the 
complex structure of the templates - the element quality of the non-trivial templates is 



510 S. Yamakawa, I. Gentilini, and K. Shimada 

shown in Table 3.  Values in parentheses indicate the mesh quality after applying 
conventional smoothing schemes.  In particular, H5 template has the lowest quality 
element among the non-trivial templates.  The quality of the output mesh therefore 
can be improved by developing and applying a new non-conformal hex-dominant 
meshing scheme that reduces the usage of the H5 template. 

The quality of the output mesh can also be improved by applying mesh-smoothing 
schemes. Note, however, that not all conventional mesh-smoothing schemes perform 
well on a hybrid mesh. 

Table 3. The quality of the non-trivial templates 

 H1 H2 H5 H6 H7 H8 
Minimum 
Scaled Jacobian 

0.34 (0.28) 0.34 (0.30) 0.20 (0.20) 0.34 (0.21) 0.34 (0.20) 0.34 (0.20) 

Worst Aspect 
Ratio 

2.9 (3.0) 2.9 (3.1) 5.3 (4.6) 2.9 (3.0) 2.9 (3.1) 2.9 (3.2) 

Largest Quadri-
lateral Warpage 

28.2deg 
(1.1deg) 

28.2deg 
(1.9deg) 

62.3deg 
(18.1deg) 

28.2deg 
(1.4deg) 

28.2deg 
(1.3deg) 

28.2deg 
(0.8deg) 

9   Conclusions 

This paper has presented a method for converting a non-conformal hex-dominant 
mesh into a conformal hex-dominant mesh by applying a set of subdivision templates.  
The method always creates a conformal hex-dominant mesh if the input non-
conformal hex-dominant mesh satisfies a certain condition, where a non-conformal 
hex-dominant mesh can be easily created by an existing non-conformal hex-dominant 
meshing scheme. Experimental results indicate the method creates a good-quality 
conformal hex-dominant mesh.  A series of finite element simulations have been per-
formed and the results imply that a conformal hex-dominant mesh can be effective for 
a large-scale non-linear analysis. 
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Departament de Matemàtica Aplicada III
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Summary. Our final goal is to automatically generate a block decomposition of a
given domain without previously meshing its boundary. To this end, we propose to
obtain directly a valid dual arrangement that leads to a block mesh. In particular, we
introduce a tool based on the new concept of local dual contributions. That is, given a
domain we first generate a reference mesh composed by simplices, triangles in 2D and
tetrahedra in 3D. Then, we add local dual contributions in the elements of a reference
mesh to describe a valid dual arrangement. These local dual contributions are added
according to a set of hierarchical rules to ensure the correct matching of adjacent
contributions. The first implementation of the tool has been successfully applied to
the block decomposition of several geometries, ranging from convex and non-convex
domains to geometries with holes. Further research is under way in order to extend the
applicability of the presented tool to more complicated geometries.

Keywords: Mesh generation, dual, block decomposition, hexahedra, quadrilaterals.

1 Introduction

The finite element method and finite volume method are widely used to solve
problems in applied sciences and engineering. Both techniques require a valid
discretization of the problem geometry. There exist several mature techniques [1,
2] to obtain these discretizations. However, meshes composed by block elements,
quadrilateral (2D) or hexahedra (3D), are preferred for specific problems [3, 4].
Therefore, the solution of these problems demands a tool that automatically
generates block elements, see references [5, 6] for a survey of available techniques.
On the one hand, several techniques attempt to generate this kind of mesh by
directly generating hexahedral elements. On the other hand, the nature of the
hexahedral meshes have induced to consider the dual problem [7, 8, 9, 10].

This work is devoted to obtaining a valid topological block decomposition of a
given domain without a previous discretization of the boundary. We propose an
algorithm that explicitly inserts descriptions of the dual curves (2D) or the dual
� This work was partially sponsored by the Spanish Ministerio de Educación y Ciencia

under grants DPI2007-62395 and BIA2007-66965.
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surfaces (3D) and handles their intersections. Finally, the primal mesh is obtained
from this dual construction. Analogous algorithms have been previously sketched
in the literature. In particular, Murdoch et al. [11] briefly introduce theTwist Plane
Insertion algorithm, and Calvo [12] speculates about the free stroking1 method.
In both works such an algorithm is not detailed because there is not a procedure
that manages the insertion of dual curves (2D) or surfaces (3D), and that properly
describes the intersections. To fill this gap, we introduce here the new concept of
local dual contributions which allow to obtain a discrete representation of the dual
arrangement. In order to ensure the correct matching of adjacent contributions we
present a set of hierarchical rules. The concept of local dual contribution and this
set of hierarchical matching rules are the main contribution of our work.

2 Background

2.1 Block Meshes

A mesh in R
n, for our applications n is either 2 or 3, is composed by d-

dimensional entities where d = 0, . . . , n. An entity of maximum dimension, i.e.
a n-dimensional entity, is also referred as element. From 0-dimensional to 3-
dimensional entities we use the following notation: node, edge, face and cell.

A mesh entity that is topologically equivalent (homeomorph) to a d-dimensional
unit interval, i.e. [0, 1]d, is called a block. Therefore a mesh composed by blocks
is called a block mesh. This notation allows to denote to quadrilateral and hex-
ahedral entities with the same term. Hence, quadrilateral and hexahedral meshes
are examples of block meshes.

An (n− d)-dimensional entity, i.e. an entity of co-dimension d, is referred as
a d-co-entity, where d is an integer value such that 0 ≤ d ≤ n. For instance,
an element of a mesh is also a co-node, and a face in a 3-dimensional mesh is
also a co-edge. Table 1 shows the correspondences between entities and their
associated co-entities for the 2D and 3D cases.

Table 1. Correspondence between d-dimensional entities and their associated co-
entities for the 2D (left) and 3D (right) cases

d-entity d co-entity co-dimension

Node 0 co-face 2
Edge 1 co-edge 1
Face 2 co-node 0

– – –

d-entity d co-entity co-dimension

Node 0 co-cell 3
Edge 1 co-face 2
Face 2 co-edge 1
Cell 3 co-node 0

2.2 Dual of a Block Mesh

The concept of mesh dual has been widely used in theoretical [13, 14] and prac-
tical [7, 8, 9, 10] works on block mesh generation. Specifically, Murdoch et al.
1 Named ”libre trazado” in the original work in Spanish.
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Table 2. Primal entities for a block mesh and their associated dual entities for a
quadrilateral and a hexahedral mesh, respectively

Primal d Dual 2D dual 3D dual

Node 0 D-co-node D-face D-cell
Edge 1 D-co-edge D-edge D-face
Quadrilateral 2 D-co-face D-node D-edge
Hexahedron 3 D-co-cell – D-node

[11], Calvo [12], Thurston [13], and Mitchell [14] extend the concept of mesh dual
and present it as an arrangement of intersecting co-curves that bisect blocks in
each direction. In 2D, they consider the dual of a quadrilateral mesh defined by
a set of curves that bisect the edges of the elements and that intersect in the
center of the quadrilaterals. In 3D, the dual of a hexahedral mesh is presented
as an arrangement of surfaces that bisect the faces of the hexahedra and that
intersect in the center of each hexahedron. We denote this extended view of
the dual, referred as Spatial Twist Continuum (STC) in [11], as the D-space
and one of its composing entities as a D-co-curve. That is, in 2D the D-space
is an arrangement of D-curves, and in 3D is an arrangement of D-surfaces.
Notice that not all the dual arrangements lead to a valid block mesh. Specifi-
cally, Mitchell presents in [14] the conditions that have to be satisfied by a dual
arrangement in order to obtain a block mesh from it.

The remaining dual entities of a mesh are obtained by substituting each pri-
mal entity by its co-entity. That is, given a d-dimensional primal entity we
have an associated dual entity of dimension n − d. We assume that dual en-
tities are also in the D-space and we denote them by D-entities. Thus, a
primal node is substituted by a D-element, and a primal element by a D-
node. Table 2 presents the association between primal entities and their dual
co-entities and entities for 2-dimensional and 3-dimensional meshes. For instance,
the dual of an edge is always a D-co-edge that corresponds to a D-edge for
the dual of a quadrilateral mesh and to a D-face for the dual of a hexahedral
mesh.

The D-space is in fact a description of the inherent constraints of the block
meshing problem. Note that each co-edge of a block element has an opposed
co-edge, and both are connected by (n − 1) D-co-curves. In 2D, each edge has
an opposed edge and both are connected by a piece of a D-curve. Along one
of these D-curves we have an associated row of quadrilateral elements. In 3D,
each hexahedron face is bisected by two D-surfaces that connect the face with
an opposite face. The intersection of these D-surfaces define a D-curve associ-
ated to a stack of primal hexahedra. In addition, each D-surface determines a
layer of primal hexahedra. Note that each D-co-curve is composed by several
D-co-edges separated by D-co-faces. Therefore in 2D the D-curves are composed
by D-edges separated by D-nodes, and in 3D the D-surfaces are composed by
D-faces separated by D-edges.
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2.3 Local Dual Contributions

The basic idea of the proposed algorithm is to generate a valid topological block
decomposition of a given domain without a previous discretization of the bound-
ary. Our algorithm explicitly inserts descriptions of the D-co-curves in the D-
space. Finally, the primal mesh is obtained from this dual construction.

The crucial step is the development of an automatic tool that allows the con-
struction, manipulation and management of D-co-curves. Hence, we propose to
create a discrete representation of the D-space referred as D-space, see Figure 1.
To this end, we first create a simple discretization of the domain called refer-
ence mesh. The proposed algorithm adds discretized versions of theD-co-curves,
the D-co-curves, in the elements of the reference mesh. Each one of the D-co-
curves is composed by several discretizedD-co-edges,denoted byD-co-edges. We
impose that the intersections between different D-co-curves are captured by the
boundaries of the D-co-edges, the D-co-faces. That is, we consider that our dis-
cretized version of theD-co-curves, theD-co-curves,define a non-manifold (n−1)-
dimensionalmesh. The intersections betweenD-co-curves and the regions bounded
by this arrangement define the D-space.

-D curveD-edge

segment

-D curveD-edge

intersectionintersection

D– spaceD– space

Fig. 1. D-space for a 2D domain and its discretized version, the D-space

In our discrete approach the domain is substituted by a reference mesh of
simplices. We use the simplices of the reference mesh as containers of linear
entities of co-dimension one. We propose to describe the D-co-curves and their
intersections in the D-space as the composition of several co-edges, the local
dual contributions. Thus, for 2D applications we store in the triangles the
segments that define the D-curves. In Figure 1 we present the D-space for a 2D
domain. Note that a D-curve is composed by several D-edges (the piece-wise
curves between two white circles). Moreover, each D-edge is composed by one or
several segments (the straight lines between two black circles) that determine a
local contribution to the dual of a triangle of the reference mesh. Analogously,
for 3D problems we store in the tetrahedra the planar faces that compose the
D-surfaces. We remark that each reference element can store none, one or several
local dual contributions that can intersect or not between them.
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(a) (b) (c) (d)

Fig. 2. Vertex classification for 2D domains according to their ideal primal mesh close
to the boundary: (a) end , (b) side , (c) corner , and (d) reversal

2.4 Features

We consider that a domain is described by the following types of entities: vertex,
curve, surface andvolume. Some of the special characteristics of the boundary of
the domain, the features, have to be explicitly preservedby the final block mesh. To
this end, in this section we classify the features according to the ideal mesh around
each entity. Note that the name election is based on Paving [15] and Submapping
[16] notation. For a 2D mesh the vertices are classified as, see Figure 2: i) side ,
the ideal mesh is composed by two quadrilateral elements sharing the vertex. In
addition, these quadrilaterals have only one edge on the boundary; ii) end , the
ideal mesh is composed by one quadrilateral element touching the vertex and with
only two edges on the boundary; iii) corner , the ideal mesh has three quadrilateral
elements sharing thevertex.Two elements have only one edge on the boundary, and
the middle element has four inner edges; and iv) reversal , the ideal mesh has four
quadrilateral elements touching the vertex. Two elements have only one edge on
the boundary, and the two middle elements have four inner edges.

A vertex is of type feature if it is not of type side . For 3D applications we
have to classify curves and vertices. First, a piece of a curve can be classified as: i)
side , the ideal mesh is composed by two hexahedral elements sharing the curve
and each one with one face on the boundary; ii) end , its ideal mesh consists
in one hexahedron touching the curve and with two faces on the boundary; iii)
corner , the ideal mesh has three hexahedral elements incident to the curve.
Two elements have only one face on the boundary, and the middle element has
six inner faces; and iv) reversal , the ideal mesh has four hexahedra touching

face

(a)

semi-edge

feature

(b)

feature

feature

edge

(c)

feature

feature

feature
vertex

(d)

Fig. 3. A sample for each vertex type: (a) face vertex; (b) semi-edge vertex; (c)
edge vertex; and (d) vertex type
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the curve. Two elements have only one face on the boundary, and the two middle
elements have six inner faces.

A curve is of type feature if it is not of type side . We determine the classifi-
cation of the vertices according to the classification of their adjacent curves, see
Figure 3: i) face , there is no adjacent curve of type feature ; ii) semi-edge ,
one adjacent curve is of type feature ; iii) edge , two adjacent curves are of type
feature ; and iv) vertex , more than two adjacent curves are of type feature .

3 Constructing the Dual

3.1 Requirements and Aim of the Algorithm

Any block mesh has to fullfill several topological, geometrical and qualitative
requirements in order to be used in a numerical simulation. A detailed exposition
of these conditions for block meshes can be found in [5, 6]. For the purposes of
this work we highlight two of them:

• Geometric matching. The block mesh has to reproduce the geometric
features of the domain. Moreover, the mesh has to be adapted to each kind
of feature. Hence, in Section 2.4 we have defined the vertices (2D) and curves
(3D) features according to the ideal mesh around them. For instance, Figure
2 and Figure 4 present the desired primal and dual configuration for each
kind of vertex.

• Boundary sensitivity. The mesh has to present layers of blocks that follow
the boundary of the domain. This condition can be expressed in the D-space,
where the layers of blocks are substituted by D-co-curves. Specifically, we
have to generate a series of D-co-curves by shrinking the boundary of the
domain inwards the domain.

The proposed algorithm is based on the following two paradigms:

• Blockdecompositionorientedmesher.One of the most reliable approaches
to block meshing is to decompose the domain in several coarse blocks. The final
mesh is obtained by meshing each block and verifying the mesh compatibilities
between blocks. Several software packages implement this paradigm [17, 18]
providing a set of tools in order to define, by hand, a block topology decompo-
sition of the domain. The user is responsible for determining the topological

(a) (b) (c) (d)

Fig. 4. Ideal mesh dual close to boundary features of a 2D domain: (a) end , (b) side ,
(c) corner , and (d) reversal
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(a) (b) (c) (d)

Fig. 5. Block meshing steps in 3D: (a) obtain the domain; (b) add D-surfaces; (c)
create D-cells; and (d) block mesh

relation of the blocks but is allowed to loosely dispose the vertices of the blocks.
Then the package is able to adapt the mesh to the domain and to untangle the
edges of the blocks by relaxing node location. Therefore, our goal is to obtain
a valid coarse block decomposition of the domain.

• Unconstrained boundary mesher. A previous discretization of the bound-
ary adds additional constraints that are difficult to fulfill, in particular for
hexahedral meshes. Several authors [11, 12] have suggested to develop algo-
rithms in order to mesh domains without a prescribed boundary mesh. In
particular, Staten et al. [19] fully develop this idea. In our work we also follow
this approach and we propose an algorithm that directly generates the dual
of a block mesh without a previous discretization of the boundary.

3.2 Algorithm Proposal

Taking into account the requirements of a valid dual [14] and the requirements
of the block mesh, Section 3.1, we propose an algorithm that explicitly inserts
descriptions of the D-co-curves in the D-space. Our algorithm is structured in
four steps, see Figure 5 for a 3D graphical description.

The main task of the proposed algorithm is to build up a representation of
the D-co-curves. To this end, as we mentioned in Section 2.3, we propose to
consider a discrete representation of the D-space, the D-space. In the following
we present an algorithm and we describe the second and the third step:

Algorithm 1. D-space block meshing algorithm
Reference mesh. We obtain a Constrained Delaunay Triangulation
(CDT) of the domain. In our implementation we have used TetGen [20].
Add D-co-curves. Create an arrangement of intersecting D-co-curves
composed by several D-co-edges.
Create D-co-nodes. Cap the D-co-edges with the boundary of the
reference mesh. Note that the boundary of the reference mesh is composed
by co-edges. We obtain a set of bounded regions, the D-co-nodes, sharing
at most a common D-co-edge.
Block mesh. Once we have the D-space, a discretized representation of
the D-space, we obtain the final block mesh as the dual of the dual.
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Add D-co-curves. Each D-co-curve is a mesh composed by co-edge elements.
We modify the reference mesh in order to make it compatible with the added
co-edges. Specifically, we split the elements of the reference mesh to match them
with the inserted co-edges. In 2D, the discretized versions of D-co-curves, the
D-curves, are composed by segments that intersect in a set of shared nodes, the
D-nodes. The D-edges are delimited by the intersections of the D-curves. We
split the reference mesh elements to match these new segments, see Figure 1. In
3D, the discretized versions of the D-co-curves, the D-surfaces, are represented
by triangular meshes that can intersect in two possible configurations: i) two
triangular meshes can intersect in a set of shared edges that compose the dis-
cretized versions of the D-edges and D-curves, denoted by D-edges and D-curves;
and ii) three triangular meshes can intersect in a shared node which corresponds
to a D-node. The intersections of the D-surfaces bound the discretized versions
of the D-faces, the D-faces. We split the tetrahedra of the reference mesh obtain-
ing new entities that match properly with the additional triangles that conform
D-surfaces.

Create D-co-nodes. Taking into account that we have split the reference mesh
to add theD-co-curves, we obtain a conformaln-dimensional mesh of theD-space,
the D-space. We obtain a set of regions, the D-co-nodes, bounded by the D-co-
edges and the boundary co-edges. In 2D, we obtain a set of areas, the D-faces,
composed by faces and delimited by the edges that compose the D-edges, and the
split boundary of the reference mesh. In 3D, we obtain several volumes, the D-
cells, composed by cells and delimited by the composing faces of the D-surfaces,
and the split surface mesh of the boundary of the reference mesh.

4 Adding Local Dual Contributions

4.1 Reference Element Contributions

We have outlined an algorithm to obtain a block mesh by means of first gener-
ating a discretized version of the dual, see Section 3.2. In the second step of the
algorithm, add D-co-edges, we need a tool for describing the D-co-edges and
their intersections. To this end, we have introduced the concept of local dual
contributions in Section 2.3. Recall that we use a reference mesh of simplices
as a discrete representation of the geometry and that local dual contributions
are added in the elements of the reference mesh. In this section we detail the
geometrical definition for each type of local dual contribution.

In 2D, given a triangle of nodes {n1, n2, n3} in a reference mesh, we consider
two types of local dual contributions, see Figure 6:

• edge . Given an edge ei, we consider the opposite node ni. Thus, ei is deter-
mined by the nodes ni1 and ni2 , where i1 = i+1(mod 3) and i2 = i+2 (mod 3).
This type of contribution is determined by the segment ri1ri2 , where ri1 :=
1
4ni + 3

4ni1 and ri2 := 1
4ni + 3

4ni2 .
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e1

(a)

n1

(b)

Fig. 6. Local dual contributions on a reference mesh triangle. (a) edge contribution;
and (b) node contribution.

• node . Given the node ni it is the contribution defined by the segment qi1qi2 ,
where i1 = i + 1(mod 3) and i2 = i + 2 (mod 3), qi1 := 3

4ni + 1
4ni1 and

qi2 := 3
4ni + 1

4ni2 .

Note that the local dual contributions intersect with the edges of the reference
mesh at distances 1

4 and 3
4 of the edge length. On the one hand, this selection

ensures that the local dual contributions are compatible between adjacent el-
ements. On the other hand, the intersections between local dual contributions
have the proper multiplicity inside the reference elements.

In 3D, given a tetrahedron of nodes {n1, n2, n3, n4} in a reference mesh, we
consider three types of local dual contributions, see Figure 7:

• face . For a reference tetrahedron we consider a face f of nodes {ni1 , ni2 , ni3}
and opposite node ni. The contribution of this face is defined by the triangle
{qi1 , qi2 , qi3} where qij := 1

5ni + 4
5nij for j = 1, . . . , 3.

• edge . Consider an edge e delimited by the nodes ni1 and ni2 , and being ni3

and ni4 its opposite nodes. The contribution of e in the tetrahedron is defined
by the quadrilateral {r1, r2, r3, r4} with r1 := 4

5ni1 + 1
5ni4 , r2 := 4

5ni1 + 1
5ni3 ,

r3 := 4
5ni2 + 1

5ni3 and r4 := 4
5ni2 + 1

5ni4 .
• node . The contribution of a node ni with opposite nodes {ni1 , ni2 , ni3} is

defined by the triangle {si1 , si2 , si3}, where sij := 4
5ni + 1

5nij for j = 1, . . . , 3.

For 3D problems, the local dual contributions intersect with the edges of the
reference mesh at distances 1

5 and 4
5 of the edge length. As in the 2D case, this

selection ensures compatibility between neighboring elements and the correct
multiplicity of the intersections inside the reference elements.

We propose to use local dual contributions to describe arrangements and inter-
sections ofD-co-curves. According to Section 3.2, local dual contributions have to
define a non-manifold (n−1)-dimensional mesh with conformal elements. To cap-
ture all the possible intersections with other local dual contributions and obtain
the conformal mesh, we decompose each type of local dual contribution in several
simplices of co-dimension one. For instance, given a 3D reference mesh we consider
the following decompositions for each local dual contribution type, see Figure 8:

• face . Given a face contribution defined by the nodes {q1, q2, q3}, we consider
the points q121 := 3

4q1 + 1
4q2, q122 := 1

4q1 + 3
4q2, q231 := 3

4q2 + 1
4q3, q232 :=

1
4q2 + 3

4q3, q311 := 3
4q3 + 1

4q1, q312 := 1
4q3 + 3

4q1, p1 := 2
4q1 + 1

4 (q2 + q3),
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q1

q2
q3

(a)

r2

r3

r1

r4

(b)

s1

s2s3

(c)

Fig. 7. A sample for each type of local dual contribution: (a) contribution of the base
face; (b) contribution of the frontal edge; and (c) contribution of the top node

q1 q2

q3

q121 q122

q231

q232q311

q312 p1 p2

p3

(a)

r231

r232r411

r412

r12

r34

r2

r3

r1

r4

(b)

s1 s2

s3

(c)

Fig. 8. Associated triangulation for each type of local contribution: (a) face contri-
bution; (b) edge contribution; and (c) node contribution

p2 := 2
4q2 + 1

4 (q1 + q3), p3 := 2
4q3 + 1

4 (q1 + q2) and the decomposition of the
contribution in the triangles {q1, q121, q312}, {q2, q231, q122}, {q3, q311, q232},
{q121, p1, q312}, {q231, p2, q122}, {q311, p3, q232}, {q121, q122, p2}, {p1, q121, p2},
{q231, q232, p3}, {p2, q231, p3}, {q311, q312, p1}, {p3, q311, p1} and {p1, p2, p3}.

• edge . Given an edge contribution defined by the nodes {r1, r2, r3, r4}, we con-
sider the points r231 := 3

4r2 + 1
4r3, r232 := 1

4r2 + 3
4r3, r411 := 3

4r4 + 1
4r1, r412 :=

1
4r4 + 3

4r1, r12 := 1
4 (r1 + r2 + r231 + r412), r34 := 1

4 (r3 + r4 + r411 + r232) and the
decomposition of the contribution in the triangles {r1, r2, r12}, {r2, r231, r12},
{r231, r412, r12},{r412, r1, r12},{r411, r231, r232},{r412, r232, r411},{r3, r4, r34},
{r4, r411, r34}, {r411, r232, r34}, and {r232, r3, r34}.

• node . A node contribution defined by the nodes {s1, s2, s3} is not decom-
posed because it does not have inner intersections with other contributions.

4.2 Hard and Soft Contributions

In order to improve the robustness of the proposed algorithm we require that
given two different reference meshes of a single domain the algorithm generates
the same dual. For instance, given the reference meshes of the rectangular domain
presented in Figures 9(a) and 9(b) we require that the algorithm generates the
same dual, Figure 9(c), and the same primal, Figure 9(d).
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(a) (b) (c) (d)

Fig. 9. Decomposition of a rectangular domain. (a) First reference mesh; (b) second
reference mesh; (c) ideal mesh dual of the rectangular domain; and (d) ideal primal
mesh.

(a) (b) (c) (d)

Fig. 10. Local dual contributions for several triangulations around an end node: (a)
one adjacent triangle; (b) two adjacent triangles; (c) three adjacent triangles; and (d)
four adjacent triangles. Solid black lines denote the boundary; slashed lines denote the
edges of the triangular reference mesh; local dual contributions are denoted by red lines;
and the red stroked circles represent the intersection of two local dual contributions.

To this end, consider an end vertex of a 2D domain. Depending on the ref-
erence mesh this end node may belong to different number of elements of the
reference mesh, see Figure 10. If the end node belongs to one or two elements,
see Figure 10(a) and Figure 10(b) respectively, we can add local dual contribu-
tions to obtain the ideal D-space curves around the end node. In the first case
two edge local dual contributions are needed. In the second case one edge and
one node local dual contributions are needed in each reference triangle adjacent
to the vertex.

If the node belongs to more than two triangles, see Figures 10(c) and 10(d),
the local dual contribution types presented in Section 4.1 are not sufficient to
obtain a valid arrangement of the D-curves. The proposed solution for analogous
configurations is to virtually collapse the two intersection points into a single
virtual point. Then, we obtain the desired two D-curves that intersect in the
virtual point. To generalize this behavior we classify the local dual contributions
in two classes:

• hard . The contribution is respected during the construction of the primal
mesh. That is, if at least one of the contributions that separate two D-co-
nodes is hard we generate a primal edge connecting their associated primal
nodes.
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(a) (b)

Fig. 11. Local dual contributions for several possible triangulations around an end
node: (a) three adjacent triangles; and (b) four adjacent triangles. Red segments rep-
resent hard contributions and blue segments represent soft contributions.

(a) (b) (c) (d)

Fig. 12. Examples of local dual contributions in reference triangles. Two non-valid
duals: (a) three hard contributions intersecting at one point; and (b) a configuration
composed by three hard contributions and two soft contributions. Two configurations
defining a valid dual: (c) two hard contributions matching at one point; and (d) four
hard contributions and two soft node contributions in the middle.

• soft . The contribution is not respected during the construction of the primal
mesh.That is,whenall the contributions that separate twoD-co-nodes aresoft
we do not generate a primal edge connecting their associated primal nodes.

The solution to the problem presented in Figures 10(c) and 10(d) can be
interpreted in terms of hard and soft local dual contributions. On the one
hand, the proposed solution is composed by soft node contributions of the end
vertex in each inner triangle. On the other hand, it is composed by two hard
node contributions of the end vertex, and one edge hard contribution on each
triangle adjacent to the boundary of the reference mesh, see Figure 11. Then,
the soft contributions will be ignored during the construction of the primal
mesh, and this representation of the D-space is equivalent to virtually collapsing
the soft contributions into one virtual point. Note that this virtual point is
represented by blue segments in Figure 11.

4.3 Matching Rules

In order to obtain a valid dual we have to ensure that: i) local dual contributions
compose D-co-edges without gaps, and ii) the intersections of the D-co-edges
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have the proper multiplicity. For instance, in 2D the multiplicity at the matching
points of local dual contributions must be either two or four.

In this sense, the direct application of hard and soft local dual contributions
does not necessarily lead to a valid dual. To illustrate this shortcoming, we con-
sider two configurations that define a non-valid dual and that can be constructed
by using hard and soft local dual contributions. First, Figure 12(a) shows three
hard local dual contributions sharing an intersection point. Hence, we obtain
three D-edges and not the required four to obtain a valid dual. Second, Figure
12(b) presents a configuration with hard and soft local dual contributions.
Since soft local dual contributions are equivalent to virtually collapse the con-
tributions into one single virtual point, we obtain again three D-edges sharing a
point. These local dual contributions do not correspond to a valid dual.

To overcome these drawbacks we propose to match the number of contributions
from the left and right of a reference mesh co-edge. For instance, in Figure 12(c) the
hard edge and node contributions from the left match with the hard edge and
node contributions fromthe right, andwe obtain a correct piece ofD-co-edge. Like-
wise, in Figure 12(d), if we virtually collapse the middle soft node contributions
we have that hard contributions from the left match with the two hard contribu-
tions from the right. These contributions define the ending parts of four D-edges
separated by a D-node, generated by virtually collapsing the soft contributions.

Note that by construction the local dual contributions do not have gaps nor
intersections of wrong multiplicity inside the elements of the reference mesh.
Thus, after considering that middle soft contributions are virtually collapsed,
we have to ensure that the hard contributions match properly at the boundaries
of reference elements. To this end, we propose the following strategies to ensure
that the local dual contributions match properly.

• 2D. The boundaries of the reference triangles are edges. Each edge has two
possible intersection points of local dual contributions. We have to check local
dual contributions around each one of these points:
– Boundary edge. We allow either no contribution or one incident hard

contribution from inside the element.
– Inner edge. The number of hard contributions from the left have to

be equal to the number of hard contributions from the right. Thus, the
possibilities are: i) no incident contributions; ii) one from the left and one
from the right defining a piece of a D-curve; and iii) two from the left
and two from the right defining four D-edges ending at the intersection
node of two D-curves.

• 3D. The boundaries of a reference tetrahedron are determined by four trian-
gular faces. Each face has six possible segments where local dual contributions
can intersect. These segments are determined by all the possible face , edge ,
and node contributions inside the tetrahedron. Note that for each intersec-
tion segment there are only two possible contributions. Hence, we have to
check local dual contributions around each one of these segments:
– Boundary face. We allow either no contribution or one incident hard

contribution from inside the element.
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– Inner face. The number of hard contributions from the left has to be equal
to the number of hard contributions from the right. Thus, the possibilities
are: i) no incident contributions; ii) one from the left and one from the right
defining a piece of a D-surface; and iii) two from the left and two from the
right defining four D-faces ending at the intersection of two D-surfaces.

4.4 Implementation

We can add local dual contributions from the composing entities of the reference
mesh. In addition, we can use hard and soft contributions in order to capture
the desired dual. But we have to add these local dual contributions taking into
account the set of matching rules. To this end, in our implementation we add the
contributions using a hierarchical procedure: we start at the highest dimension
entities (co-edge contributions) and finish at lowest dimensional entities (node
contributions). In this scheme, highest dimensional contributions are responsible
of determining the main shape of the desired dual, and lower dimensional contri-
butions are responsible of filling the gaps and matching local dual contributions
properly. Algorithm 2, details a procedure for 3D applications.

We use this procedure to implement our local dual contributions tool. The last
two steps are responsible of obtaining a valid dual once the face contributions
have been added. These steps are done automatically according to the matching
rules and the required ideal mesh around the features. The difficulties reside in
the first step where we have to decide which face contributions to add to finally
obtain the desire D-surfaces.

Algorithm 2. Add local dual contributions
Add face contributions. We add hard face contributions: i) to capture
one layer of hexahedra that follows the boundary (adding a face
contribution for each boundary face); ii) to split vertices with more than
three incident feature curves; and iii) to capture ideal mesh close to curve
and vertex features.
Add edge contributions. Taking into account previously added face
contributions, we automatically add edge contributions according to the
matching rules. Thus, we add edge contributions: i) to cover the gaps
between face contributions with soft contributions; ii) to ensure that
face contributions match with correct multiplicity using soft and hard
contributions; and iii) to capture the ideal mesh close to curve and vertex
features with hard contributions.
Add node contributions. Taking into account previously added face
and edge contributions we can still have a non-valid arrangement of
D-surfaces. To obtain the final set of intersecting D-surfaces we add node
contributions: i) to fill all the remaining gaps between face and edge
contributions with soft node contributions; ii) to match all the hard
face and edge contributions and to define valid D-surfaces intersections
using soft and hard contributions; and iii) to capture the ideal mesh at
the vertex features with hard contributions.
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5 Examples

The aim of the examples presented in this section is to show that the concept of
local dual contributions has enough expressivity to capture the dual of the de-
sired block mesh for a wide range of geometries: convex and non-convex domains,
with 3 or 4-valenced vertices, and domains with holes.

We use our implementation to decompose these geometries in coarse blocks. It
is important to point out that the proposed algorithm focuses on the generation
of valid topological block decomposition. Then, the final node location can be
improved using a relaxation procedure [17, 18]. In addition, a finer mesh can be
obtained by meshing each block separately while keeping the mesh compatibility
conditions between them.

For the three first examples, Figure 13 shows the five main steps involved in the
block meshing process: i) to obtain hte reference mesh, the CDT of tetrahedra; ii)
to add local dual contributions to define D-surfaces and their intersections, where
red faces represent the hard local dual contributions and blue faces represent
the soft local dual contributions; iii) to cap the D-surfaces and obtain a D-
space where cells are colored according to the containing D-cell; finally, iv) and
v) to obtain the primal nodes (colored as the associated D-cells), edges, faces
and hexahedra of the block mesh.

In the first example, we decompose in eight blocks a brick object that is
tapered in two orthogonal directions, see Figure 13(a). In this example all the
vertices are 3-valenced. Thus, it can be meshed with submapping or midpoint
subdivision. In fact, the obtained decomposition is equivalent to a coarse mesh
that can be obtained by these methods. In this example all the D-surfaces follow
the boundary of the domain and the possible gaps between contributions are
filled with soft contributions.

For the second example, see Figure 13(b), we consider an extruded pentagon.
The final block decomposition is equivalent to the mesh we would obtain using
midpoint subdivision. Notice that in this example the submapping method will
lead to a non-symmetrical block decomposition of lower quality. The D-surfaces
are discretized versions of D-surfaces that follow the boundaries of the domain.
Close to the top front vertex the D-surfaces have a soft local dual contribution.
When the algorithm caps the D-surfaces we obtain a region close to the top front
vertex colored with cyan. This dual region, D-cell, is associated to the top front
node of the primal, colored in cyan. Notice that since the local dual contribution
is soft , the primal mesh does not show an edge connecting the top front node
with the center node of the top of the volume. That is, during the generation of
the primal mesh we ignore the soft contribution.

The third example presents the decomposition of a double pyramid, see Figure
13(c). Note that we can use neither submapping nor midpoint subdivision because
all the vertices are 4-valenced. In this case our local dual contributions tool auto-
matically splits the double pyramid in 4 tetrahedra. Moreover, the final mesh is
composed by 16 hexahedra that correspond to the decomposition of each one of
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(a) (b) (c)

Fig. 13. Block meshing steps for three different domains: (a) a domain with 3-valenced
vertices; (b) an extruded pentagon; and (c) a domain with 4-valenced vertices. Rows
represent the algorithm steps: i) reference mesh; ii) D-surfaces composed by local dual
contributions; iii) D-space where D-cells are colored in base of the containing D-cell; iv)
primal nodes (colors associated to D-cells) and edges; and v) block mesh.
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(a) (b)

Fig. 14. The D-surfaces and the block meshes for (a) a domain with a hole defined by
four corner curves; and (b) a convex domain with a 3-valenced protrusion

the 4 tetrahedra in 4 hexahedra. In this case all the contributions are hard , and
all the inner parallel D-surfaces are associated with an inner quadrilateral primal
mesh that splits the domain in two parts.

The last two examples, two non-convex domains, are decomposed in a larger
number of hexahedra than the three first examples. Therefore, we only show the
local dual contributions and the obtained primal meshes, see Figure 14.

In the fourth example we discretize the extrusion of a square-shaped ring,
Figure 14(a). This test domain has four feature curves of type corner (non-
convex domain), a hole that cross the whole domain, and all the nodes are
3-valenced. Observe that we obtain ideal primal and dual configurations close to
the corner curves. In fact, these configurations are the 3D generalization of the
ideal configurations presented for corner vertices in Figure 4.

The last example is an extruded square with a protrusion on the top, Figure
14(b). All the nodes are 3-valenced and the curves that join the protrusion with
the base are of type corner . We obtain a coarse decomposition of the domain
that could also be obtained with a submapping algorithm. Since we consider the
unconstrained boundary mesh approach, we do not have to previously compute
a compatible interval assignment of the boundary. The four quadrilaterals that
separate the protrusion from the rest of the mesh are associated to two parallel
D-surfaces.
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6 Concluding Remarks and Future Work

In this paper we present a new algorithm to generate a block decomposition of
a given domain when there is not a prescribed boundary mesh. To this end, we
propose an approach to directly construct a valid dual of the block mesh. The
proposed algorithm is composed by two main steps. First, we create a reference
mesh from the data of the boundary domain by means of a CDT. Second, we
create the dual of the block mesh using the new concept of local dual contribu-
tions. These contributions are generated in the elements of the reference mesh.
Specifically, we have implemented a tool that automatically adds local dual con-
tributions following a set of hierarchical rules. The proposed implementation
ensures that adjacent local contributions match properly. That is, the local dual
contributions define a dual of the block mesh with intersections of the proper
multiplicity and without gaps.

The main goal of the first implementation of the method is to obtain block
meshes and their duals for some simple configurations: convex and non-convex
domains defined by planar surfaces. Our current implementation allows to auto-
matically mesh these simple domains. However, we can also mesh some domains
with several vertices having a valence greater than three. In all theses cases the
developed tool generates the expected mesh.

Practical results suggest that the proposed types of local dual contributions
and the set of matching rules incorporate enough expressivity to describe the
dual arrangement of a block mesh. However, it is expected that as the tool is
applied to more complicated geometries (non-blocky geometries, domains with
sharp angles, or assembly models) additional logic might be incorporated.

Note that the proposed tool is under continuous development. In this sense,
the current version of this tool has several limitations that should be investigated
and solved in the near future. First, we have to analyze the dependence of the
algorithm from the reference mesh. For instance, it is not clear how the resolution
of the reference mesh will affect the topology of the block decomposition. Second,
it has to be investigated how the small perturbations of the boundary will affect
the final primal mesh. Third, we have to apply the developed tool to domains
described by curved boundaries that include smooth details. Finally, we have to
check the robustness of the proposed tool in applications of practical interest.
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Abstract. We present a mesh optimization algorithm for adaptively improving the
finite element interpolation of a function of interest. The algorithm minimizes an ob-
jective function by swapping edges and moving nodes. Numerical experiments are per-
formed on model problems. The results illustrate that the mesh optimization algorithm
can reduce the W 1,∞ semi-norm of the interpolation error. For these examples, the L2,
L∞, and H1 norms decreased also.

1 Introduction

Engineering applications often involve solutions with different scales of variations
along different directions. For these problems, recent works have illustrated the
importance of anisotropic mesh adaptation, see [18, 21, 25] and the references
therein. Courty et al. [12] show that meshes aligned with the solution charac-
teristics allow to capture the solution details with fewer nodes than isotropic
meshes. When using anisotropic meshes, they observe second-order convergence
with respect to the number of degrees of freedom for representing a step function
with continuous linear finite elements.

Several techniques exist for anisotropicmesh adaptation.Remeshing approaches
define an anisotropic metric map that governs the generation of a new anisotropic
mesh [1, 12, 18, 21]. Mesh modification techniques (refinement, coarsening, edge
swapping, and node movement) operate locally to adapt the mesh [14, 25]. The
approach followed in this paper is mesh optimization via edge swapping and node
smoothing guided by the minimization of an appropriate objective function.

We can distinguish the objective functions available in the literature into
two major categories. In the first category, the objective functions rely on a
variational formulation or a governing partial differential equation. Examples of
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under Contract DE-
AC04-94AL85000.
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such objective functions include the energy functional [15, 22, 28] and the least-
squares norm of residuals [27, 29, 31]. For these examples, the exact solution
minimizes the objective function. The functional provides a natural criterion for
the design of computational grids adapted to this solution via node movement
and edge swapping. In the second category, the objective functions rely on re-
covery of derivatives of the function of interest u. This second category is more
function-centric and does not depend on the problem origin (variational formula-
tion or partial differential equation). Typically, the objective function exploits an
approximation to the Hessian matrix of u. Examples of such objective functions
include geometric quality functionals in a transformed space [8, 14, 25] (where
the metric map is built on the Hessian matrix of u) and functionals based on
local interpolation errors [3, 6, 11, 23].

We choose here to focus on an Hessian-based objective function. Defining
an optimization problem independent from a particular engineering application
enables the development of a black box mesh optimization algorithm that can
impact many different simulation groups and packages. Such a strategy has been
implemented successfully in the Mesquite mesh optimization library [24]. Cur-
rently, though, Mesquite does not include an algorithm to adapt a mesh to the
physical solution in an engineering simulation. The present work is a stepping-
stone toward filling this gap.

Several mesh smoothing schemes have been designed to reduce the inter-
polation error. These works differ on how to measure the interpolation er-
ror. When measuring the interpolation error in the L2 norm, the optimization
[3, 8, 10, 11, 14, 25] aims to equidistribute the edge length under some metric map
related to the Hessian matrix of the approximated function. Additional geomet-
ric criteria must be used in conjunction with the edge length criterion, otherwise
inverted elements or sliver tetrahedra may appear. The approach is efficient at
reducing the L2 norm of the error. For many engineering applications, a good
representation of the solution gradient is as important as a good representation
of the solution itself. Unfortunately, a mesh optimized for reducing the L2 norm
of the interpolation error may be inappropriate for representing the gradient of
the solution. Long thin elements are good for linear approximation if we measure
the error in the L2 norm [11, 26]. But such elements can be undesirable when
we look for a good representation of the solution gradient (see [4]). Bank and
Smith [6] (node movement) and Lagüe [23] (edge swapping and node movement)
introduced two mesh optimization algorithms to minimize the H1 norm of the
interpolation error. Their objective functions incorporate naturally a “barrier”
term, which helps prevent elements from becoming degenerate or tangled. To
the best of our knowledge, these two works are the only ones optimizing for the
gradient of the interpolation error.

Other choices of norms are possible. For example, one might consider con-
structing an objective function based on the L∞-norm in order to reduce point-
wise the interpolation error of some physical quantity of interest. Reducing the
L∞-norm of the error does not always guarantee a decrease in the error as mea-
sured by the Lp-norms (p finite), but it provides an upper bound for these error
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norms when the function of interest is smooth. A similar remark holds for the
W 1,∞ and W 1,p norms. By reducing the W 1,∞-norm, we control point values
of the error and its gradient. This control can provide an upper bound for the
W 1,p-norms, like the H1-norm (H1 = W 1,2). Since engineering problems are
often interested in a good representation of the solution gradient at a point, we
here construct an objective function that can lead to a reduction of the W 1,∞

semi-norm of the interpolation error.
To the best of our knowledge, no work has studied the max-norm for the

gradient of the interpolation error. The goal of this paper is to fill this gap and
to assess numerically whether local mesh modification techniques can reduce the
W 1,∞ semi-norm of the linear interpolation error. In Section 2, we motivate and
derive the adaptation algorithm. Starting from the objective function of Bank
and Smith [6], we will present a new algorithm targeting the W 1,∞ semi-norm of
the interpolation error. In Section 3, we study on model problems the capability
of this algorithm to reduce the interpolation error measured in the L2, L∞, H1,
and W 1,∞ norms. Throughout the paper, by mesh optimization, we mean a
combination of edge swapping and node movement.

2 Optimization-Based Adaptation Algorithm

In this section, we describe our approach. Section 2.1 reviews the algorithm
of Bank and Smith [6]. Next, Section 2.2 motivates and derives the new ob-
jective function. Section 2.3 describes the edge swapping and node smoothing
algorithms.

The focus of this paper is on two-dimensional triangular meshes because they
are an important stepping stone toward a practical algorithm. For other meshes
(quadrilateral, tetrahedral, ...), the method may apply but important details
would need to be worked out, like swapping for tetrahedral elements. In our
study, we do not incorporate h-adaptivity via refining or coarsening elements.
Several works have illustrated the importance of combining h-adaptivity with
mesh smoothing to generate adaptively anisotropic meshes (see [6, 12, 25]). In
general, h-adaptivity and mesh smoothing are applied sequentially or in a black-
box mode. We think that our algorithm could be plugged into such an approach.
Most likely, some work would be required in order to get these approaches to
play nicely together.

2.1 Review of the Bank and Smith Algorithm [6]

Given a domain Ω in R
2 and a function u ∈ H1(Ω), Bank and Smith [6] intro-

duced an optimization of node locations to compute approximately

min
T ∈F

∫
Ω

|∇u−∇uL|2 dΩ, (1)

where F is the family of conforming triangulations with fixed number of vertices.
Members of F differ by the positions of the vertices in the mesh and, possibly,
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a finite number of edge flips. uL denotes the continuous piecewise linear nodal
interpolant of u defined on the triangulation T .

Since problem (1) is expensive to solve, Bank and Smith [6] considered

min
T ∈F

∫
Ω

|∇uQ −∇uL|2 dΩ, (2)

where uQ denotes the quadratic interpolant of u on K. They showed that∫
K

|∇uQ −∇uL|2 dK ≈ l21 + l22 + l23
192 |K| s(HK ,K), (3)

where the function s(HK ,K) is defined by

s(HK ,K) = (l21t
T
1 HKt1)2 + (l22t

T
2 HKt2)2 + (l23t

T
3 HKt3)2. (4)

ti is a unit tangent vector for edge i and li is the length of the same edge. HK

is the Hessian matrix for the quadratic interpolant uQ. Their objective function
approximates the squared H1 semi-norm for the linear interpolation error in Ω,∑

K∈T

l21 + l22 + l23
192 |K| s(HK ,K) ≈

∫
Ω

|∇uQ −∇uL|2 dΩ ≈
∫

Ω

|∇u−∇uL|2 dΩ. (5)

In objective function (5), the factor

l21 + l22 + l23
|K|

is proportional to a well-known triangle quality metric [16]. It acts as a “bar-
rier” function that guarantees untangled elements provided the initial mesh is
untangled. Bank and Smith [6] combine a few sweeps of mesh smoothing with
refinement and coarsening. They do not include edge swapping. Numerical ex-
periments by Bank and Xu [7] illustrate reductions for the L2 and H1 interpo-
lation error norms. However, they do not study the point-wise maximum norm.
It is conceivable that the H1-norm of the interpolation error decreases while the
W 1,∞-norm increases.

2.2 New Objective Function

To derive our objective function, we notice that

max
x∈K

|∇u(x)−∇uL(x)|2 ≈ 1
|K|

∫
K

|∇u−∇uL|2 dΩ

when u ∈ H1(Ω) ∩W 1,∞(Ω) and the mesh is fine enough. After exploiting the
result of Bank and Smith (3), we define the local adaptive quality metric µ by

µ(K) =
l21 + l22 + l23

192 |K|2
s(HK ,K) ≈ max

x∈K
|∇uQ(x) −∇uL(x)|2 . (6)
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µ(K) differs from (3) only in that the power of |K| is two instead of one. The
first term in µ(K) still acts as a “barrier” function, but it is no longer a triangle
shape-metric since it is not scale-invariant. A different but related approach to
derive objective functions is used in [20], where we construct objective functions
from upper bounds for the interpolation error.

Bank and Smith did not prove that objective function (5) is convex or has
a unique minimum. To study the convexity of µ(K), we plot level curves for
µ. In Figure 1, the triangle K is composed of two fixed vertices at (0, 0) and
at (1, 0) and a free vertex at (x, y). Two different choices of matrix HK are
presented. When the free vertex gets closer to the horizontal axis, µ(K) increases
highlighting the effect of the barrier function. The choice of matrix HK modifies
the level curves of µ. When HK has both positive and negative eigenvalues, the
contour lines are not convex and, consequently, the function µ is not a convex
function. On the other hand, when the matrix HK is positive definite, the contour
lines are convex.

Fig. 1. Contour lines with HK = diag(1, 1) (left) and HK = diag(1,−1) (right)

In Figure 2, showing contour lines for a local patch of elements, the interior
node is free while the corner nodes are fixed. The plotted isolines are for

max
K1,K2,K3,K4

µ(K), (7)

when the interior node moves in the rectangle. The matrices vary per element
such that

HK2 = HK4 =
[

1 0
0 −3

]
and HK1 = HK3 = 10−2HK2 . (8)

The isolines are not convex.
Convexity of the objective function is fundamental in optimization. If the

optimization algorithm converges to a stationary point of a convex objective
function, then the algorithm has converged to a global minimizer. When the
matrix HK has positive and negative eigenvalues, the function µ is not always
convex. So we prefer to replace the matrix HK with its absolute value and
introduce the function

µ̃(K) =
l21 + l22 + l23

192 |K|2
[(l21t

T
1 |HK | t1)2 + (l22t

T
2 |HK | t2)2 + (l23t

T
3 |HK | t3)2]. (9)
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(0,0)

K1

K2

K3

K4

(4,0)

(4,1)

Fig. 2. Contour lines on a patch of four elements

|HK | is the absolute value of the matrix HK , defined as |HK | = S |Λ|ST where
(S,Λ) are the eigenpairs for the matrix HK and |Λ| is a diagonal matrix with
the absolute values of eigenvalues as diagonal entries. For every vector t, we have(

tTHKt
)2 ≤

(
tT |HK | t

)2
.

So the function µ̃ is an upper bound for the local quality metric µ. Asymptoti-
cally, the function µ̃ is also an upper bound for the max-norm of the gradient of
the interpolation error. We were not able to prove that the function µ̃ is convex.
But our experiments gave convex level curves for this function. For example,
with the matrices HK defined in (8), the isolines for the functional

max
K1,K2,K3,K4

µ̃(K), (10)

are convex (see Figure 3).

Fig. 3. Contour lines for functional (10) on a patch of four elements

Even though µ̃ formally has a “barrier”, the “barrier” term can become very
weak when the matrix |HK | approaches zero. The function µ̃ satisfies

0 ≤ µ̃(K) ≤ ‖HK‖2
2

l21 + l22 + l23

192 |K|2
(
l41 + l42 + l43

)
.

When the matrix HK is exactly zero in a mesh region, the “barrier” term is
canceled for the elements in that region. Then degenerate elements or elements
of infinite size may appear where the function u is linear. When the matrix
HK has a small norm, i.e. when the function u is almost linear, the “barrier”
term will prevent inverted elements. But a small norm for HK can postpone the
impact of the barrier function, i.e. the function µ̃ can remain small even when
the element K becomes flat.

To minimize the interpolation error, the aspect ratio of a triangle aligned with
a function u must depend on the condition number of the Hessian matrix, i.e.
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the ratio of largest over smallest eigenvalues (see [9, 13, 26]). A condition number
of 1 will result in an equilateral triangle. A large condition number will result
in a stretched triangle. To control the level of anisotropy in the optimized mesh,
we modify µ̃ and introduce the function µ̃ε,

µ̃ε(K) =
l21 + l22 + l23

192 |K|2
s(|HK |+ εI,K). (11)

This regularization controls the level of anisotropy in the optimized mesh because
it sets an upper bound on the condition number of |HK |+ εI,

λmax(|HK |+ εI)
λmin(|HK |+ εI)

=
λmax(|HK |) + ε

λmin(|HK |) + ε
≤ 1 +

λmax(|HK |)
ε

. (12)

This upper bound on the condition number will limit the aspect ratios for tri-
angles in the optimized mesh.

The goal of our mesh optimization algorithm is to compute approximately

min
T ∈F

max
K∈T

µ̃ε(K) (13)

via edge swapping and node movement in order to reduce the interpolation error.
The max-norm for the gradient of interpolation error and the function µ̃ε satisfy

max
x∈K

|∇u(x)−∇uL(x)|2 ≈ µ(K) ≤ µ̃(K) ≤ µ̃ε(K). (14)

2.3 Edge Swapping and Node Movement Algorithms

In this section, we describe our algorithm to solve approximately (13). Problem
(13) is a non-smooth optimization problem because the max-value function is
non-differentiable. Such a problem requires special-purpose algorithms (see, for
example, Fletcher [17]). Here we prefer to look for a cheap approximate solu-
tion to the optimization problem and we replace problem (13) by the following
optimization problem

min
T ∈F

∑
K∈T

µ̃ε(K). (15)

The goal of our algorithm is now to compute an approximate solution to (15).
First, we describe our edge swapping algorithm. Figure 4 illustrates the swap-

ping of edge e into edge γ. Note that when edge e is flipped, the surrounding
elements Ke,1 and Ke,2 are replaced with the elements Kγ,1 and Kγ,2. Let Ωe

denote the patch surrounding the edge e such that

Ωe = Ke,1 ∪Ke,2 = Kγ,1 ∪Kγ,2.

Algorithm 1 describes our edge swapping algorithm for problem (15). The
first step is to check that the patch Ωe is convex. When Ωe is not convex, the
flip would generate inverted elements, so the algorithm skips the edge. Then we
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Ke,1

Ke,2

e
Kγ,1

Kγ,2

γ

Fig. 4. Illustration of swapping the edge e into the edge γ

Algorithm 1. Edge Swapping Algorithm:
repeat

for any edge e in the mesh do
if Ωe is not convex then

Skip the edge
end if
Compute µ̃ε(Ke,1) and µ̃ε(Ke,2).
Let γ denote the candidate flipped edge.
Compute µ̃ε(Kγ,1) and µ̃ε(Kγ,2).
if max(µ̃ε(Kγ,1), µ̃ε(Kγ,1)) ≥ max(µ̃ε(Ke,1), µ̃ε(Ke,1)) then

Skip the edge.
end if
if µ̃ε(Kγ,1) + µ̃ε(Kγ,1) ≥ µ̃ε(Ke,1) + µ̃ε(Ke,1) then

Skip the edge.
end if
Perform the edge swapping.

end for
until no edge is flipped.

compare the value of the function µ̃ε on all the four elements. If the maximum
and the sum of µ̃ε over the patch both decrease, then we perform the flipping of
edge e into edge γ. When swapping an edge, the value of the objective function,∑

K∈T µ̃ε(K), varies only for the elements in Ωe. So we perform checks on the
maximum and the sum only over the patch Ωe. These checks arise from the fact
that the algorithm looks for an approximate solution to problem (15) and to the
original problem (13).

A key component of the edge swapping algorithm is the evaluation of µ̃ε on
the four elements. This evaluation requires a matrix |HK | on each element. The
inputs for our mesh optimization algorithm are a non-inverted initial mesh T 0

and, for every vertex V of T 0, a matrix H̃V . The initial mesh will be stored as a
background mesh for the piecewise linear interpolation of the absolute value of
these nodal matrices, Π0({|H̃V |}V ∈T 0). For any point x in element K0 of the
background mesh T 0, we choose

Π0({|H̃V |}V ∈T 0)(x) = |H̃V1 |λ0
V1

(x) + |H̃V2 |λ0
V2

(x) + |H̃V3 |λ0
V3

(x), (16)
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where the vertices V1, V2, and V3 form the element K0 and λ0
V (x) denotes the

barycentric coordinate of x with respect to vertex V in element K0. To evaluate
µ̃ε, we set the matrix |HK | to be

|HK | = Π0({|H̃V |}V ∈T 0)(GK), (17)

where GK is the centroid of element K. Requiring the matrices H̃V as input
of an adaptive scheme is reasonable. Indeed, HK is the Hessian matrix for the
quadratic interpolant, uQ, of u in element K. As uQ is usually unknown, the
discrete Hessian matrix at vertex V is recovered from a discrete solution. Several
nodal-based recovery schemes of Hessian matrix from a discrete solution are
available. Discussing such recovery schemes is outside the scope of this paper.
For further details, we refer to [30] and the references therein.

For the node movement algorithm, an iterative Gauss-Seidel-like method is
used where we sweep through the vertices, locally optimizing the position of a
single vertex while holding all others vertices fixed. Given a vertex V , let ΩV

be the patch of elements sharing V as a vertex. Algorithm 2 describes our node
movement algorithm for problem (15). The first step is to compute the matrices
|HK | for all the elements K. To reduce computational expenses, these matrices
are kept constant during one whole sweep through the mesh vertices. To opti-
mize the position of vertex V , we use the nonlinear conjugate gradient algorithm
CG DESCENT [19] on the objective function,

∑
K∈T µ̃ε(K), viewed as a func-

tion of (xV , yV ). Algorithm CG DESCENT is stopped when the norm of the
gradient of the objective function has been reduced by a factor 10−6, when the
relative change in objective function is smaller than 10−12, or when 100 iterations
have been performed. The barrier term in µ̃ε will keep vertex V in ΩV or in the
subregion of ΩV visible from all points on the boundary of ΩV (when ΩV is not
convex). Moving a vertex V can affect the values of µ̃ε only for the elements hav-
ing V as vertex, i.e. the elements in ΩV . Algorithm CG DESCENT will reduce

Algorithm 2. Node Movement Algorithm:
for iter = 1, · · · , itmax do

Get all the matrices |HK | with formula (17).
Compute the objective function µinit =

∑
K∈T µ̃ε(K).

for any vertex V in the mesh do
Compute the maximum value of µ̃ε on ΩV , µmax,init.
Apply the nonlinear conjugate gradient to move vertex V in ΩV .
Compute the maximum value of µ̃ε on ΩV , µmax,new .
if µmax,new ≥ µmax,init then

Reset vertex V to the latest position.
end if

end for
Compute the objective function µnew =

∑
K∈T µ̃ε(K).

if |µnew − µinit| ≤ tol · µinit then
Stop the iterations.

end if
end for
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the value
∑

K∈ΩV
µ̃ε(K). As the original optimization problem (13) looks at the

maximum value of µ̃ε, we check also the maximum value of µ̃ε on ΩV . When
the movement of vertex V creates an increase, we do not perform the movement
and set vertex V to its latest position. Finally, we stop sweeping through ver-
tices when the relative change in objective function is smaller than a tolerance,
tol, or when a maximal number of iterations has been reached. For boundary
vertices, we apply the same algorithm, but with appropriate constraints to keep
the vertex on the boundary.

Several choices are available to combine the edge swapping and the node
smoothing algorithms. In the following section, we will study on model problems
how to combine these two algorithms.

3 Numerical Experiments

In this section, numerical experiments on model problems are presented to il-
lustrate the mesh optimization algorithm. The goal is to assess whether the
algorithm can reduce the interpolation error or not. The meshes are adapted to
three given analytical functions with different anisotropic features, so that we
can compute exactly the interpolation error. We do not use a realistic engineering
problem because the exact solution would not be known.

The inputs for the mesh optimization algorithm are a non-inverted initial mesh
and Hessian matrices at the vertices of the initial mesh. The input matrices at the
vertices are computed with the analytical expression of the function to separate
the potential error reduction, due to the mesh algorithm, from the effect of a
Hessian recovery operator.

3.1 Experiment on the Regularization Parameter

For the first test case, only the node movement algorithm is used. Based on a scal-
ing argument via (12), the regularization parameter ε is set to σ maxV ∈T 0 ‖H̃V ‖2,
where σ is a parameter in [0, 1]. We compare numerically the effect of σ on the
optimization algorithm.

The first function u is given by

u(x, y) = exp
[
−100(x− 1

2
)2 − 100(y − 1

2
)2
]

(18)

in the domain Ω = (0, 1)× (0, 1). The Gaussian function u is symmetric, decays
rapidly to zero, and exhibits a large region where it is flat and where the norm∥∥D2u(x)

∥∥
F

is small. The function has no anisotropy in it. Figure 5 illustrates the
initial uniform structured mesh with 32 elements per direction and the contour
of function (18).

Table 1 lists the norms of interpolation error on the initial mesh and af-
ter optimization via node movement, when σ varies. The interpolation error
norms decrease after optimization. Except for the L2-norm, the decrease is al-
most monotone with σ. For the W 1,∞ norm, the reduction of interpolation error
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Fig. 5. Initial structured mesh (left) — Contour for function (18) (right)

Table 1. Evolution of interpolation error for function (18) as a function of σ

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 3.28 × 10−3 3.52 × 10−1 3.80 × 10−2 2.40 [2, 3]

σ = 10−2 0.80 × 10−3 1.57 × 10−1 1.24 × 10−2 1.67 [2, 10]

σ = 10−4 1.63 × 10−3 1.43 × 10−1 1.01 × 10−2 1.53 [2, 69]

σ = 10−8 1.52 × 10−3 1.42 × 10−1 0.98 × 10−2 1.51 [2, 560]

σ = 0.0 1.52 × 10−3 1.43 × 10−1 1.00 × 10−2 1.52 [2, 567]

is between 30% and 37%. The other norms are reduced by at least 50%. Table 1
also lists the range for condition number of AK . We recall that AK is the Jaco-
bian matrix for mapping the unit right-angled triangle to the physical triangle
K. The range of the condition numbers increase when σ gets smaller, indicating
that some elements become more anisotropic.

Figure 6 describes the optimized meshes for σ = 10−2 and σ = 10−4. When∥∥D2u(x)
∥∥

F
is large, small isotropic elements are created. In the region where∥∥D2u(x)

∥∥
F

is small, the mesh optimization allows flat or stretched elements as
these elements do not increase the interpolation error.

Function (18) has no anisotropic feature. Therefore, anisotropic elements are
not needed to represent this function. The optimized meshes contain anisotropic
elements because of the flatness of u, the boundary constraints, and the fixed

Fig. 6. Optimized meshes for (18) with σ = 10−2 (left) and σ = 10−4 (right)
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topology. In order to reduce the error, the optimization gathers nodes in the
regions that matter. In those regions, the mesh is notably isotropic. Elsewhere,
the function is almost linear and anisotropic elements do not cause the error to
increase. The regularization controls here the degree of anisotropy at the expense
of a slight increase in the error.

3.2 Experiments on Combining Swapping and Smoothing

For the second series of tests, we combine edge swapping and node smoothing and
compare numerically different combinations for the mesh optimization algorithm.
In the following, the letter E denotes one call to Algorithm 1 and the letter N
one call to Algorithm 2.

Table 2. Evolution of interpolation error for function (18) with σ = 10−2

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 3.28 × 10−3 3.52 × 10−1 3.80 × 10−2 2.40 [2, 3]

N 0.804 × 10−3 1.57 × 10−1 1.24 × 10−2 1.67 [2, 10]

(N, E, N) 0.702 × 10−4 1.36 × 10−1 0.986 × 10−2 1.51 [2, 8.1]

E 2.71 × 10−3 2.98 × 10−1 3.79 × 10−2 2.40 [2, 3]

(E, N) 1.57 × 10−3 2.37 × 10−1 2.23 × 10−2 2.16 [2, 5]

σ is set at 10−2. Table 2 lists the interpolation error norms with different
combinations of edge swapping and node movement for function (18). All the in-
terpolation error norms decrease after optimization. The combination (N,E,N)
gives the smallest error norms. The W 1,∞ norm is reduced by 37%, the H1 norm
by 55%, the L2 norm by 78%, and the L∞ norm by 67%. The W 1,∞ error in
Table 1 corresponding to Figure 6 (right) is nearly the same as the error in Ta-
ble 2 corresponding to Figure 7 (left). Therefore, one can achieve the same error
level with a lot less mesh anisotropy by adding the ability to swap edges to the
adaptive algorithm.

Figure 7 plots the optimized meshes for the Gaussian function (18) with the
combinations (N,E,N) and (E,N). The meshes are visually different from the
optimized mesh with node movement only (see Figure 6). For this function and
this initial mesh, starting with edge swapping creates a mesh topology that
prevents outer vertices to gather in the middle of the mesh. This behavior limits
the error reduction in comparison to combinations starting with node movement.

In the subsequent experiments, we use a heuristic formula to set the regular-
ization parameter ε. We choose ε to be

ε = σ0 max
V ∈T 0

‖H̃V ‖2 and σ0 =
1

100 maxK0∈T 0 ‖AK0‖F

∥∥A−1
K0

∥∥
F

. (19)

In this formula, the constant σ0 depends only on the initial mesh T 0.
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Fig. 7. Optimized meshes for (18) with (N, E, N) (left) and (E, N) (right)

The next function, from Huang [21], is given by

u(x, y) = tanh(24y)− tanh
[
24

(
x− y − 1

2

)]
(20)

in the domain Ω = (0, 1) × (0, 1). This function simulates the interaction of a
boundary layer (along the line y = 0) with an oblique shock wave (along the
line y = x − 1/2). Figure 8 illustrates the initial unstructured mesh with 1002
vertices and 2006 elements and the surface defined by function (20). Based on
(19), this initial mesh results in σ0 to be 1/420.

Fig. 8. Initial unstructured mesh (left) – Contour surface for function (20) (right)

Table 3 lists the interpolation error norms on the optimized mesh with differ-
ent combinations of edge swapping and node smoothing. All the interpolation
error norms decrease with more levels of optimization. Combining edge swap-
ping and node movement results in smaller error norms than using only the edge
swapping or only the node movement. Combinations starting with node move-
ment produce larger reduction in error norms than the ones starting with edge
swapping. After the combinations (N,E,N) and (E,N), adding more cycles of
edge swapping and node smoothing does not reduce significantly the interpola-
tion error. The combination (N,E,N) reduces the W 1,∞ norm by 37% and the
other norms by at least 63%. It reduces the error more than the combination
(E,N) and exhibits a larger condition number range, indicating that anisotropic



546 U. Hetmaniuk and P. Knupp

Table 3. Evolution of interpolation error for function (20) for σ0 = 1/420

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 1.72 × 10−2 1.74 1.75 × 10−1 15.17 [2, 4.2]

N 0.655 × 10−2 0.755 0.575 × 10−1 9.56 [2, 28.0]

(N, E, N) 0.471 × 10−2 0.628 0.575 × 10−1 9.56 [2, 28.5]

(N, (E, N)2) 0.467 × 10−2 0.620 0.575 × 10−1 9.56 [2, 28.4]

(N, (E, N)3) 0.459 × 10−2 0.619 0.575 × 10−1 9.56 [2, 28.1]

E 0.933 × 10−2 1.11 1.48 × 10−1 15.17 [2, 23.4]

(E, N) 0.538 × 10−2 0.78 0.902 × 10−1 11.37 [2, 18.0]

(E, N)2 0.525 × 10−2 0.762 0.902 × 10−1 11.37 [2, 23.2]

(E, N)3 0.524 × 10−2 0.759 0.902 × 10−1 11.37 [2, 24.7]

Fig. 9. Optimized meshes for (20) with (N, E, N) (left) and (E, N) (right)

elements help reducing the error. Figure 9 illustrates the optimized meshes for
the combinations (N,E,N) and (E,N). Starting with edge swapping creates a
mesh topology that prevents vertices to gather along the anisotropic features of
function (20).

Finally, we study the function from [2]

u(x, y) = sin
[
5(2x− 1.2)3(4y2 − 6y + 3)

]
. (21)

The initial mesh was generated by the code BAMG of Hecht [5] and it is pre-
adapted to function (21) so that the relative L∞-norm of the interpolation error
is smaller than 5 %. The mesh contains 3173 vertices and 5962 elements. Based
on (19), this initial mesh results in σ0 to be 1/73520. The value of σ0 is smaller
because the pre-adapted initial mesh contains stretched elements. Figure 10 il-
lustrates the initial pre-adapted mesh and the contour for function (21). Table 4
lists the interpolation error norms on the optimized mesh with different combi-
nations of edge swapping and node smoothing. All the interpolation error norms
decrease after optimization. For this function and this initial mesh, the H1 and
W 1,∞ norms are more reduced when the mesh optimization starts with node
movement. For the L2 and L∞ norms, it is better to start with edge swapping.
The combination (N,E,N) decreases the W 1,∞ norm by 53% and the other
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Fig. 10. Initial mesh pre-adapted for (21) (left) – Contour surface for (21) (right)

Table 4. Evolution of interpolation error for function (21) for σ0 = 1/73520

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 6.15 × 10−3 1.67 3.85 × 10−2 31.73 [2, 735.2]

N 5.19 × 10−3 1.29 3.05 × 10−2 17.49 [2, 430]

(N, E,N) 4.98 × 10−3 1.04 3.05 × 10−2 14.85 [2, 67.5]

(N, (E, N)2) 4.94 × 10−3 0.99 3.05 × 10−2 14.24 [2, 54.65]

E 5.57 × 10−3 1.31 2.92 × 10−2 22.58 [2, 168]

(E, N) 4.83 × 10−3 1.07 2.22 × 10−2 17.24 [2, 52.8]

(E, N)2 4.67 × 10−3 1.01 2.20 × 10−2 17.24 [2, 61.3]

norms by at least 19%. The combination (E,N) reduces the W 1,∞ norm by
45% and the other norms by at least 21%. In comparison with the previous
experiments, it is notable that even when the initial mesh is pre-adapted, our
algorithm can still make worthwhile reductions in the error. Figure 11 plots the
optimized meshes for the combinations (N,E,N) and (E,N).

Based on these experiments, we can draw the following conclusions. Combin-
ing edge swapping and node movement results in smaller error norms than using
only the edge swapping or only the node movement. The edge swapping should

Fig. 11. Optimized meshes for (21) with (N, E, N) (left) and (E, N) (right)
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be followed by node smoothing to benefit from the topology changes. When the
initial mesh is not pre-adapted, it seems important to move the nodes before
swapping any edge. The combination (N,E,N) is usually a good combination.

4 Conclusion

An optimization-based mesh adaptation algorithm has been presented. It com-
bines edge swapping and node movement to minimize an objective function. The
mesh adaptation algorithm exploits information from a discrete Hessian matrix.
The objective function is based on the Bank and Smith [6] formula for the H1

semi-norm of the linear interpolation error. In this formula, we replace the Hes-
sian matrix for the quadratic interpolant of the fonction of interest u with a
symmetric definite positive approximation. The objective function contains nat-
urally a “barrier” term to ensure that starting from a mesh without inverted
elements, the resulting mesh will not contain any inverted elements.

On model problems, we illustrated numerically that the algorithm can dimin-
ish the W 1,∞ semi-norm of the interpolation error. This decrease is gratifying
because our objective function is only asymptotically an upper bound to the
W 1,∞ semi-norm of the interpolation error. In our numerical experiments, the
reduction in the W 1,∞ semi-norm is accompanied by a decrease in the L∞, L2,
and H1 norms. The amount of decrease is problem-dependent. However, when
the initial mesh is already appropriate to represent the function of interest, the
decrease can be limited. When the initial mesh is not aligned with the func-
tion, the algorithm computes a better mesh topology and node distribution to
represent the function. Then the reduction of the error norm can be significant.

A limitation of the algorithm is the lack of guarantee that all the error norms
will always decrease. Report [20] contains a numerical experiment where some
norms increase after optimization. Without more knowledge about the function
of interest (like a governing partial differential equation for engineering applica-
tions), we are not aware of any algorithm with such a guarantee. The focus of this
paper is on triangular two-dimensional meshes. For other situations (quadrilat-
eral element, three-dimensional meshes), we expect that our approach will apply
as well. However, important details remain to be worked out. Future directions
for this work include the coupling with a recovery operator for the Hessian ma-
trix, an efficient implementation into the Mesquite library [24], the extension to
multiple dependent variables, and the use of quantities of interest for defining
the objective function.
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Summary. The derivation of the Monge-Ampère (MA) equation, as it results from a
variational principle involving grid displacement, is outlined in two dimensions (2D).
This equation, a major element of Monge-Kantorovich (MK) optimization, is discussed
both in the context of grid generation and grid adaptation. It is shown that grids which
are generated by the MA equation also satisfy equations of an alternate variational prin-
ciple minimizing grid distortion. Numerical results are shown, indicating robustness to
grid tangling. Comparison is made with the deformation method [G. Liao and D. Ander-
son, Appl. Analysis 44, 285 (1992)], the existing method of equidistribution. A formula-
tion is given for more general physical domains, including those with curved boundary
segments. The Monge-Ampère equation is also derived in three dimensions (3D). Several
numerical examples, both with more general 2D domains and in 3D, are given.

1 Introduction

In this paper we describe an approach to grid generation and adaptation in 2D
and 3D based on equidistribution. This means that we take a monitor function or
density ρ(x, y) (in 2D) and find a mapping from the logical space ξ = (ξ, η) ∈ Ξ
(the unit square in our case) to the physical domain x = (x, y) ∈ X satisfying
ρ(x, y)dxdy = dξdη, or ρJ0 = 1, where J0 = ∂(x, y)/∂(ξ, η) is the Jacobian. Thus
the rectangular grid cells in the logical space, all having equal area dξdη = dA,
map to physical cells with equal measure ρ(x, y)dxdy = dA. In 3D this takes the
form ρ(x, y, z)dxdydz = dV .

Equidistribution is an important general principle, and has potentially many
applications. For example, the density ρ can be an estimate of the error in a nu-
merical scheme. It has been shown that equidistribution of the local error leads
to minimization of the global error [1]. Another example consists of compressible
hydrodynamics when the sound speed cs varies greatly over the domain, e. g. due
to a large change of density. Then the CFL (Courant-Friedrichs-Lewy) condition
for an explicit code ∆t � ∆x/cs, where ∆t is the time step and ∆x is the grid cell
size respectively, can in 1D be made uniform over the domain by equidistributing
ρ = 1/cs.

In one dimension, the equidistribution requirement ρ(x)dx = dξ determines
x(ξ). In higher dimensions, the equidistribution requirement cannot be satisfied
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uniquely. In Sec. 2.1 we introduce a variational principle to determine a unique
solution. In this principle, the L2 norm of the grid displacement is minimized.
This leads to the Monge-Ampère (MA) equation. This is a key element of Monge-
Kantorovich (MK) optimization, applied here to grid generation and adaptation.
In Sec. 2.2 we discuss the relationship with another variational principle based
on minimization of the grid distortion, defined as the trace of the covariant
metric tensor. Minimization of grid displacement and particularly grid distor-
tion suggest strongly that grids generated by such methods should be robust to
tangling.

In Sec. 3 we discuss briefly the numerical methods used, namely multigrid
preconditioned Newton-Krylov. In Sec. 4 we show numerical results on the grid
produced by the MK method, in 2D with the physical domain X equal to the
unit square. We compare these results with the grid produced by the deformation
method of Ref. [2], the only other area/volume equidistribution method in the
literature. The deformation method is based on finding a flow related to the
required Jacobian of the map ξ → x, and integrating an ODE with that flow.
The flow is, however, not unique; in fact in Ref. [2] several examples of such
a flow are given. We show that the grid obtained using one of these flows is
considerably less smooth than the grid obtained by MK optimization, and more
prone to tangling.

In Sec. 5 we formulate the problem in 2D with more general physical domains
and show numerical examples. In Sec. 6 we outline the formulation in 3D, with a
numerical example. In the Appendix we show some detail related to the analysis
in Sec. 2, as a template for the analysis in Sec. 6.

2 Monge-Kantorovich Optimization in 2D

In this section we introduce a variational principle based on Monge-Kantorovich
optimization as a method of grid generation and adaptation. We also discuss
briefly the relationship with another variational principle based on minimizing
the grid distortion, and discuss grid tangling. This material reviews Ref. [3].

2.1 Variational Principle with Local Constraint

Equidistribution of a density ρ(x, y) is determined by the condition ρ(x, y)dxdy =
ρ0(ξ, η)dξdη, with ρ0(ξ, η) = 1. Here, x = (x, y) are coordinates on the physical
domain X , with bouondary ∂X . Also, ξ = (ξ, η) are logical variables on the
logical domain Ξ, in our case the unit square [0, 1]× [0, 1]. For grid generation,
we consider ψ0 : Ξ → X , with ρ(x, y) specified.

For grid adaptation, we consider the sequence Ξ → X → X , and the map ψ :
X → X giving x′ = ψ(x). See Fig. 1. For adaptation, both ρ(x, y) and ρ′(x′, y′)
are specified. One application is for time-stepping with ρ(x, y) an estimate of the
local error of a PDE at time t, and ρ′(x′, y′) the error estimate at time t + ∆t.
Both densities are normalized so that∫

ρ(x, y)dxdy =
∫

ρ′(x′, y′)dx′dy′ = 1. (1)
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Fig. 1. Sketch of the map ψ0 from the unit square Ξ to the physical domain X with
curved boundary segments, and a second map ψ : X → X

The new density ρ′ is also equidistributed if ρ(x, y)dxdy = ρ′(x′, y′)dx′dy′ =
dξdη. In terms of the Jacobian J of the map ψ : x → x′ = (x′, y′), this condition
takes the form

J =
∂(x′, y′)
∂(x, y)

=
ρ(x, y)
ρ′(x′, y′)

. (2)

In one dimension, the corresponding equation ρ(x)dx = ρ′(x′)dx′ has the unique
solution (up to an irrelevant integration constant) R(x) = R′(x′), where R, R′

are cumulative distribution functions. In higher dimensions, Eq. (2) does not
have a unique solution. In a time-stepping context, a grid x′(ξ) satisfying Eq. 2
with a large amount of rotation can be very different from x(ξ), even in the
extreme case in which ρ and ρ′ are equal.

In order to specify a map uniquely and optimally for grid generation and adap-
tation, we develop a variational principle with Eq. (2) as a constraint. Consider
the first variation δ

∫
dxdyL with [3]

L(x, y, x′, y′) = ρ(x, y)
[
(x′ − x)2/2 + (y′ − y)2

]
/2

−λ(x, y) [ρ′(x′, y′) (∂xx
′∂yy

′ − ∂xy
′∂yx

′)− ρ(x, y)] . (3)
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This is the standard L2 form of Monge-Kantorovich optimization [4]. Here,
λ(x, y) is a local Lagrange multiplier, which ensures that the Jacobian condi-
tion (2) holds locally. In the time stepping context, this minimization of the L2

norm of x′ − x = ψ(x) − x (weighted by ρ) minimizes the grid velocity. For
the case for which X is the unit square, the boundary conditions on ∂X take a
simple form: each side of X maps to itself under ψ. That is, n̂ · (x′ − x) = 0,
where n̂ is the vector normal to ∂X . These boundary conditions ensure that the
boundary terms obtained by integrating δ

∫
dxdyL by parts vanish [3].

The variation with respect to x′ leads [3] after some analysis to

x′ = x +∇Φ(x). (4)

See the Appendix. That is, ψ is a gradient map x′ = ∇Ω(x) with Ω(x) =
(x2+y2)/2+Φ(x). This is a major conclusion in Monge-Kantorovich optimization
theory [4]. Substituting into the Jacobian condition (2), we find

∇2
xΦ + Hx[Φ] =

ρ(x, y)
ρ′(x′, y′)

− 1, (5)

where Hx[Φ] is the Hessian ∂xxΦ∂yyΦ− (∂xyΦ)2. This is the 2D Monge-Ampère
(MA) equation, a single nonlinear equation for Φ(x, y). (An approximate form of
the MA equation was used for grid generation in Ref. [5].) There are two sources
of nonlinearity: the Hessian and the dependence of the right side on x′ = x+∇Φ.
The above boundary condition n̂ · (x′ − x) = 0 leads to

n̂ · ∇Φ = 0 (6)

on ∂X . It is known that a solution to the MA equation with these boundary
conditions exists and is unique, and that the MA equation is elliptic [6].

2.2 Relation with Minimum Distortion

It is plausible that the variational principle using the Lagrangian L(x, y, x′, y′) of
Eq. (3) should be helpful in preventing grid tangling. In a time-stepping context
(for grid adaptation), if the cells are reasonably rectangular at one time, and theL2

norm of the displacement is minimized, the cells at the next time step are expected
to be reasonably rectangular for ∆t small, i. e. ρ(x, y)/ρ′(x′, y′) close to unity.

Based on these thoughts, consider a variational principle minimizing the cell
distortion. We define L2(x, y, x′, y′) by

L2(x, y, x′, y′) = ρ(x, y) (g11 + g22) /2
−µ(x, y) [ρ′(x′, y′) (∂xx

′∂yy
′ − ∂xy

′∂yx
′)− ρ(x, y)] , (7)

where T = g11 + g22 = (∂xix
′
j)(∂xix

′
j) (summation implied) is the trace of

the covariant metric tensor T = trace(JTJ). This quantity measures the dis-
tortion of the x′ cells relative to the x cells. Again, µ(x, y) is a local Lagrange



Grid Generation and Adaptation by Monge-Kantorovich Optimization 555

multiplier, guaranteeing that Eq. (2) holds locally. In Ref. [3] we showed that
for ρ(x, y) = 1 + O(ε), ρ′(x′, y′) = 1 + O(ε) with ε � 1, solutions of the MA
equation are solutions of the variational equations obtained from Eq. (7), i.e.
are also minimum distortion solutions. This conclusion is further indication that
MA solutions should be robust to tangling. We discuss numerical results related
to tangling in Sec. 4.1.

3 Numerical Methods

We solve the MA equation by Jacobian-free Newton-Krylov methods [7, 8]. The
particular solver is GMRES [9], preconditioned by multigrid. The fact that the
MA equation is elliptic means that multigrid can be used effectively. The function
Φ is defined at cell centers and the boundary conditions (6) are implemented
using ghost cells in the logical domain Ξ. The efficiency and accuracy of these
methods for solving the MA equation have been documented in Ref. [3]. Some
of this material is reviewed in the next section.

4 Examples in a Square

Here, we consider X to be the unit square and ρ(x, y) = 1. For this case, we will
describe the problem as grid adaptation.

4.1 Isotropic Example

The first case we show, from Ref. [3], has density

ρ′(x′, y′) =
C

2 + cos (8πr′)
(8)

Table 1. Performance study for the Monge-Kantorovich approach with ρ′(x′, y′) given
by Eq. (8). Shown are the equidistribution error ∼ 1/N2

x , for grids with Nx = Ny ; the
CPU time; the grid quality measures ||p||MK

2 and ||g11 + g22||MK
1 ; and the number of

linear and nonlinear iterations as functions of N = Nx × Ny .

Number of Cells Error CPU time [s] ||p||MK
2 ||g11 + g22||MK

1

Newton/
GMRES

its.

16 × 16 9.64 × 10−2 0.1 0.0173 1.449 3/3
32 × 32 2.28 × 10−2 0.4 0.0173 1.466 4/4
64 × 64 5.78 × 10−3 1.3 0.0173 1.470 4/4

128 × 128 1.46 × 10−3 4.9 0.0174 1.470 4/4
256 × 256 3.67 × 10−4 19 0.0174 1.471 4/4
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Fig. 2. The grid for Eq. (8) by MK (solid) and by deformation method (dashed)

Table 2. Performance study for the deformation method with time step ∆t = 0.01 for
Eq. (8). The grid quality measures ||p||2 and ||g11 + g22||1 are expressed in terms of
variation with respect to the values in Table 1.

Number of Cells Error CPU time [s] ||p||2
||p||MK

2
− 1 ||g11+g22||1

||g11+g22||MK
1

− 1

16 × 16 1.16 × 10−1 0.2 +24% +1%
32 × 32 3.53 × 10−2 0.9 +28% +2%
64 × 64 9.64 × 10−3 3.4 +30% +3%

128 × 128 2.46 × 10−3 13.6 +30% +3%
256 × 256 6.21 × 10−4 55 +30% +3%

with r′ =
√

(x′ − 1/2)2 + (y′ − 1/2)2. The constant C is determined by nor-
malization as in Eq. (1). The grid is shown in Fig. 2 (solid lines) for 32 × 32
cells. This isotropic example has O(1) variations in density (ρmax/ρmin = 3)
over scales l ∼ 0.1 right up to the boundary. The performance data for this
example are shown in Table 1. Note that the computational time required for
convergence scales as the total number of grid points Nx×Ny, i. e. it is optimal.
This is traced to the fact that the number of Newton and GMRES iterations is
nearly independent of the grid refinement.

In Fig. 2 (dashed lines) we have superimposed the grid determined by the
deformation method using the proposed symmetric flow of Ref. [2]. It is clear
that this grid is not as smooth as the MK grid. Table 2 shows performance for
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the deformation method for this example. In particular, note that the L2 norm
of p = x′ − x is much larger for the deformation method.

4.2 Anisotropic Example

A second example has

ρ′(x′, y′) = C

[
1 +

9
1 + 100r′2 cos2(θ′ − 20r′2)

]
. (9)

Here, r′ =
√

(x′ − 0.7)2 + (y′ − 0.5)2 and θ′ = tan−1 [(x′ − 0.7)/(y′ − 0.5)]. The
64×64 grid obtained by MK optimization is shown in Fig. 3. This example mimics
the spiral pattern that develops in the nonlinear Kelvin-Helmholtz instability.
This example has ρ′max/ρ

′
min ≈ 9 and very fine scales below l = 0.02. This

is a very challenging example: the corresponding 64 × 64 grid obtained by the
deformation method tangles [3], but the MK grid is quite smooth.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x′

y′

Fig. 3. 64 × 64 MK grid according to the anisotropic spiral density (9)

4.3 An Example with Fine Structures and Large Jumps in Density

To demonstrate the power of the MK method, we show an example of adapting
to challenging images. This is the ubiquitous Lena image [10], commonly used
as a standard image for testing image processing methods. We take as density
ρ′(x′, y′) the brightness of the monochrome Lena image. For 200×200 grid points
as in Fig. 4, it shows much of the detail in the original image.
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Fig. 4. The Lena image by the MK method, with a 200 × 200 grid

5 Formulation in More General 2D Domains; Examples

We present a formulation for more general physical domains, with examples.

5.1 Map from Logical to Physical Domains; Boundary Formulation

An important issue involves dealing with more general physical domains in 2D.
Two questions arise. The first is: How are boundary conditions on an arbitrary
shaped domain applied? The second is: Do the terms obtained by integrating by
parts as in the variation of

∫
dxdyL in Eq. (3) again vanish in this more general

setting?
To address the first issue, let us start by considering grid generation, i. e. the

map ψ0 : Ξ → X , for a physical domain X whose boundary ∂X consists of
four sides mapped from the four sides of the unit square in the logical space.
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See Fig. 1. We shall specialize here to the case in which the four sides of the
boundary are given respectively by

L − left side : x = x1(y),
R − right side : x = x2(y),
B − bottom : y = y1(x),
T − top : y = y2(x).

(10)

These boundary conditions on Φ(ξ, η) take the form

L (ξ = 0) :
∂Φ

∂ξ
= x1

(
η +

∂Φ

∂η

)
,

R (ξ = 1) : 1 +
∂Φ

∂ξ
= x2

(
η +

∂Φ

∂η

)
, (11)

B (η = 0) :
∂Φ

∂η
= y1

(
ξ +

∂Φ

∂ξ

)
,

T (η = 1) : 1 +
∂Φ

∂η
= y2

(
ξ +

∂Φ

∂ξ

)
.

As in Sec. 2, these boundary conditions require that each side of the square map
to the corresponding side of the physical domain, but allow an arbitrary (but
one-to-one) motion of points along each of the sides. These nonlinear conditions
are applied by solving for the value of Φ in each ghost cell.

For grid adaptation, we deal with the map x → ψ(x) = x′ from X to X , and
the corresponding boundary conditions, e. g. x′ = x1(y′), in terms of Φ(x, y),
are: are

L (x = x1(y)) : x1(y) + ∂xΦ(x1(y), y) = x1 (y + ∂yΦ(x1(y), y)) ,
R (x = x2(y)) : x2(y) + ∂xΦ (x2(y), y) = x2 (y + ∂yΦ(x2(y), y)) ,
B (y = y1(x)) : y1(x) + ∂yΦ(x, y1(x)) = y1 (x + ∂xΦ(x, y1(x))) ,
T (y = y2(x)) : y2(x) + ∂yΦ(x, y2(x)) = y2 (x + ∂xΦ(x, y2(x))) .

(12)

Numerically, these conditions are implemented using ghost cells on the logical
domain, by using [J0 ≡ ∂(x, y)/∂(ξ, η)]

∂Φ

∂x
=

∂ξΦ∂ηy − ∂ηΦ∂ξy

J0
, (13)

∂Φ

∂y
=
−∂ξΦ∂ηx + ∂ηΦ∂ξx

J0
.

The second issue relates to the terms obtained by integration by parts when
taking the Euler-Lagrange equations from the variational principle in Eq. (3).
Indeed, we find that the variation of

∫
dxdyL contains a term

−
∫

dxdyλ(x, y)ρ′(x′, y′) (∂xδx
′ ∂yy

′ − ∂yδx
′ ∂xy

′ (14)

+∂xx
′ ∂yδy

′ − ∂yx
′ ∂xδy

′)
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in addition to terms proportional to δx′ and δy′. Integrating by parts, this ex-
pression becomes∫

dxdy [δx′ (∂x(ρ′λ∂yy
′)− ∂y(ρ′λ∂xy

′)) + δy′ (∂y(ρ′λ∂xx
′)− ∂x(ρ′λ∂yx

′))]

+
∫

dyλ(x, y)ρ′(x′, y′) [∂yx
′ δy′ − ∂yy

′ δx′] |x=x2(y)
x=x1(y)

+
∫

dxλ(x, y)ρ′(x′, y′) [∂xy
′ δx′ − ∂xx

′ δy′] |y=y2(x)
y=y1(x).

The analysis involving the first terms (and the other terms proportional to δx′

and δy′) proceeds as in Ref. [3] and the Appendix. The terms in the bracket for
x = x1(y), with x′ = x1(y′), are

dx1(y′)
dy′

∂y′

∂y
δy′ − ∂y′

∂y

dx1(y′)
dy′

δy′,

which equals zero because x′ = x1(y′) implies δx′ = (dx1(y′)/dy′)δy′. The same
is true for the boundary terms at x = x2(y), y = y1(x), and y = y2(x). Therefore
the boundary terms obtained by the integration by parts vanish and the analysis
proceeds as in Sec. 2.1, the Appendix, and Ref. [3]. In particular, we again
conclude that ψ is a gradient map, and that the Monge-Ampère (MA) equation
(5) applies.

5.2 Examples with Non-square Physical Domains

The first example, involving grid generation, has a physical domain X consisting
of a parallelogram obtained by mapping the sides of the square according to

x = aξ + bη, y = bξ + cη, (15)

with a = 1, b = 0.2, and c = (1 + b2)/a. The latter condition ensures that the
area of the parallelogram equals unity. The symmetry of this linear map implies
that it is a gradient map x = ∇ξΩ with Ω(ξ, η) = aξ2/2 + bξη + cη2/2. This
map is therefore of the form x = ξ +∇ξΦ(ξ, η) with

Φ = (a− 1)ξ2/2 + bξη + (c− 1)η2/2. (16)

Clearly, Φ(ξ, η) is a solution of the MA equation∇2
ξΦ+Hξ[Φ] = ρ0(ξ, η)/ρ(x, y)−

1 with ρ0(ξ, η) = ρ(x, y) = 1. [The determinant condition c = (1 + b2/a) is not
essential: for determinant equal to J0 (such that c = (J0 + b2)/a), the MA
equation is satisfied with ρ0(ξ, η) = 1 and ρ(x, y) = 1/J0.]

From Eq. (15) we conclude that the boundary conditions on the four sides,
according to the format of Eq. (10), are

L(ξ = 0) : x = x1(y) = by/c,
R(ξ = 1) : x = x2(y) = a + b(y − b)/c,

B(η = 0) : y = y1(x) = bx/a,
T(η = 1) : y = y2(x) = c + b(x− b)/a.

(17)
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We now formulate the problem for grid adaptation, using the MA equation to
find the map ψ : x → x′ with ρ(x, y) = 1 and ρ′(x′, y′) specified. The boundary
conditions are of the form (17) but with x → x′, y → y′. For example, the
boundary condition on the left is x′ = by′/c or x+∂xΦ(x, y) = b[y+∂yΦ(x, y)]/c.
From Eq. (17) we conclude ∂xΦ(by/c, y) = b∂yΦ(by/c, y)/c. Summarizing for the
four sides, we obtain

L : ∂xΦ(by/c, y) = b∂yΦ(by/c, y)/c,
R : ∂xΦ(a + b(y − b)/c, y) = b∂yΦ(a + b(y − b)/c, y)/c,

B : ∂yΦ(x, bx/a) = b∂xΦ(x, bx/a)/a,
T : ∂yΦ(x, c + b(x− b)/a) = b∂xΦ(x, c + b(x− b)/a)/a.

(18)
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Fig. 5. (a) The linear map x(ξ) [Eq. (15)] from the unit square Ξ to a parallelogram
X, with ρ = 1; (b) the composite map x′(ξ) = x′(x(ξ)) with ρ′(x′, y′) given by Eq. (8)
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Again, these boundary conditions are implemented by means of ghost cells on
the logical grid, using Eq. (13).

Results obtained with these boundary conditions for the isotropic case of
Eq. (8) are shown in Fig. 5(a) for the (x, y) grid given by Eqs. (15), (16) and
in Fig. 5(b) for the (x′, y′) grid solved numerically. Because the density ρ′ is
specified as a function of x′, the density of grid lines in Fig. 5(b) is according
to Eq. (8), without distortion. In this case, the (x, y) grid (i. e. ψ0), is formed
by a gradient map with ρ = 1. (For grid adaptation, it is not necessary that the
initial map ψ0 be a gradient map, i. e. be obtained by MK grid generation.)
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Fig. 6. (a) Sinusoidal map (19) with ρ = 1; (b) map obtained by MK grid adaptation
with ρ′(x′, y′) as in Eq. (8)
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As a second example, consider X to be the set bounded by x = 0; x = 1; y =
0; y = 1 − ε sin(2πx) for ε = 0.1. We choose the ’sinusoidal’ map ψ0 from Ξ to
X given by

x = ξ,
y = η[1 − ε sin(2πξ)] (19)

and shown in Fig. 6(a). The Jacobian is J0 = ∂(x, y)/∂(ξ, η) = 1 − ε sin(2πξ) =
1 − ε sin(2πx). Since ρ0(ξ, η) = 1, this implies ρ(x, y) = [1− ε sin(2πx)]−1. The
map given by Eq. (19) is not a solution of the MA equation (and is in fact not
even a gradient map). However, as we discussed above, this is not an essential
requirement for the map ψ0. For the map ψ : X → X we specify again ρ′(x′, y′)
according to Eq. (8), and solve the MA equation, Eq. (5). The boundary condi-
tions are of the form (10), (12) with

L : x1(y) = 0,
R : x2(y) = 1,
B : y1(x) = 0,

T : y2(x) = 1− ε sin(2πx).

(20)

The results, showing the undistorted density of Eq. (8), are in Fig. 6(b).

6 Three Dimensions

In 3D we show that a similar minimization of the L2 norm of x′ − x leads
to a gradient map and to the 3D generalization of the MA equation. We also
show a numerical example obtained by solving the 3D MA equation by methods
discussed in Sec. 3.

6.1 Variational Principle and Gradient Map in 3D

In 3D, we will derive the variational principle corresponding to Eq. (3) for general
ρ(x, y, z) but for the special case ρ′ = 1. We have derived the more general
case [3], which is tedious and not particularly enlightening. Following the 2D
derivation in the Appendix, we have

L =
ρ

2
(x′

i − xi) (x′
i − xi)

−λ(x, y, z)
[
εijk

∂x′
i

∂x

∂x′
j

∂y

∂x′
k

∂z
− ρ(x, y, z)

]
,

where εijk are the components of the usual antisymmetric 3D Levi-Civita tensor,
and repeated indices indicate summation. The Euler-Lagrange equations are

ρ (x′
i − xi) + εijk

∂

∂x

[
λ
∂x′

j

∂y

∂x′
k

∂z

]



564 J.M. Finn, G.L. Delzanno, and L. Chacón

+εkij
∂

∂y

[
λ
∂x′

k

∂x

∂x′
j

∂z

]
+ εjki

∂

∂z

[
λ
∂x′

j

∂x

∂x′
k

∂y

]
= 0;

the boundary terms and the terms proportional to λ vanish as in the 2D case
discussed in the Appendix. We find

ρ (x′
i − xi) = −1

2
εijk

[
λ, x′

j , x
′
k

]
x
,

where
[f, g, h]x = εpqr

∂f

∂xp

∂g

∂xq

∂h

∂xr
= ∇f · ∇g ×∇h.

In the next step we show that

[f, g, h]x = J [f, g, h]x′ . (21)

We have

[f, g, h]x = εpqr
∂x′

s

∂xp

∂x′
t

∂xq

∂x′
u

∂xr

∂f

∂x′
s

∂g

∂x′
t

∂h

∂x′
u

.

Now, since

εpqr
∂x′

s

∂xp

∂x′
t

∂xq

∂x′
u

∂xr
= εstuJ,

we obtain Eq. (21). Finally, using ρ = J (for ρ′ = 1), this leads to

(x′
i − xi) = −1

2
εijk

[
λ, x′

j , x
′
k

]
x′ = − ∂λ

∂x′
i

.

By following the reasoning at the end of the Appendix, we conclude that Monge-
Kantorovich optimization in 3D also leads to a gradient map. This result also
holds for general ρ′(x′, y′, z′).

6.2 3D Monge-Ampère Equation

Substituting x′ = x +∇Φ(x) into the Jacobian equation

∂(x′, y′, z′)
∂(x, y, z)

=
ρ(x, y, z)

ρ′(x′, y′, z′)
,

we find

det

⎡⎣ 1 + ∂xxΦ ∂xyΦ ∂xzΦ
∂yxΦ 1 + ∂yyΦ ∂yzΦ
∂zxΦ ∂zyΦ 1 + ∂zzΦ

⎤⎦ =
ρ(x, y, z)

ρ′(x + ∂xΦ, y + ∂yΦ, z + ∂zΦ)
.

This is the 3D Monge-Ampère equation (generalizing to arbitrary ρ′(x′, y′, z′) �=
1). When the determinant is expanded out, it has ∇2Φ plus quadratic and cu-
bic terms. The nonlinearities consist of the last two types of terms plus the
denominator on the right.
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Fig. 7. Grid obtained by the 3D MA equation for the density ρ′(x′, y′, z′) prescribed
according to Eq. (22): slices for x′ ≈ 0, 0.25, 0.5, 0.75, 1.0
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Fig. 8. Grid obtained by 3D MA equation for the density ρ′(x′, y′, z′) prescribed
according to Eq. (22): a projection of the grid for x′ ≈ 0.25
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6.3 Example in 3D

We treat a case with X the unit cube having ρ(x, y, z) = 1 and

ρ′(x′, y′, z′) =
C

2 + cos (8πr′)
, (22)

now with r′ =
√

(x′ − 1/2)2 + (y′ − 1/2)2 + (z′ − 1/2)2. We show the mesh in
(x′, y′, z′) in Fig. 7, and Fig. 8 shows a projection of the mesh for x′ ≈ 0.25.

7 Conclusions

We have given a brief review of the main results of Ref. [3] in a square in 2D, show-
ing how minimization of the L2 norm of the grid displacement leads to equidis-
tribution via the Monge-Ampère (MA) equation, a major element in Monge-
Kantorovich (MK) optimization. (Detailed algorithmic issues were discussed in
Ref. [3]). We have also shown the relation with minimum distortion and grid tan-
gling. We have exhibited several examples showing how this method works, and
comparing it with the deformation method of Ref. [2]. Table 1 and the performance
tests in Ref. [3] show that the MK method uses a small amount of computer time
and scales optimally with respect to grid size. The results of Ref. [3] also show that
the method is robust in two important senses: (1) the increase in computational
requirements with the complexity of the error measure ρ′(x′, y′) is modest and (2)
in very challenging densities ρ′(x′, y′) the grid was not observed to fold.

We have shown new results in 2D on the formulation and application of the
MK method in a more general class of physical domains X . The examples of
applications include a parallelogram and an area with a sinusoidal boundary
segment. These results suggest strongly that the method extends readily to more
general physically realistic domains in 2D for grid generation and adaptation.
Further work is underway to assess the difficulties involved with multiple block
structured grids and unstructured grids.

We have shown a derivation of the Monge-Ampère equation in 3D. We have
obtained results using this 3D Monge-Ampère equation in the unit cube.

Acknowledgements. We wish to thank P. Knupp, D. Knoll, G. Hansen, and
X. Z. Tang for useful discussions.
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Appendix

In this appendix we show some technical details relating to minimization of∫
dxdyL in 2D. This is a more compact version of the derivation in Ref. [3], and

for our purposes here is a template for the 3D derivations in Sec. 6.
In 2D for the special case ρ′ = 1, take (with summation notation)

L(x,x′) =
1
2
ρ(x, y)(x′

i − xi)(x′
i − xi) (23)

−λ(x)
[
εij

∂x′
i

∂x

∂x′
j

∂y
− ρ(x)

]
,

where ε11 = ε22 = 0; ε12 = −ε21 = 1. [The Jacobian J(x) = ∂(x′, y′)/∂(x, y)
can be written in any of the alternate forms: J = [x′, y′]x, where [·, ·] is the
Poisson bracket; J = εij(∂x′

i/∂x)(∂x′
j/∂y); or J = εij(∂x′/∂xi)(∂x′/∂xj).] The

Euler-Lagrange equations give

∂L
∂x′

i

− ∂

∂xk

∂L
∂(∂x′

i/∂xk)
= (24)

ρ(x)(x′
i − xi) + εij

∂λ

∂x

∂x′
j

∂y
− εij

∂λ

∂y

∂x′
j

∂x
= 0.

The terms proportional to λ cancel. The boundary terms take the form

−
∫

dy

[
λεij

∂x′
j

∂y
δx′

i

]x=1

x=0

−
∫

dx

[
λεij

∂x′
i

∂x
δx′

j

]y=1

y=0

, (25)

each term of which equals zero. Note the Poisson bracket relation [f, g]x =
J [f, g]x′ , which follows from

[f, g]x = εkl
∂f

∂xk

∂g

∂xl
= εkl

∂x′
m

∂xk

∂f

∂x′
m

∂x′
n

∂xl

∂g

∂x′
n

= [x′
m, x′

n]x
∂f

∂x′
m

∂g

∂x′
n

= εmnJ
∂f

∂x′
m

∂g

∂x′
n

= J [f, g]x′ .
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This and the relation ρ = J (for ρ′ = 1) show that Eq. (24) becomes

x′
i − xi = −εij [λ, x′

j ]x′ .

The whole point of writing the Poisson bracket in terms of x′ is that this can be
rewritten as

x′
i − xi = −εijεkl(∂λ/∂x′

k)(∂x′
j/∂x

′
l)

= −εijεkj(∂λ/∂x′
k)

= −∂λ/∂x′
i.

(26)

This equation shows that xi = ∂
(
x′

jx
′
j/2− λ

)
/∂x′

i. That is, the map ψ−1 is a
gradient map (a Legendre transform). This implies that ψ is also a gradient map
and can be written in the form used in Sec. 2,

x′ = ∇Ω(x) = x +∇Φ(x).
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Abstract. The mesh adaptation is a classical method for accelerating and improving
the PDE finite element computation. Two tools are generally used: the metric [10] to
define the mesh size and the error indicator to know if the solution is accurate enough.

A lot of algorithms used to generate adapted meshes suitable for a PDE numerical
solution for instance [15, 1] for discrete metrics, or [15, 2] for the continuous one, use
those tools for the local specification of the mesh size.

Lot of PDE softwares like Freefem++ [14] use metrics to build meshes, the edges
sizes of which are equal with respect to the metric field. The construction of metrics
from the hessian matrix [16, 18, 13] is only justify for the piecewise linear Lagrange
finite element.

So there is the problem of metric generation when we have another interpolation
error estimator [6, 11] that could be used for instance when the Lagrange interpolation
needed is a k degree polynomial, k > 1.

To answer that question, we propose in this paper an algorithm whose complexity
is quasi-linear, in two spacial dimensions; assuming that the error is locally described
by a closed curve representing the error level set. Some efficient numerical examples
are given. This algorithm allows us to obtain the analytical metric [1], when the error
indicator is based on the hessian matrix.

We have also done one comparison in the software Freefem++ of mesh adaptation
with metrics computed using this algorithm with respect to the interpolation error
estimation described in [11], and the method with metrics based on the hessian. The
results seem to be better for the maximal error.

1 Introduction

We suppose once a metric field on a mesh is known, we can built an adapted mesh
for that metric field [8, chap 21.4], [12, chap 20.3]. If we know the metric value
on each vertex of the mesh for example, the method described in [12] modify the
mesh by evaluating each edge length in the metric field (control space) using an
interpolation of the metrics defined on the two vertices of the edge. When an edge
length exceeds the ”unity”, a subdivision of that edge is done in the control space.
This method is used in the software Freefem++ with the mesh generator Bamg [9]

Thanks to Cea lemma, the approximation error is upper bounded by the
interpolation error. So our problem is posed for the interpolation error, we’ll use
the recent results described in [11] which aim to bound the interpolation error
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of a function on a simplex with the norm of a vector inside a metric given by
the D(l) derivative of the function.

We suppose that we know an estimation of the local interpolation error of a
function on a 2D mesh around a vertex P in each direction ξ given by a function,
and we want to dispose the points M of the triangulation around P such that
the local interpolation error should be satisfy.

Let Ep(ξ) be an estimation of the interpolation error in the direction of the
vector ξ. If the mesh size is less than or equal to ‖ξ‖ in the direction of ξ then
the interpolation error will be less than Ep(ξ). We want to have locally

|Ep(ξ)| ≤ E ; ξ ∈ R
2. (1)

The previous inequality represents an area bounded by the level set

|Ep(ξ)| = E .

Dispose the points M of the triangulation around the vertex P as close as
possible to the level set while being inside the area delimited by that level set
is equivalent to say that the interpolation error evaluated at each vertex of the
triangulation going from the vertex P is less than or equal to its value on the
level set. If we want to have a mesh whose edges are equal with respect to a
metric field, i.e all the points M are equi-distant from P in a local metric M, so
they belong to the unit ball of the metric M; the biggest as possible that could
be contained inside the closed line described by equation (1).

Let us find a metric prescribing the mesh size around that vertex P such
as the triangles vertices should be close as possible to the level set while being
inside the area delimited by that level set. How to build that metric?

In the following, after introducing shortly the results of [11] and the met-
ric notion, [15, 10, 1], we formulate the optimization problem that goes with
and it resolution algorithm. Then we’ll explain the algebraic consequences of
the obtained equations in the third section. The fourth section talk about our
algorithm convergence and complexity and some illustrating figures. The last
section before concluding explains shortly the analytic metric obtainability from
the hessian matrix, that our method allows to approach. We also give in that
section an example of mesh adaptation for a function with metrics generated
by our algorithm with respect to the local interpolation error of [11], and we
compare the results obtained with mesh adaptation using metrics based on the
hessian matrix, both of them done with the software Freefem++.

2 Definitions

We use the notations [3, Chap. VII], which are introduced in the books [7] [5,
chap II].

• x = (x1, . . . , xd) ∈ R
d, Sphere Sd = {x ∈ R

d; ||x|| = 1},
• D(�)u is the the derivative of u of order � so if u is a real function, we have

D(0)u = u.



Metric Generation for a Given Error Estimation 571

• B⊗� : (ξ1, ..., ξ�) �→ (Bξ1, ..., Bξ�)
• W �,p(K) is the set of functions of Lp(K) such that all the partial derivatives

of order ≤ � are in Lp(K).
• |u|W �,p(K) = (

∫
K

∑
α∈[1..d]� |∂αu|p) 1

p

• Let F be an affine application of R
d with values in R

d,

||D(k)(v ◦ F )||Lp(K) ≤ ||D(1)F ||k||D(k)v||Lp(F (K))

d is the space dimension , K is a d-simplex (triangle if d = 2, or tetrahedron if
d = 3), hK the diameter of K and ρK the diameter of its inscribed ball, |K| the
measure of K and |∂K| the measure the border of K.

Definition 1 ( d-simplex finite element of degree k)
A finite element (K, PK , ΣK) will be called d-simplex of degree k, if K is a
d-simplex and if Pk(K) ⊂ PK where Pk(K) is the set of polynomials P [Rd]
restricted to K of degree less than or equal to k. Let Ik

K be the interpolation
operator with values in PK and which keep unchanged the polynomials of Pk(K),
i.e if u ∈ Pk(K), then u = Ik

Ku.

Definition 2 (reference element)
The reference element is a regular d-simplex denoted K̂, chosen with the size 1.

Let FK be the affine transformation such that K = FK(K̂), we denote: BK the
linear part of FK which corresponds to the derivate of FK ; and det(BK) the
determinant of BK which is the Jacobian of FK .

The size hK,ξ of an element K in the direction ξ, the size of the edges in the
direction ξ of that edge. ||B−1

K ||−1 is the smallest size of the element denoted
h−

K = infξ∈Sd
hK,ξ. This element size can be represented by an ellipse associated

to the “natural” metric of the element introduced in [17, 4].
Let u be a real function of K, we define its corresponding function
û = u ◦ FK on K̂. We have

x = FK(x̂), û(x̂) = u(x), u = û ◦ F−1
K .

A finite element K is affine-equivalent if it has the following property

Îk
Ku = Ik

K̂
û.

Main Result
For any finite element (K, PK , ΣK) of definition 1 satisfying the previous prop-
erty, with an associated metric MK ; let u be a function. For all integer
� ∈ [0..k + 1] and for all (p, q) ∈ [1,∞]2 such that W �,p(K) be included in
C0(K) and u ∈ W �,p(K). If it exists a real constant κ ∈ R such that

||(D(�)u)(ξ, ..., ξ)||Lp(K) ≤ κ ||ξ||�MK
(h−

K)� = κ (ξ,MKξ)
�
2 (h−

K)�, (2)

then we have
||u − Ik

Ku||Lq(K) ≤ κC |K|
1
q−

1
p (h−

K)�,

where C is a real positive constant depending only on d, �, p, q.
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And if W �,p(K) ⊂ W 1,q(K) then we have

|u − Ik
Ku|W 1,q(K) ≤ κC |K| 1q− 1

p (h−
K)�−1,

with C positive constant depending only on d, �, p, q.

Definition 3. A constant metric M of R
2 is a symmetric matrix positively def-

inite that allows to define a distance in the euclidian metric space R
2.

In fact the scalar product of two vectors
−→
X and

−→
Y under the metric space R

2 is
defined as: [8]

〈−→X,
−→
Y 〉M =

t−→
XM−→

Y ∈ R.

The euclidian norm of a vector
−−→
AB or the distance between the points A and

B for the metric M is defined by:

dM(A, B) = ‖−−→AB‖M =

√
t−−→
ABM−−→

AB.

There is the situation for which the metric is non constant but continuous. In
this case we have a metric field M(X) defined in each point X of the space. In
this case, the norm of a vector

−−→
AB is given by

dM(A, B) = ‖−−→AB‖M =

1∫
0

√
t−−→
ABM(A + t

−−→
AB)

−−→
ABdt.

A metric M can be represented by it unit ball [1], The unit ball under the
metric M defined at the vertex P is the set of points M that satisfies:

‖−−→PM‖M =

√
t−−→
PMM−−→

PM = 1.

Let us consider M =

⎛⎝a c
2

c
2 b

⎞⎠ a > 0, b > 0, 4ab−c2 > 0; P (xp, yp); M(x, y).

‖−−→PM‖2
M = 1 ⇐⇒ a(x − x0)2 + c(x − x0)(y − y0) + b(y − y0)2 = 1.

By writing

a =
cos θ2

α2 +
sin θ2

β2 ; b =
cos θ2

β2 +
sin θ2

α2 ; c = sin 2θ

(
1
α2 − 1

β2

)
; (3)

which are bounded by:
1
α2 ≤ a ≤ 1

β2 ;
1
α2 ≤ b ≤ 1

β2 ;
1
α2 − 1

β2 ≤ c ≤ 1
β2 − 1

α2 ; (4)

we obtain:
((x − x0) cos θ + (y − y0) sin θ)2

α2
+

((y − y0) cos θ − (x − x0) sin θ)2

β2
= 1,

which is an ellipse equation centered at P with semi-axes of length α > 0 and
β > 0; α ≥ β; where θ is the angle between the major axis and the abscises axis
of the R

2 canonic base.
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3 The Problem Description

We do not take care of the different norms used and the different constants of
equation (2). We consider that

|Ep(ξ)| = ||(D(�)u)(ξ, ..., ξ)||(K). (5)

We want to find a local metric M such that the right member of (2) should
be closed to E in (1).

Let F (x, y) be Ep(ξ). Our problem becomes drawing an ellipse that have the
maximum area centered at P contained inside that given error curve or finding
the parameters α , β and θ of that ellipse.

Let us consider α1 = 1
α2 and α2 = 1

β2 , we obtain from (3)

α2 =

√
(a − b)2 + c2 + (a + b)

2
; α1 =

−
√

(a − b)2 + c2 + (a + b)
2

.

Maximizing the ellipse area, the parameters of which are α; β; θ is the same as
maximizing αβ or minimizing α1α2 which is equivalent to minimize (4ab − c2).

We look at the problem in a numerical point of view and suppose that the
vertex P is at the origin.

Let us consider a discretization of our curve with n points Mi of position
(xi, yi). We have to find three reals a, b and c that minimize (4ab− c2) under the
constraints ⎧⎨⎩

a > 0, b > 0,
ax2

i + by2
i + cxiyi ≥ 1, 0 ≤ i ≤ n − 1,

4ab > c2.

Without “good” properties of the minimization function (convexity, quasi-
convexity), we didn’t find any algorithm that guarantees a global minimum;
although it exists because the linear constraints form a close set. The resolution
of this problem in this form need the construction of the constraints polyhedron
where we’ll find the minimum. As (a, b, c) ∈ R

3 the resolution algorithm will be
O(n3) complexity in the best case; but it is very cheap inside an a mesh adapta-
tion process. To reduce that cost we propose to solve an approximated problem
whose algorithm will be O(nk) ; k ≤ 2 complexity.

Let us consider two real non negative numbers ε0 and ε close to zero, let us
call M0 the point of the error curve the most closed to the origin P of our ellipse,
and Mi another point of that error curve. Then we find an ellipse that have the
maximal area. Let ε0 be the distance between that ellipse and M0, and let ε be
the distance between that ellipse and Mi (figure 1). The distance between the
ellipse and a point Mj of the error curve will be consider as the distance between
Mj and the intersection point of the vector

−−−→
MjP and the ellipse. Let us consider

a point X of the ellipse on the segment [P, Mi] such that ‖−−−→MiX‖ = ε, the value
of X is (1 − ε

‖Xi‖)Xi. let us consider ri = ‖Xi‖.
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error curve

   ellipse
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 0  1  2  3−2
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Fig. 1. Parameters

Our problem becomes:

Find three real numbers a, b and c that minimize (4ab − c2) under the con-
straints ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a > 0, b > 0,

ax2
0 + by2

0 + cx0y0 =
(

r0
r0 − ε0

)2

,

ax2
i + by2

i + cxiyi =
(

ri
ri − ε

)2

, 1 ≤ i ≤ n − 1,

ax2
k + by2

k + cxkyk ≥ 1, 1 ≤ k ≤ n − 1, k �= i,
4ab > c2.

(6)

Numerically, the constraint 4ab > c2 need a threshold T > 0 for which a
solution of 4ab − c2 − T will be consider as a minimizer of 4ab − c2.

Minimization of 4ab − c2.
Let us call Rmax the euclidian norm of the error point of the curve the most far
away from it center P ; we obtain:

T =
(

2
Rmax(r0 − ε0)

)2

4 Algebraic Resolution

Let us examine the two equations of system (6)
If x0 = 0, then b = 1

(|y0| − ε0)
2 .

• If xi = 0, then b = 1
(|yi| − ε)2

so we must have

ε = |yi| − |y0| + ε0. (7)
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• If yi = 0 and yk = 0, we must have

ε ≥ |xi| − |xk|. (8)

• If xiy0 − yix0 = 0 and xi �= 0, we must have in this case

ε = ri

(
1 − x0(r0 − ε0)

xir0

)
. (9)

Remark. We observe that if one coefficient of system (6) equal zero or if the
points Mi, M0 and the origin P are aligned, the choice of the parameters ε (or ε0
in some cases) is not arbitrary. Those parameters should satisfy (7), (8) or (9)
for the previous cases, but it will add new constraints to the problem and will
not allow the precision we want.

The points representing those coefficients, when they equal zero, are almost
four (the four halve-axes). They will be turn out of the axes with a small angle
and also the eventually point on the axe (P, M0). Doing that will not sensitively
modify the problem neither its solution. We will consider that x0, xi, xk, y0, yi, yk

are all not zero for all i and for all k, and that xiy0 − yix0 is not zero for all i.
From both two equations of system (6), we extract c and a as a function of b.

Let us write:

∆ =
xi

x0(xiy0 − x0yi)

(
r0

r0 − ε0

)2

− x0

xi(xiy0 − x0yi)

(
ri

ri − ε

)2

;

γ = − yi

x0(xiy0 − x0yi)

(
r0

r0 − ε0

)2

+
y0

xi(xiy0 − x0yi)

(
ri

ri − ε

)2

;

τ =
yiy0

xix0
; λ =

x0yi + y0xi

xix0
; βk = y2

k + x2
kτ − xkykλ;

Ck = 1 − xk(ykxi − yixk)
x0(xiy0 − x0yi)

(
r0

r0 − ε0

)2

+
xk(ykx0 − xky0)
xi(xiy0 − x0yi)

(
ri

ri − ε

)2

;

then,
c = ∆ − λb; a = γ + τb.

The inequality before the last one of (6) becomes

βkb ≥ Ck, 1 ≤ k ≤ n − 1; k �= i. (10)

So the function to minimize becomes

G(b) = (4τ − λ2)b2 + 2(2γ + λ∆)b − ∆2 − T ,

the roots of which are

b1 =
(

1
xiy0 − x0yi

)2
[(

x0ri

ri − ε

)2

+
(

xir0

r0 − ε0

)2

+ D
]

;
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b2 =
(

1
xiy0 − x0yi

)2
[(

x0ri

ri − ε

)2

+
(

xir0

r0 − ε0

)2

−D
]

;

where

D =
2|xix0|

(r0 − ε0)

√(
rir0

ri − ε

)2

+
(

x0yi − y0xi

Rmax

)2

.

The inequalities (4), (10) and the following bounds

(r0 − ε0)2

Rmax
≤ β ≤ r0 − ε0 ≤ α ≤ Rmax,

gives bmin and bmax such that b ∈ [bmin, bmax]. So, we will compare G(bmin)
and G(bmax) to determine the value of b that minimize G.

5 Numerical Resolution

The algorithm consists in:

• Discretizing the error curve around the vertex P into n points, determining
the point M0 of the curve which is the most closed to the origin P and the
point Mmax of the curve which is the most far away from P ;

• moving out the points on the axes and also the point which is eventually
aligned with M0 and the origin;

• for all fixed Mi, switching the constraints for all the Mk (k �= 0; k �= i) and
determining the optimal values of a, b and c.

5.1 Algorithm Order

This algorithm is globally quasi-linear because for each fixed Mi only one (the
first) unsatisfied constraint on the Mk implies an interruption of the Mk’s loop
and switch to the next Mi+1(when the distance between a point of the error curve
and the ellipse is greater than ε, that point will not satisfy any constraints). The
points that satisfy the constraints are only those in the regions where the ellipse
is tangent to the error curve, and their number is few. The only case where for
each fixed Mi we go trough all the Mk is the case where the error curve is already
an ellipse and in this case the algorithm order is O(n2). But if the error curve
is already an ellipse, we don’t need this algorithm.

5.2 Convergence of the Approximation

It is natural to think that M0 will not be the point of the error curve that is the
most far away from the ellipse. So we can find ε0 for which the solution of our
approach problem converges to the optimal solution.

We can have an upper bound of ε0:

The disc area of radius r0 is less than the ellipse area of parameters r0−ε0 and
Rmax so, ε0 < r0

(
1 − r0

Rmax

)
. Although we don’t have any absolute criteria of
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Fig. 2. An ellipse of parameters θ = π
4 , α = 3, β = 2, n = 159; left: ε0 = 10−1; right:

ε0 = 10−4
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Fig. 3. left: E = 59, ε0 opt. = 10−5, n = 285, F (x, y) = −0.2y3x2 − yx4 +
0.2y3 − 9x3 − 0.5xy2 + 0.005x2 − 0.1y2, right: F (x, y) = 0.05x2 − 0.01y2 + 0.05xy, E =
1, ε0 opt. = 0.001, n = 304

choosing ε0, when changing its values within a few iterations (one dozen) inside
the code between 10−5 and it upper bound, we optimize the approximation (see
figures 2, 3).

6 Validation

When solving numerically a partial differential equation with piece wise linear
Lagrange finite element, one can use the hessian matrix of the function to ap-
proach as error estimator to generate adapted meshes [1].

As the hessian matrix H is a symmetric matrix, it absolute value define bellow
when invertible is positive semi definite so it can be used to define a metric.

|H| = R|Λ|R−1,

where |Λ| is the diagonal matrix formed by the absolute value of the eigenvalues
and R the matrix of the eigenvectors of H. When H is not invertible, the zero
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eigenvalue is replaced by 1
h2

max
, where hmax is the maximal authorized edge size

in the mesh.

6.1 Some Examples

When applying our algorithm in some cases with

F (x, y) = 〈(x, y),H · (x, y)〉,

we obtain comparative results with the metric given by the absolute value of H
(analytical) figures 4 and 5.

In the example of figure 4 for the case H invertible, one can observe that the
obtained ellipse is closed to the analytical one when the number n of discretiza-
tion points is enough, which equation in that example is

x2 + y2 + xy = 1.

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3

error curve 
approximated ellipse

analytical ellipse

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3

error curve 
approximated ellipse

analytical ellipse

Fig. 4. E = 1; F (x, y) = 0.5x2 + 0.5y2 + 2xy; left: n = 228; right: n = 288
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Fig. 5. E = 1; n = 234 F (x, y) = x2 + y2 − 2xy
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The example of figure 5 show the case H non invertible where hmax have been
arbitrary chosen in the analytical case which equation in that example is

0.5
(

(
1

h2
max

+ 2)(x2 + y2) + 2(
1

h2
max

− 2)xy

)
= 1.
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We just need to variate the value of hmax to coincide with the approached
solution.

6.2 Test with Freefem++

This algorithm have been implemented into Freefem++ and we present the
obtained results when doing mesh adaptation for a function, in the following
code.

In that code, the error function is given by the third derivates of the function
f . That error function is written as an homogenous third degree polynomial of
the coordinates of the local unit ball, as it’s shown in [11]. We use our algorithm
with E = 1, to compute the metric on each vertex of the mesh, and the mesh is
adapted with the obtained metric in the first loop. In the code, the parameters

Fig. 6. Adapted meshes for the maximal error level around 10−5, cc=10, coef=10,
metrics computed with this algorithm for the (5) error estimator
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cc and coef are used to change the value of the error. Let err be the maximal
error, and let Ct be a constant. err is given by

err =
Ct

coef · ccl/2
.

Using the second loop and the result of the first loop, we computed backward
the real cerr useful to have the same error level on each final mesh.

In the second loop, we made the usual mesh adaptation of Freefem++ for the
same function f , based on metrics given by the hessian matrix.

Comments
In our example l = 3. According to the results of the second table of figure 9, if
we take Ct � 2.6e−5, we obtain Ct

103/2 = 8.22e−5. It corresponds to the level of
the maximal error in the first table.

Fig. 7. Adapted meshes for the maximal error level around 10−5, cc=10, coef=10,
method based on the hessian
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Fig. 8. Adapted meshes for the same maximal error level around 10−3, cc=1, coef=10.
Left: metrics computed with this algorithm for the (5) error estimator. Right: method
based on the hessian.

iterations error min 1 error min 2 error max 1 error max 2 vertices 1 vertices2

1 1.20059e-05 4.22866e-06 0.356521 0.358384 2050 3923

2 3.11655e-09 2.48466e-09 0.0043082 0.00437699 5194 17235

3 3.62071e-09 1.52523e-11 9.67516e-05 9.9182e-05 5198 15381

4 3.69877e-09 2.19181e-10 7.95773e-05 0.000103307 5194 15210

5 1.10912e-09 4.76638e-10 7.79361e-05 0.000106652 5264 15188

6 7.05385e-09 3.61698e-10 7.77929e-05 8.02886e-05 5200 15190

7 1.89551e-09 9.00541e-12 8.01738e-05 7.80091e-05 5200 15186

8 5.05435e-10 1.42422e-10 7.75686e-05 8.22038e-05 5200 15186

9 9.78865e-10 9.68075e-10 8.02579e-05 7.7833e-05 5218 15180

1 1.55839e-07 1.00832e-05 0.358347 0.35043 425 460

2 9.65766e-07 3.80745e-08 0.0134088 0.064436 536 743

3 3.58336e-06 2.93163e-08 0.00281739 0.00536942 536 733

4 2.34807e-07 1.97044e-07 0.0027611 0.00278402 540 733

5 1.10585e-06 9.35475e-08 0.00291751 0.0025183 540 732

6 7.26946e-08 3.9567e-07 0.00264979 0.00275217 540 733

7 1.49178e-06 7.63447e-08 0.00266049 0.00270342 540 733

8 8.80737e-08 5.55839e-08 0.00267491 0.00271847 540 733

9 1.04068e-06 2.8896e-07 0.00269423 0.00285419 540 733

Fig. 9.

We can observe on figures 8, 6, 7 and 9 that for the same maximal error level
around 10−3 or 10−5, the error estimator described in [11] and our algorithm
uses much less elements than the classical mesh adaptation method with metrics
based on the hessian matrix. We see that the convergence is obtained after five
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iterations, see figure 9. For the hessian based error built mesh, if we suppose that
the function is a polynomial of degree 3, then the adaptation will be accurate. As
our function is not a polynomial of degree three, we can observe that on figure 6,
there is two thin mesh layers bounding the middle layer, and the corners of the
domain are meshed with small size elements for the hessian based method. Those
wrong effects are not observed with our new approach.

7 Conclusion

We have proposed a quasi-linear complexity algorithm in two spacial dimension
useful to build numerically metrics for any given error estimation represented
by a closed curve around a mesh vertex. As a metric can be represented by an
ellipse, this algorithm is based on the optimization of an ellipse area. The main
purpose of this work is to adapt mesh when doing numerical simulations where
the interpolation error estimator is not based on the hessian matrix.

The obtained numerical results of our tests are encouraging. We have pre-
sented an example of mesh adaptation using metrics computed with this al-
gorithm with respect to the new interpolation error estimation [11], done in
Freefem++. That example seems to give better results than the usual adap-
tation procedure of Freefem++ with metrics based on the hessian, according
the maximal error. We hope that we can expect ”good” performances of the
future new mesh adaptation routine of the software Freefem++ [14] where this
algorithm could be used for the Lagrange finite element interpolation of higher
order.

A future work on the local representation of other types of error estimators
like residual estimators could be interesting. Then we will see how this algorithm
could used or not on those cases. It development into dimension three is a future
challenge in so far as the software Freefem++ is now moving from dimension
two to dimension three.

We thank the reviewers for their comments which helped to improve the qual-
ity of this paper. We also thank Pascal Ventura who help us for the achievement
of this work.
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discrète. Laboratoire Jacques-Louis Lions (preprint, 2008)
14. Hecht, F., Leharic, A., Pironneau, O.: Freefem++, language for finite element

method and Partial Differential Equations (PDE). Université Pierre et Marie, Lab-
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17. Picasso, M.: An anisotropic error indicator based on Zienkiewicz-Zhu error estima-
tor: application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24(4),
1328–1355 (2003) (electronic)

18. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and posterior
estimates, Part I: The recovery technique. Int. J. Numer. Meth. Engng 33(7), 1331–
1364 (1992)



Tracking Adaptive Moving Mesh Refinements in

3D Curved Domains for Large-Scale Higher
Order Finite Element Simulations

Xiaojuan Luo1, Mark S. Shephard1, Lie-Quan Lee2, Cho Ng2, and Lixin Ge2

1 Rensselaer Polytechnic Institute, Troy, NY 12180
xluo@scorec.rpi.edu, shephard@scorec.rpi.edu

2 Stanford linear Accelerator Center (SLAC), Menlo Park, CA 94025
liequan@slac.stanford.edu, cho@slac.stanford.edu, lge@slac.stanford.edu

Summary. When applying higher order finite elements to curved 3D domains in large-
scale accelerator simulations, complexities that arise include needing valid curved finite
elements and the capability to track the movement of mesh refinement in the critical
domains. This paper presents a procedure which combines Bézier mesh curving and
size driven mesh adaptation technologies to address those requirements. The intelligent
selection of local mesh modifications to eliminate invalid curved elements and properly
control the size distribution are the two key technical components. The procedure
has been successfully applied by SLAC to generate 3D moving curved meshes in the
large-scale electromagnetic modeling of next generation accelerator designs. The results
demonstrated that valid curvilinear meshes not only make the time domain simulations
more reliable but also improve the computational efficiency up to 30%.

1 Introduction

Higher order finite elements [1], which are well known for faster rates of con-
vergence in terms of computational efficiency, can provide an effective approach
for large-scale simulations. When applying higher order finite elements to three-
dimensional curved domains, the elements must be properly curved to maintain
the rate of convergence [2]. The common approach to the construction of such
meshes is to apply a straight-sided mesh generation procedure [3, 4] and then
curve the mesh edges and faces on the curved domain boundaries to the proper
orders. This approach takes advantage of the conventional unstructured mesh
generators to deal with the complexity of model geometry. However, the re-
sulting meshes may become invalid because the curving of the mesh entities to
model boundaries can lead to negative determinant of Jacobian in the closures
of curved elements. Effective and efficient correction of those invalid elements
is critical in curvilinear mesh construction and for its usage with higher order
finite elements.

The electromagnetic simulation tools developed at Stanford Linear Accel-
erator Center (SLAC), supported by DOE SciDAC program [5, 6, 7] have
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successfully taken advantage of higher order finite elements to perform analysis
needed for the design of the next generation linear accelerators, for example,
short-range wakefield calculations. In those simulations, a small region near the
beam requires sufficient refinement to resolve high frequency while the rest of the
domain can have a large mesh size. This refinement region must move with the
particles beam through the curved domains in the time dependent simulations to
achieve acceptable computational efficiency. Since the domains are curved and
higher order finite elements are used, the refined meshes must also be curved
to provide a sufficiently higher order geometric approximation to ensure that
the solution can effectively achieve the desired level of accuracy. The uniform
refinement using smaller mesh size throughout the entire domain can produce
over-refined meshes outside of the critical particle beam domains while larger
mesh size can generate too coarse meshes which often become invalid during the
curving procedure. These lead either to infeasibly large problem size, inaccurate
results, or possible failure of the simulations.

To enable the higher order finite elements in large-scale simulations, a mov-
ing mesh adaptation in curvilinear domains that includes the combination of
a general mesh curving tool [8, 9] and size driven mesh adaptation [10, 11] is
presented. A full set of curved mesh modification procedures play an important
role in ensuring the resulting curved meshes are valid and with minimal number
of elements for the desired accuracy.

The outline of this paper is as follows. Section 2 describes a general mesh curv-
ing procedure to construct valid curvilinear meshes for three-dimensional curved
domains. The procedure employs Bézier polynomial to represent the higher or-
der geometric shapes for curved mesh entities. The extension of the size driven
mesh adaptation procedure in curved domains is discussed in Section 3. Analy-
ses results applied by SLAC for linear accelerator design are shown in Section 4.
Conclusions and future works are given Section 5.

2 Mesh Curving

A flexible distributed mesh data structure [12] is employed in this paper to
support the mesh adaptation in curved domains. The mesh data structure applies
a general topology and classification of the entities with respect to the geometric
model entity that the mesh entity is on [13]. Md

i and Gd
i are used to describe the

mesh and model topological entity of dimension d, d = 0, 1, 2, 3 represent mesh
and model vertex, edge, face, and region respectively.

The approximation of the mesh to curved geometric domains is maintained by
assigning appropriate Bézier higher order geometric shapes to mesh edges and
faces on curved domain boundaries. The Bézier topology-based mesh geometry
shape is constructed using Bernstein polynomials which possess a number of
advantageous properties including [14]:

• The Convex Hull Property - A Bézier curve, surface, or volume is contained
in the convex hull formed by its control points.
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• Computationally efficient algorithms for degree elevation and subdivision are
available which can be used to refine the shape’s convex hull as well as adap-
tively refine the mesh’s shape.

Those properties are useful to form the validity check algorithm for Bézier
higher order curved elements and to determine local mesh modifications to cor-
rect invalid elements which have negative determinant Jacobian in the element
closures due to the curving of mesh entities. The resulting curved meshes can
always guarantee that each element has positive determinant of Jacobian in its
closures.

2.1 Bézier Topology-Based Higher Order Shape Representation

Bernstein polynomials provide an effective means to define Bézier hierarchic
higher order shapes for topological mesh entities in their parametric coordinates.
A qth order Bézier mesh entity can be represented as [9],

x(ξ) =
∑
|i|=q

B|i|(ξ)b|i|ξ
|i| (1)

where B|i|ξ
|i| are the Bernstein polynomials defined in the mesh entity paramet-

ric coordinate system as shown in Table 1. Note that the independent parametric
coordinates for a topological mesh entity should be ξ1, (ξ1, ξ2) and (ξ1, ξ2, ξ3)
respectively with the constraints that ξ2 = 1 − ξ1, ξ3 = 1 − ξ1 − ξ2 and
ξ4 = 1 − ξ1 − ξ2 − ξ3. b|i| are the control points used to define the shapes of
the Bèzier mesh edges, faces and regions. Figure 1 shows the control points for
a quadratic curved mesh edge, triangle face and tetrahedral region.

Table 1. ξ, |i|, B|i| and ξ|i|for topology mesh entity

ξ |i| B|i| ξ|i|

Edge (ξ1, ξ2), ξ1 + ξ2 = 1 |i| = i + j q!
i!j! ξi

1ξ
j
2

Triangle (ξ1, ξ2, ξ3), ξ1 + ξ2 + ξ3 = 1 |i| = i + j + k q!
i!j!k! ξi

1ξ
j
2ξ

k
3

Tetrahedron (ξ1, ξ2, ξ3, ξ4), ξ1 + ξ2 + ξ3 + ξ4 = 1 |i| = i + j + k + l q!
i!j!k!l! ξi

1ξ
j
2ξ

k
3 ξl

4

In the case that a straight-sided mesh and its associated geometry CAD
model are given, the control points for those mesh entities on the curved model
edges/faces are determined based on Bézier curve and surface interpolation
method to evaluate the model geometry at a set of discrete parametric loca-
tions. Common approaches often use the uniformly distributed parametric space
points. However, alternative methods, such as chord length method or curvature-
based procedure, will be used to improve the geometric approximation [14]. In
the case that a curved mesh with different shape representation method is given,
the control points are computed by converting the given shapes to Bézeir shapes.
For example, a quadratic mesh edge using Lagrange interpolating method to rep-
resent its curved shape has three control points l1, l2 and l3, the control points
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Fig. 1. Bézier control points for a curved mesh edge, face and region

for the Bézier shape of the edge, x = b20ξ
2
1 + 2b11ξ1(1− ξ1) + b02(1− ξ1)2, can

be computed by solving the following equations,

x(ξ1 = 0) = b02 = l1
x(ξ1 = 1/2) = b20

4 + b11
2 + b02

4 = l2
x(ξ1 = 1) = b20 = l3

(2)

Therefore, b02 = l1, b20 = l3 and b11 = (4l2 − (l1 + l3))/2.

2.2 Validity Check of Bézier Higher Order Curved Elements

When the finite element basis is increased in applying the higher order finite ele-
ments, the integration rules of the finite element approximation must be properly
improved to ensure that the numerical integration error does not become the
dominant error. The improvement of the integration rules requires evaluation
of the geometric mapping of the curved element at new integration locations
or knowledge that the Jacobian is positive throughout the element. To avoid
the need to constantly recheck the integration points, a general element validity
check is performed. This validity check for Bézier higher order curved elements
takes advantage of its convex hull property to ensure that a valid curved element
always has positive determinant of Jacobian in its closures, which is independent
of the basis functions, the polynomial orders, or the applied integration rules [8].

Given a qth order Bézier tetrahedron mesh region described in Eq.1, the Ja-
cobian matrix of the geometric mapping with respect to the independent para-
metric coordinates (ξ1, ξ2, ξ3) is,

J =
[
∂x
∂ξ

]
=

⎡⎢⎣
∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

⎤⎥⎦ (3)

where x = (x1, x2, x3) Therefore, the determinant of the Jacobian J is,

det(J) = (
∂x

∂ξ1
× ∂x

∂ξ2
) · ( ∂x

∂ξ3
) (4)
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where ∂x
∂ξi

are the three partial derivatives of xq which are (q−1)th order Bézier
functions. Therefore, the resulting determinant of Jacobian is a Bézier polyno-
mial function with order 3(q − 1),

det(J) =
∑
|i|=r

C|i|c|i|ξ
|i| (5)

where r = 3(q − 1). C|i| and c|i| can be expressed using the coefficients B|i| and
b|i| in Eq. 1. As an example, the quadratic tetrahedral region shown in Figure 1
can be expressed as,

x = B2000b2000ξ
2
1 + B0200b0200ξ

2
2 + B0020b0020ξ

2
3 + B0002b0002ξ

2
4 (6)

+B1100b1100ξ1ξ2 + B1010b1010ξ1ξ3 + B1001b1001ξ1ξ4

+B0110b0110ξ2ξ3 + B0101b0101ξ2ξ4 + B0011b0011ξ3ξ4

Considering that ξ4 = 1 − ξ1 − ξ2 − ξ3, B2000 = B0200 = B0020 = B0002 = 1
and the rest coefficients B′s equal to 2, therefore,

∂x

∂ξ1
= 2{(b2000 − b1001)︸ ︷︷ ︸

a1

ξ1 + (b1100 − b0101)︸ ︷︷ ︸
b1

ξ2 (7)

+ (b1010 − b0111)︸ ︷︷ ︸
c1

ξ3 + (b1001 − b0002)︸ ︷︷ ︸
d1

ξ4}

∂x

∂ξ2
= 2{(b1100 − b1001)︸ ︷︷ ︸

a2

ξ1 + (b0200 − b0101)︸ ︷︷ ︸
b2

ξ2

+ (b0110 − b0011)︸ ︷︷ ︸
c2

ξ3 + (b0101 − b0002)︸ ︷︷ ︸
d2

ξ4}

∂x

∂ξ3
= 2{(b1000 − b1001)︸ ︷︷ ︸

a3

ξ1 + (b0110 − b0101)︸ ︷︷ ︸
b3

ξ2

+ (b0110 − b0020)︸ ︷︷ ︸
c3

ξ3 + (b0011 − b0002)︸ ︷︷ ︸
d3

ξ4}

The determinant of Jacobian is a cubic Bernstein polynomial and the coeffi-
cients C|i| and c|i| are listed in Table 2. ai, bi, ci and di are the vectors defined
by the corresponding control points shown in Eq. 6.

The convex hull property of Bézier polynomial indicated that the polynomial
is bounded by its minimal and maximal control points [14]. So,

min(c|i|) ≤ det(J) ≤ max(c|i|) (8)

Therefore, a curved tetrahedral region is valid in its closure as long as its
min(c|i|) > 0.
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Table 2. C|i| and c|i| for det(J) of a quadratic tetrahedral region

|i| C|i| c|i| |i| C|i| c|i|
3000 8 (a1 × a2) · a3 0300 8 (b1 × b2) · b3

0030 8 (c1 × c2) · c3 0003 8 (d1 × d2) · d3

2100 8 (a1 × b2 + a2 × b1) · a3 1200 8 (a1 × b2 + a2 × b1) · b3

... ... ... ... ... ...

2.3 Effective Procedure to Generate Valid Curvilinear Meshes

The mesh curving procedure can deal with a starting straight-sided mesh and
an existing curved mesh with invalid elements. In the case of a straight-sided
mesh, the procedure computes the Bézier control points for the mesh edges/faces
on curved domain boundaries and curves them incrementally. In the case of a
given curved mesh with different initial higher order shapes representation, for
example, Lagrange interpolation, the shapes are converted to Bézier form and
the invalid elements are detected and corrected incrementally. Central to both
of the approaches is the selection of effective local mesh modification operations
to eliminate the invalid elements till the resulting curvilinear meshes are valid.

The computation of the determinant of Jacobian to detect invalid elements
can provide useful information to determine key mesh entities and appropriate
operations to correct the invalidity. The invalid elements are defined as those
curved elements having at least one negative coefficients, c|i| ≤ 0 as shown in
Eq. 5. The key mesh entities are defined as those whose control points appear in
the computation of the negative coefficients c|i|. As an example, Figure 2 shows
an invalid quadratic tetrahedral region and the computation of the determinant
Jacobian shows that coefficient c3000 < 0. Based on Eq.8 and Table 2, the control
points b2000, b1100, b1010 and b1001 have been used to compute the c3000 which
indicates that M0

0 ,M
1
0 ,M

1
1 and M1

2 are key mesh entities and applying local

b2000

b1100 b1010

b1001

M0
1 M1

1

M2
1

M0
0

Fig. 2. The computation of det(J) indicates that the mesh entities M0
0 , M1

0 , M1
1 and

M1
2 are key mesh entities
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Fig. 3. 3D curved local mesh modification operations

mesh modifications on any of them can effectively make c3000 positive and the
curved element valid.

The set of curved local mesh modifications applied to create valid curvilin-
ear meshes include edge split, edge swap, edge collapse, region collapse, double
split+collapse, and edge re-shape [9] as shown in Figure 3. Comparing to the
straight-sided mesh, the validity check algorithm discussed in Section 2.2 is used
to determine whether a curved local mesh modification operation can be applied.
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Those operations are essential to ensure the reliability of the mesh curving pro-
cedure to create valid curved elements.

The procedure processes one curved mesh entity at a time as follows [8]:

• Determine the key mesh entities to apply local mesh operations based on the
negative coefficients, c|i| ≤ 0, in computing the determinant of Jacobian.

• Determine if the invalidity is caused by pairs of neighboring mesh faces or edges
classified on the boundary such that angles of 1800 are created. In those cases,
c|i| ≤ 0 only happens at i, j, k, l = r. Apply either split (see Figure 3(a))
or swap operations (see Figure 3(b)) to introduce additional entities to sub-
divide those larger angles to correct the invalid curved element.

• Determine if the invalidity is caused by pairs of opposite mesh edges coming
too close to each other in one curved region, where c|i| ≤ 0 happens at
i, j, k, l �= r. Apply either region split (see Figure 3(d)) or split+collapse (see
Figure 3(e)) to remove the invalid curved element.

• If neither of above two steps is successful, examine the applications of the
remaining operations (see Figure 3(c), 3(f)) to correct the invalid curved
elements.

• If the invalid curved element can not be corrected using those local mesh
operations, local refinement is applied and all new mesh entities will be added
to the list to be processed. Subdivision creates more options for applying
operations later.

Figure 4 shows the straight-sided and curved mesh for a 3D curved model
to demonstrate the effectiveness of the developed procedure. The mesh has 139
regions and 31 curved regions are invalid. 20 local mesh modifications are applied
to correct those invalid elements. Curved meshes for more complex domains used
by SLAC for electromagnetic linear accelerator analysis are shown in section 4.

Fig. 4. Straight-sided mesh (left) and curved mesh (right) for a 3D curved domain

3 Moving Adaptive Mesh Refinements in 3D Curved
Domains

The developed size driven mesh adaptation procedure [10] has been successfully
applied in cardiovascular blood flow simulations [15], metal forming process [16],
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wave propagation simulations [17], etc. where the results demonstrated substan-
tial computational efficiency can be improved using the isotropic or anisotropic
adapted meshes to effectively resolve solution fields. The procedure has been
extended to deal with curved meshes for higher order finite elements in large-
scale simulations. The extended procedure maintains the existing functionalities
developed for straight-sided meshes such as vertex-based size field specifications
and selective local mesh modification applications [10]. In addition, the following
two steps have been added in the case where the mesh is curved.

• The validity check algorithm described in Section 2.2 must be applied when
the affecting cavities for a local mesh modification operation have curved
mesh entities. This step ensures that resulting curved meshes are valid after
applying the selected local mesh operation.

• Any newly created mesh entities on the curved domain boundaries must be
properly curved to the model boundaries which ensures that the geometric
approximation of the resulting adapted meshes is maintained. As an example,
Figure 5 shows how the procedure to split a quadratic curved mesh edge M1

0

which is classified on the curved model edge G1
0. The two newly created mesh

edges M1
1 and M1

2 are also curved to the model edge G1
0.

M1
1 M2

1M0
1

M0
0

G0
1

G0
1

edge to be split
new edges

new vertex

Fig. 5. Before (left) and after (right) refine a quadratic curved mesh edge M1
0 on

model edge G1
0. New mesh edges M1

1 , M1
2 have been appropriately curved to the model

boundaries

In size driven mesh adaptation procedure, a mesh metric field, which can be
either isotropic or anisotropic, is defined to specify the desired size of elements.
The metric field is used to compute the edge length and directions of the current
mesh with respect to this metric. A series of controlled mesh modification steps
are applied to obtain a new mesh that satisfies the specified mesh metric field
which consist of the following three steps [11]:

• Coarsening stage to eliminate the mesh edges that are shorter than the de-
sired edge length in the metric field. This stage is accomplished by applying
collapse operation on the identified shorter edges one at a time.
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• Refinement stage to reduce the maximal mesh edge length to reach the de-
sired edge length in the metric field. Edge-based refinement templates and
application of local mesh modification to project the new created mesh ver-
tices to the curved boundaries are iteratively applied until the adapted mesh
satisfies the mesh size metric field requirements [10].

• Shape improvement stage to improve the quality of the resulting mesh using
swap and/or vertex reposition operations.

For large-scale adaptive simulations, discretization error estimation is applied
to construct size fields to control the mesh adaptation [15, 16, 17] in which the
adapted meshes can conform to the size requirements. However, there are certain
situations where other factors may also be applied to set the size field. For ex-
ample, the size information being given for the short-range wakefield simulations
performed by SLAC is supplemented to have a refined mesh in areas where parti-
cles currently reside. The specification of this refinement information is dictated
by the initial locations of the particles beam and the desired mesh size around
the beam which is often at least one order of magnitude smaller than the rest
of the domains. The larger size difference between the finer particle domain and
the coarse domain can lead to bad quality resulting meshes. The left mesh in
Figure 6 shows an adapted curved mesh which uses size 1 and 10 to control the
fine and coarse mesh in the model. The abrupt size field change causes meshes
at the fine and coarse mesh interface not acceptable which clearly demonstrated
that the control of the mesh gradation is needed.

Fig. 6. Curved meshes without (left) and with (right) mesh size gradation control

The procedure described in [18] is adopted to control a smooth mesh size
transition over the mesh. Central to the algorithm is that the ratio between the
larger mesh size to the smaller mesh size at the two bounding mesh vertices of
any mesh edge is under a prescribed factor β, where β > 1.
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Let M1
i be a mesh edge, M0

j1 and M0
j2 are its two bounding mesh vertices,

the given mesh sizes at each vertex are hj1 and hj2 which represent the desired
edge lengths at those two vertices. We require that,

max{hj1

hj2

,
hj2

hj1

}
1

L(M1
1 ) ≤ β (9)

where L(M1
1 ) represents the length of the mesh edge M1

i with respect to the
mesh size field as defined as,

L(M1
1 ) = ||M1

i ||
∫ 1

0

1
H(t)

dt (10)

where ||M1
i || denotes the length of the mesh edge and H(t) is a monotonic

interpolation function along the mesh edge such that H(0) = hj1 and H(1) = hj2 .
For the piecewise linear mesh size field used in this paper to track the moving
mesh adaptation in curved domains, the function H(t) is,

H(t) = hj1 + (hj2 − hj1)t (11)

Therefore, Eq.10 gives,

L(M1
1 ) = ||M1

i ||
log(hj1/hj2)
hj1 − hj2

, hj1 �= hj2 (12)

Therefore, for any mesh edge which is not satisfied in Eq.9, the larger mesh
size of its bounding mesh vertices is decreased to min(hj1 , hj2)βL(M1

i ) to meet
Eq.9. The process is iteratively performed over the mesh when all of the mesh
edges satisfy Eq.9. For the mesh shown in Figure 6(b), β is adopted as 2.0. More
moving adaptive meshes are shown in section 4.

4 Analysis Results

4.1 Curvilinear Meshes for FETD Electromagnetic Simulations

SLAC performs simulations for the wakefield effects of an 8-cavity cryomodule for
the proposed International Linear Collider (ILC) using the FETD method, which
applies a set of higher order hierarchical Nedelec basis functions [19] for the finite
element spacial discretization that requires the meshes to be curved. A curvilinear
mesh with 2.974 million quadratic isoparametric tetrahedral elements is used in
this FETD simulation. The initial curvilinear mesh uses Lagrange interpolation
to represent the higher order shapes for those curved mesh edges which have been
converted to Bézeir representations using Eq.2. 515 invalid curved elements were
detected and have been corrected using the procedure discussed in Section 2. The
valid curved mesh was exported by converting the Bézier shapes back to Lagrange
shapes to be suitable for the analysis simulation system. Figure 7 shows the curved
mesh for one cavity of the model and the close-up mesh before and after curving.
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Fig. 7. The mesh for one cavity (top), close-up mesh before (bottom left) and after
(bottom right) correcting the invalid curved elements marked as yellow

Fig. 8. Local mesh cavity before (left) and after (right) applying edge swap to correct
the invalid element

Figure 8 shows how an edge collapse operation is applied to correct the invalid
curved elements during curving process.

The mesh produced about 20 million degrees of freedom. The simulation used
256 Multi-stream processors on the Cray-X1E at Oak Ridge National Labo-
ratory. It took a total runtime of 300 wall-hours through multiple jobs with
checkpointing for a complete run and half terabtye of data was generated. Fig-
ure 9 shows a snapshot of the electric field distribution excited by a beam in the
ILC cryomodule.
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Fig. 9. A snapshot of the electric field distribution excited by a beam in an 8-cavity
cryomodule for the proposed International Linear Collider

Table 3. Statistics for correcting the 2.97M mesh with 515 invalid curved regions

Time usage (sec) Local mesh operations

Import the mesh 381.162 Edge collapse 253
Create invalid region list 45.106 Region collapse 17
Correcting invalid regions 256.182 Edge swap 76

Export the mesh 64.911 Double edge split+collapse 13
Recurving 32

The statistics for correcting the invalid curved regions is presented in Table 3.
The data shows that the procedure used about 10 minutes to correct the invalid
regions on a single processor linux workstation. The corrected curvilinear mesh
not only leads to a stable time-domain simulation but also reduces the execution
time per time-step by up to 30% due to better conditioned matrices, which is
90 wall-hours runtime efficiency improvement on the parallel computers.

4.2 Moving Adaptively Refined Meshes for Short-Range Wakefield
Calculations

A series of moving adapted meshes in a curved domain were generated using the
procedure described in Section 3 for short-range wakefield calculations by SLAC.
Figure 10 shows the geometric model which has some complex components in
the middle of domain. The initial location of the beam is at the left end of the
domain, the desired mesh size inside the particle dense mesh is 1 and the size
for the rest of the domains is 10. Figure 11 shows the moving adapted meshes
up to step 5. Figure 12 shows the interior adapted mesh at step 5. Mesh size
gradation control discussed in Section 3 is applied with β = 2.0. Figure 13 shows
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80

Fig. 10. Geometric model for the short-range wakefield simulation

(a) Initial mesh (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

Fig. 11. Moving adapted meshes in curved domain for short-range wakefield simulation
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(a) Interior (b) Close-up

Fig. 12. Interior mesh for the adapted mesh at step 5
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Fig. 13. Number of mesh regions at each step

the number of elements at each step which indicates that these adaptively refined
meshes have around 1 ∼ 1.15 million elements compared to the uniform refined
mesh with 6.5 million elements if the mesh size inside the particle domains is
applied in the entire domain. The increase of the number of elements in the
middle of the domain is due to the complex geometries as shown in Figure 10.
The computation effort of short-range wakefield calculations using the moving
adaptively refined meshes can be reduced by one order of magnitude compared
to the uniformly-refined mesh.
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5 Conclusion

This paper has presented a procedure to track moving adaptive mesh refinement
in curved domains which is capable of generating suitable curvilinear meshes
to enable large-scale accelerator simulations. The procedure combined a gen-
eral mesh curving tool and size-driven mesh adaptation to produce valid curved
meshes with substantially fewer elements and the analysis results demonstrated
such meshes improved the computational efficiency and reliability. Future work
will focus on the scalable parallelization of all steps for petascale simulations.
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Abstract. Finite element mesh adaptation methods can be used to improve the effi-
ciency and accuracy of solutions to computational modeling problems. In many applica-
tions involving hexahedral meshes, localized modifications which preserve a conforming
all-hexahedral mesh are desired. Effective hexahedral refinement methods that satisfy
these criteria have recently become available; however, due to hexahedral mesh topol-
ogy constraints, little progress has been made in the area of hexahedral coarsening. This
paper presents a new method to locally coarsen conforming all-hexahedral meshes. The
method works on both structured and unstructured meshes and is not based on undo-
ing previous refinement. Building upon recent developments in quadrilateral coarsening,
the method utilizes hexahedral sheet and column operations, including pillowing, column
collapsing, and sheet extraction. A general algorithm for automated coarsening is pre-
sented and examples of models that have been coarsened with this new algorithm are
shown. While results are promising, further work is needed to improve the automated
process.

Keywords: Hexahedral, Mesh, Coarsening, Simplification, Adaptivity, Refinement.

1 Introduction

The efficiency and accuracy of a finite element computational modeling solution
are greatly influenced by the distribution of elements in the finite element mesh.
In a given model, there are usually regions that require greater mesh density than
others. A higher concentration of elements in these regions may be necessary to
reduce error in the finite element approximation, increase resolution where there
are high gradients, or more accurately represent the model geometry. Regions
where high accuracy is not critical or where gradients are low can generally be
modeled with lower mesh density. Since the computational time required in a
finite element analysis is directly related to the number of elements in the model
being analyzed, it is advantageous to produce a mesh that has as few elements
as possible. Therefore, in an ideal analysis, each region in the model should have
enough elements to produce a good solution, but no more.
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For most real-world finite element models, current mesh generation algorithms
are unable to create an initial mesh that optimizes both accuracy and efficiency in
the finite element solution. Although some control over mesh density is possible,
an initial mesh will almost always contain regions that have too few elements,
regions that have too many elements, or both. In addition, some finite element
applications require mesh density to evolve throughout an analysis as areas of
high and low activity change with time [1, 2, 3, 4]. For these reasons, much
research has been devoted to the development of mesh adaptation tools that
make it possible to adjust element density in specific regions either before or
during analysis.

Mesh adaptation consists of both refinement and coarsening. Refinement is
the process of increasing mesh density by adding elements to a mesh, while
coarsening is the process of decreasing mesh density by removing elements from
a mesh. By refining areas that have too few elements and coarsening areas that
have too many elements, a more accurate and efficient analysis can be performed.

To satisfy the requirements of some finite element solvers, a mesh must be
topologically conforming and contain only one element type. In general, a con-
forming all-tetrahedral mesh can be locally modified with much greater ease
than a conforming all-hexahedral mesh. However, in many modeling applica-
tions, hexahedral elements are preferred over tetrahedral elements because they
provide greater efficiency and accuracy in the computational process [1, 5]. For
this reason, work has been done to improve hexahedral mesh adaptation meth-
ods. As a result, robust hexahedral refinement algorithms are becoming available
[6, 7, 8, 9]. However, few developments have been seen in the area of hexahedral
coarsening. The lack of effective coarsening methods creates a major gap in the
field of hexahedral mesh adaptation.

To effectively achieve the objectives of mesh adaptation, a truly general hex-
ahedral coarsening algorithm should:

1. Preserve a conforming all-hexahedral mesh
2. Restrict mesh topology and density changes to defined regions
3. Work on both a structured and unstructured mesh
4. Not be limited to only undoing previous refinement

Although hexahedral coarsening has been utilized in some modeling applica-
tions, no single algorithm has been developed that satisfies all the criteria listed
above. This is, in large part, due to the topology constraints that exist in a con-
forming all-hexahedral mesh. These constraints make it difficult to modify mesh
density without causing topology changes to propagate beyond the boundaries
of a defined region [10, 11].

Since current hexahedral coarsening methods are unable to satisfy all the re-
quirements listed above, they have limited applications. For example, to prevent
global topology changes, some algorithms introduce non-conforming or non-
hexahedral elements into the mesh [1, 2, 12, 13, 14]. While this is a valid solu-
tion for some types of analysis, not all finite element solvers can accommodate
hanging nodes or hybrid meshes. Other algorithms maintain a conforming all-
hexahedralmesh, but they generally require either global topology changesbeyond
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the defined coarsening region [11, 15, 16], structured mesh topology where prede-
termined transition templates can be used [8, 15], or prior refinement that can be
undone [2, 12, 13]. These weaknesses severely limit the effectiveness of these algo-
rithms on most real-world models.

This paper presents a new method to locally coarsen conforming all-hexahedral
meshes. The method works on both structured and unstructured meshes and is
not based on undoing previous refinement. The remainder of this paper is orga-
nized as follows. Section 2 provides an overview of some basic hexahedral mesh
operations. Section 3 shows how these operations have been combined to pro-
duce localized hexahedral coarsening and how the coarsening process has been
automated. In Section 4, some examples of models which have been coarsened
are shown. Finally, in Section 5, some areas of future work are discussed.

2 Hexahedral Mesh Operations

In recent years, a greater understanding of hexahedral mesh topology has led
to the development of many new hexahedral mesh operations [17, 18, 19]. In
this section, three operations which are useful for hexahedral coarsening are pre-
sented. These operations are based on hexahedral sheets and columns, which are
topology-based groups of hexahedra that always exist in a conforming hexahe-
dral mesh.

2.1 Hexahedral Sheets and Columns

A hexahedral element contains three sets of four topologically parallel edges, as
shown in Figure 1. Topologically parallel edges provide the basis for hexahedral
sheets. The formation of a sheet begins with a single edge. Once an edge has
been chosen, all elements which share that edge are identified. For each of these
elements, the three edges which are topologically parallel to the original edge are
also identified. These new edges are then used to find another layer of elements
and topologically parallel edges. This process is repeated until no new adjacent
elements can be found. The set of elements which are traversed during this
process makes up a hexahedral sheet. Figure 2 shows a hexahedral mesh with
one of the sheets in the mesh defined.

Fig. 1. A hexahedral element’s three sets of topologically parallel edges
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Fig. 2. A hexahedral sheet: (a) A hexahedral mesh with one sheet defined. (b) A view
of the entire sheet

Fig. 3. A hexahedral element’s three pairs of topologically opposite faces

Fig. 4. A hexahedral column: (a) Two intersecting sheets. (b) The column that defines
the intersection of the two sheets in (a).

A hexahedral element also contains three pairs of topologically opposite
quadrilateral faces, as shown in Figure 3. Topologically opposite faces provide
the basis for hexahedral columns. The formation of a column begins with a sin-
gle face. Once a face has been chosen, the elements which share that face are
identified. For each of these elements, the face which is topologically opposite of
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the original face is also identified. These new faces are then used to find another
layer of elements and topologically opposite faces. This process is repeated until
no new adjacent elements can be found. The set of elements which are traversed
during this process makes up a hexahedral column. An important relationship
between sheets and columns is that a column defines the intersection of two
sheets. This relationship is illustrated in Figure 4.

2.2 Sheet and Column Operations

Hexahedral sheet and column operations can be used to modify a hexahe-
dral mesh without introducing non-conforming elements. One such operation
is known as sheet extraction [16]. Sheet extraction removes a sheet from a mesh
by simply collapsing the edges that define the sheet and merging the two nodes
on each edge, as shown in Figure 5. Merging nodes in this manner decreases

Fig. 5. Sheet extraction: (a) A sheet is selected for extraction. (b) The edges that
define the sheet are collapsed. (c) The two nodes on each edge are merged, which
eliminates the sheet and preserves a conforming hexahedral mesh.

Fig. 6. Pillowing: (a) A shrink set is defined. (b) The elements in the shrink set are
reduced in size and separated from the rest of the mesh. A sheet is inserted to fill in
the gap and preserve a conforming hexahedral mesh. (c) The newly inserted sheet.
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Fig. 7. Column collapse operation

element density in the vicinity of the extracted sheet and guarantees that the
resulting mesh will be conforming.

Another hexahedral mesh operation that involves sheets is pillowing [19, 20].
Unlike sheet extraction, which removes an existing sheet from a mesh, pillowing
inserts a new sheet into a mesh. As demonstrated in Figure 6, pillowing is per-
formed on a contiguous group of hexahedral elements which make up a ‘shrink’
set. These elements are reduced in size and pulled away from the rest of the
mesh, leaving a gap. A new sheet is then inserted into the gap by reconnecting
each of the separated node pairs with a new edge. The new sheet increases ele-
ment density in the vicinity of the shrink set and ensures the preservation of a
conforming hexahedral mesh.

A third hexahedral mesh operation is known as column, or face, collapsing
[18, 21]. A column is collapsed by merging diagonally opposite nodes in each
quadrilateral face that defines the column, as shown in Figure 7. Since a quadri-
lateral face has two pairs of diagonally opposite nodes, a column can be collapsed
in one of two different directions.

Fig. 8. Redirection of intersecting sheets through column collapsing: (a) Two inter-
secting sheets. (b) The column defining the intersection is collapsed. (c) The two sheets
no longer intersect.
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As previously mentioned, a column defines the intersection of two sheets.
When a column is collapsed, two intersecting sheets are altered such that they
no longer intersect, as illustrated in Figure 8. The paths of the new sheets are
determined by the direction of the collapse. Just like sheet extraction and pil-
lowing, the column collapse operation always preserves a conforming hexahedral
mesh. In addition, similar to sheet extraction, the column collapse operation
decreases element density in the vicinity of the collapsed column.

3 Hexahedral Mesh Coarsening

Utilizing the sheet and column operations described in Section 2, the hexahedral
coarsening method presented in this section builds upon recent developments in
quadrilateral coarsening [21]. While it is true that some quadrilateral coarsening
operations can be directly extended to hexahedral coarsening, by themselves,
these operations are not always able to prevent changes in element density from
propogating beyond the boundaries of a defined hexahedral coarsening region.

3.1 Previously Developed Coarsening Techniques

As illustrated in Section 2.2, sheet extraction decreases mesh density by remov-
ing elements from a mesh. Therefore, sheet extraction is a very useful tool for
hexahedral coarsening. However, sheet extraction by itself is generally not suffi-
cient when localized coarsening is desired. This is due to the fact that sheets are
rarely contained entirely within a region that has been selected for coarsening.
As shown in Figure 9, extracting a sheet that extends beyond the boundaries of
a defined region decreases mesh density in areas where coarsening is not desired.
Therefore, before sheet extraction can occur, it is often necessary to modify the

Fig. 9. Global coarsening: (a) A sheet passes through a region selected for coarsening.
(b) When the sheet is extracted, mesh density is decreased both inside and outside the
defined coarsening region.
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Fig. 10. Localized coarsening: (a) Two intersecting sheets pass through a region se-
lected for coarsening. (b) The column defining the intersection of the two sheets in (a)
is collapsed to produce a sheet contained entirely within the coarsening region. (c) The
sheet that will be extracted. (d) When the sheet in (c) is extracted, mesh density is
only decreased within the defined coarsening region.

mesh in such a way that produces sheets which are contained entirely within the
boundaries of a defined coarsening region.

As described in Section 2.2, the paths of intersecting sheets can be altered
using the column collapse operation. Figure 10, shows how this operation can
be used to create a sheet that is contained entirely within a defined region. Such
a sheet can then be extracted to coarsen the region without affecting any other
part of the mesh.

The coarsening region shown in Figure 10 extends from the top to the bottom
of the mesh. Suppose the coarsening region is modified so that it only extends
a few layers from the top of the mesh, as shown in Figure 11. In this case,
the column collapse operation can be used twice to produce a sheet that is
contained entirely within the coarsening region. However, as seen in the figure,
the first collapse operation is performed on a column which extends beyond
the boundaries of the region. Collapsing this column modifies mesh topology
and density in areas where coarsening is not desired. This shows that entirely
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localized coarsening cannot always be accomplished with the column collapse
and sheet extraction operations alone.

3.2 Entirely Localized Coarsening

The previous examples demonstrate that entirely localized coarsening requires
all operations to take place within the boundaries of the selected coarsening
region. Referring to Figure 11, it can be seen that the second collapse operation
was performed on a column contained within the coarsening region. Collapsing
this column produced a sheet contained within the region without affecting any
other part of the mesh. Of course, the formation of this column was accomplished
through a previous collapse operation that did affect areas outside the coarsening
region. Therefore, a critical aspect of entirely localized coarsening is the creation
of local columns. Such columns must be formed in the coarsening region without
affecting areas outside the region.

Fig. 11. Semi-localized coarsening: (a) Two intersecting sheets pass through a region
selected for coarsening. (b) The column defining the intersection of the two sheets in
(a) is collapsed. A sheet formed by the collapse and another intersecting sheet are
shown. (c) The column defining the intersection of the two sheets in (b) is collapsed to
produce a sheet contained entirely within the coarsening region. (d) The sheet that will
be extracted. (e) When the sheet in (d) is extracted, mesh density is only decreased
within the defined coarsening region.
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One way to create local columns without affecting areas outside the coarsening
region is through pillowing. As illustrated in Section 2.2, pillowing is a form of
refinement because it increases mesh density in the vicinity of the shrink set. For
this reason, pillowing is not an obvious solution for coarsening. However, due to
the topology constraints that exist in a conforming all-hexahedral mesh, adding
elements appears to be a necessary step when coarsening some regions.

Figure 12 shows how pillowing can be used to produce entirely localized coars-
ening. By pillowing the coarsening region, a sheet is inserted around the region.
This sheet intersects other sheets that pass through the coarsening region and
provides columns which follow the boundary of the region. Such columns can be
collapsed to form sheets contained within the coarsening region without modi-
fying mesh topology or density in areas where coarsening is not desired. These
sheets can then be extracted to locally coarsen the region. It should be noted
that many of the elements added through pillowing are removed through sheet
extraction. Only those elements which are necessary to transition from higher
to lower mesh density are left in the mesh. As long as the number of elements
removed through sheet extraction is greater than the number of elements added
through pillowing, the final mesh density in the coarsening region will be lower
than the initial mesh density.

Fig. 12. Entirely localized coarsening: (a) A coarsening region is defined. (b) The sheet
that forms when the coarsening region is pillowed. This sheet provides columns which
follow the boundary of the region. (c) Collapsing the columns in (b) produces sheets
contained entirely within the coarsening region.

3.3 Automated Coarsening Algorithm

For a given region, the process of pillowing, column collapsing, and sheet extrac-
tion can be repeated multiple times to achieve various levels of coarsening. A
simple algorithm has been developed to automate this process for an arbitrary
region and level of coarsening. The overall structure of the algorithm is briefly
described by the following steps.

1. A coarsening region is defined and a target mesh density for that region is
determined based on input given by a user.
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Fig. 13. Two coarsening options: (a) Columns selected for collapsing. (b) The sheets
that will form if the columns are collapsed one way. (c) The sheets that will form if
the columns are collapsed the other way.

2. Every sheet that passes through the coarsening region is found. Sheets con-
tained entirely within the coarsening region are distinguished from those
that extend beyond the region.

3. Due to a variety of geometry and mesh topology constraints, each sheet is
examined to see if it will facilitate valid collapses and extractions during the
coarsening process. Sheets that are unable to facilitate valid collapses and
extractions are ignored from this point on.

4. For each acceptable sheet, a shape quality metric [22] is used to estimate
how the quality of the mesh will be affected if that sheet, or the portion of
that sheet contained in the coarsening region, is extracted. Sheets that will
potentially produce a higher mesh quality are given higher priority.

5. If there are any sheets contained entirely within the coarsening region, then
valid combinations of those sheets are analyzed. The combination that, when
extracted, will produce a mesh density that is closest to the target mesh
density without over-coarsening is saved. If no acceptable combination is
found, the algorithm moves to step 6. Otherwise, steps 6 through 8 are
skipped because no other operations are needed before sheet extraction.

6. If there are any sheets that extend beyond the coarsening region, then valid
combinations of those sheets are analyzed. For each combination, two coars-
ening options are possible, as shown in Figure 13. These two coarsening
options are distinguished by which direction the columns are collapsed. The
combination that will produce a mesh density that is closest to the target
mesh density without over-coarsening is saved. If no acceptable combination
is found, steps 7 through 9 are skipped.

7. A sheet is inserted around the boundary of the coarsening region through
pillowing.

8. Columns in the pillow sheet are collapsed in directions which were previously
determined when the best sheet combination was saved. These collapses form
sheets which are contained entirely within the coarsening region.

9. Sheets contained entirely within the coarsening region are extracted.
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10. Steps 2 through 9 are repeated until the target mesh density is achieved
(within a certain tolerance) or no more valid sheet combinations are found.

11. If coarsening took place, the remaining elements in the region are smoothed
to improve mesh quality [23].

4 Examples

The following three examples show some results of the automated coarsening
algorithm described in Section 3.3. In each example, the goal was to remove 25,
50, and 75 percent of the elements in the region selected for coarsening, while
maintaining acceptable element quality. Quality was measured using the scaled
Jacobian [24].

The first example was performed on a structured mesh of a cube, as shown
in Figure 14. The second example was performed on an unstructured multiple-
source to single-target swept mesh of a mechanical part, as shown in Figure 15.

Fig. 14. Structured cube example: (a) Original mesh with coarsening region defined.
(b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.
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Table 1. Coarsening Results for Cube Model

Target Percent Elements in Actual Percent Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 1331 – 1.00 –
25 1056 20.7 0.47 0.7
50 684 48.6 0.41 0.9
75 355 73.3 0.34 1.1

Fig. 15. Unstructured mechanical part example: (a) Original mesh with coarsening
region defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent
coarsening.
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Table 2. Coarsening Results for Mechanical Part Model

Target Percent Elements in Actual Percent Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 7641 – 0.77 –
25 5807 24.0 0.59 5.3
50 4057 46.9 0.32 9.6
75 2205 71.1 0.22 12.5

Fig. 16. Unstructured human head example: (a) Original mesh with coarsening region
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.
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Table 3. Coarsening Results for Human Head Model

Target Percent Elements in Actual Percent Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 10080 – 0.48 –
25 7953 21.1 0.29 13.0
50 5129 49.1 0.17 17.9
75 2615 74.1 0.22 22.5

The final example was performed on an unstructured mesh of a human head
generated with an octree based, sheet insertion algorithm [25], as shown in Fig-
ure 16. For both the mechanical part and human head models, refinement was
performed prior to coarsening to create a higher starting mesh density.

Tables 1, 2, and 3 provide element removal, element quality, and coarsening
time results for each model. In almost every case, acceptable element quality
was maintained and a density that very nearly reflects the target mesh density
was achieved.

5 Future Work

The automated coarsening algorithm described in Section 3.3 takes advantage
of sheets already existing entirely within the coarsening region which can be
extracted without any previous operations. However, it does not take advantage
of columns already existing entirely within the coarsening region which can be
collapsed without any previous operations. Modifying the algorithm to take ad-
vantage of such columns would improve the efficiency and effectiveness of the
coarsening process in certain situations.

While the automated coarsening algorithm guarantees a topologically con-
forming mesh, it does not guarantee that the final quality of the mesh will
be acceptable. Further research is needed to ensure that hexahedral coarsening
does not degrade mesh quality below an acceptable threshold. This might be
accomplished through more sophisticated methods which prevent poor quality
elements from forming, or through cleanup operations which fix bad elements
without significantly affecting mesh density. Many effective methods to cleanup
a quadrilateral mesh have recently been developed. It is hoped that further re-
search will lead to similar methods for a hexahedral mesh.

The coarsening method presented in this paper has been shown to work on un-
structured meshes. However, even though these meshes are considered to be un-
structured, they are usually structured in one dimension. Little work has been
done to test thismethod on completelyunstructuredmeshes. In theory, themethod
shouldwork for anyhexahedralmesh. However, it is likely that somemeshes cannot
be coarsenedwithout degrading element quality below an acceptable level. Further
work is needed to determine the limits of this coarsening method.
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6 Conclusion

By utilizing sheet and column operations such as pillowing, column collapsing,
and sheet extraction, entirely localized coarsening can be achieved in conform-
ing all-hexahedral meshes. This method of coarsening works on both structured
and unstructured meshes and is not based on undoing previous refinement. Al-
though not fully developed, automation of this hexahedral coarsening method
has already shown promising results. However, further work is needed to ensure
acceptable element quality and to improve the efficiency of the overall process.
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