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Overview
• History and current state of unstructured grid 

technology of CFD
– Influence of grid generation technology
– Influence of solver technology

• Examples of unstructured mesh CFD capabilities
• Areas of current research

– Adaptive mesh refinement
– Moving meshes
– Overlapping meshes
– Requirements for design methods
– Implications for higher-order accurate Discretizations
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CFD Perspective on Meshing 
Technology

• CFD initiated in structured grid context
– Transfinite interpolation
– Elliptic grid generation
– Hyperbolic grid generation

• Smooth, orthogonal structured grids
• Relatively simple geometries



CFD Perspective on Meshing Technology
• Evolved to Sophisticated Multiblock and Overlapping 

Structured Grid Techniques for Complex Geometries

Overlapping grid system on space shuttle (Slotnick, Kandula and Buning 1994)
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CFD Perspective on Meshing 
Technology

• Unstructured meshes initially confined to FE 
community
– CFD Discretizations based on directional splitting
– Line relaxation (ADI) solvers
– Structured Multigrid solvers

• Sparse matrix methods not competitive
– Memory limitations
– Non-linear nature of problems
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Current State of Unstructured Mesh CFD 
Technology

• Method of choice for many commercial CFD 
vendors
– Fluent, StarCD, CFD++, …

• Advantages
– Complex geometries 
– Adaptivity
– Parallelizability

• Enabling factors
– Maturing grid generation technology
– Better Discretizations and solvers
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Maturing Unstructured Grid 
Generation Technology (1990-2000)
• Isotropic tetrahedral grid generation

– Delaunay point insertion algorithms
– Surface recovery
– Advancing front techniques
– Octree methods

• Mature technology
– Numerous available commercial packages
– Remaining issues

• Grid quality
• Robustness
• Links to CAD
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Maturing Unstructured Grid 
Generation Technology (1990-2000)
• Anisotropic unstructured grid generation

– External aerodynamics
• Boundary layers, wakes: O(10**4)

– Mapped Delaunay triangulations
– Min-max triangulations
– Hybrid methods  

• Advancing layers
• Mixed prismatic – tetrahedral meshes



11th International Meshing Roundtable 
September 15-18,2002 Ithaca New York, USA

Anisotropic Unstructured Grid 
Generation

• Hybrid methods
– Semi-structured nature
– Less mature: issues

• Concave regions
• Neighboring boundaries
• Conflicting resolution
• Conflicting Stretchings

VGRIDns Advancing Layers
c/o S. Pirzadeh, NASA Langley
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Enabling CFD Solver Developments 
(1990 – 2000)

• Edge-based data structure
– Building block for all element types
– Reduces memory requirements
– Minimizes indirect addressing / gather-scatter
– Graph of grid = Discretization stencil

• Implications for solvers, Partitioners



Enabling CFD Solver Developments 
(1990 –2000)

• Multigrid solvers
– Multigrid techniques enable optimal O(N) solution 

complexity
– Based on sequence of coarse and fine meshes
– Originally developed for structured grids
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Enabling CFD Solver Developments 
(1990 –2000)

• Agglomeration Multigrid solvers for unstructured meshes
– Coarse level meshes constructed by agglomerating fine grid 

cells/equations



Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm

•Coarse Levels are Graphs

•Coarse Level Operator by Galerkin Projection

•Grid independent convergence rates (order of magnitude improvement)



Enabling CFD Solver Developments

• Line solvers for Anisotropic problems
– Lines constructed in mesh using weighted graph algorithm
– Strong connections assigned large graph weight
– (Block) Tridiagonal line solver similar to structured grids
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Enabling CFD Solver Developments 
(1990 –2000)

• Graph-based Partitioners for parallel load balancing
– Metis, Chaco, Jostle

• Edge-data structure graph of grid
• Agglomeration Multigrid levels = graphs
• Excellent load balancing up to 1000’s of processors

– Homogeneous data-structures
– (Versus multi-block / overlapping structured grids)
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Practical Examples

• VGRIDns tetrahedral grid generator
• NSU3D Multigrid flow solver

– Large scale massively parallel case
– Fast turnaround medium size problem
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NASA Langley Energy Efficient Transport

• Complex geometry
– Wing-body, slat, double slotted flaps, cutouts

• Experimental data from Langley 14x22ft wind tunnel
– Mach = 0.2, Reynolds=1.6 million
– Range of incidences: -4 to 24 degrees
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Initial Mesh Generation (VGRIDns)
S. Pirzadeh, NASA Langley

• Combined advancing layers- advancing front
– Advancing layers: thin elements at walls
– Advancing front: isotropic elements elsewhere

• Automatic switching from AL to AF based on:
– Cell aspect ratio
– Proximity of boundaries of other fronts
– Variable height for advancing layers

• Background Cartesian grid for smooth spacing control
• Spanwise stretching

– Factor of 3 reduction in grid size



VGRID Tetrahedral Mesh

• 3.1 million vertices, 18.2 million tets, 115,489 surface pts
• Normal spacing: 1.35E-06 chords, growth factor=1.3



Prism Merging Operation
• Combine Tetrahedra triplets in advancing-layers 

region into prisms
– Prisms entail lower complexity for solver

• VGRIDns identifies originating boundary point 
for ALR vertices
– Used to identify candidate elements
– Pyramids required as transitional elements



11th International Meshing Roundtable 
September 15-18,2002 Ithaca New York, USA

Prism Merging Operation
• Initial mesh: 18.2M Tetrahedra
• Merged mesh: 3.9M prisms, 6.6M Tets, 47K 

pyramids
– 64% of Tetrahedra merged
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Global Mesh Refinement

• High-resolution meshes require large parallel 
machines

• Parallel mesh generation difficult
– Complicated logic
– Access to commercial preprocessing, CAD tools

• Current approach
– Generate coarse (O(10**6) vertices on workstation
– Refine on supercomputer
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Global Mesh Refinement
• Refinement achieved by element subdivision
• Global refinement: 8:1 increase in resolution
• In-Situ approach obviates large file transfers
• Initial mesh: 3.1 million vertices

– 3.9M prisms, 6.6M Tets, 47K pyramids

• Refined mesh: 24.7 million vertices
– 31M prisms, 53M Tets, 281K pyramids
– Refinement operation: 10 Gbytes, 30 minutes 

sequentially
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NSU3D Unstructured Mesh 
Navier-Stokes Solver

• Mixed element grids
– Tetrahedra, prisms, pyramids, hexahedra

• Edge data-structure
• Line solver in BL regions near walls
• Agglomeration Multigrid acceleration
• Newton Krylov (GMRES) acceleration option
• Spalart-Allmaras 1 equation turbulence model
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Parallel Implementation

• Domain decomposition with OpenMP/MPI 
communication
– OpenMP on shared memory architectures
– MPI on distributed memory architectures
– Hybrid capability for clusters of SMPs

• Weighted graph partitioning (Metis)  (Chaco)
• Coarse and fine MG levels partitioned 

independently



Computed Pressure Contours on Coarse Grid

• Mach=0.2, Incidence=10 degrees, Re=1.6M



Computed Versus Experimental Results

• Good drag prediction
• Discrepancies near stall



Multigrid Convergence History

• Mesh independent property of Multigrid
• GMRES effective but requires extra memory



Parallel Scalability

• Good overall Multigrid scalability
– Increased communication due to coarse grid levels
– Single grid solution impractical (>100 times slower)

• 1 hour soution time on 1450 PEs



AIAA Drag Prediction Workshop (2001)

• Transonic wing-body configuration
• Typical cases required for design study

– Matrix of mach and CL values
– Grid resolution study

• Follow on with engine effects (2003)
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Cases Run

• Baseline grid: 1.6 million points
– Full drag polars for 

Mach=0.5,0.6,0.7,0.75,0.76,0.77,0.78,0.8
– Total = 72 cases

• Medium grid: 3 million points
– Full drag polar for each mach number
– Total = 48 cases

• Fine grid: 13 million points
– Drag polar at mach=0.75
– Total = 7 cases



Sample Solution (1.65M Pts)

• Mach=0.75, CL=0.6, Re=3M
• 2.5 hours on 16 Pentium IV 1.7GHz



Drag Polar at Mach = 0.75

• Grid resolution study
• Good comparison with experimental data
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Cases Run on ICASE Cluster

• 120 Cases (excluding finest grid)
• About 1 week to compute all cases
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Current and Future Issues

• Adaptive mesh refinement
• Moving geometry and mesh motion
• Moving geometry and overlapping meshes
• Requirements for gradient-based design
• Implications for higher-order

Discretizations
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Adaptive Meshing

• Potential for large savings through optimized 
mesh resolution
– Well suited for problems with large range of scales
– Possibility of error estimation / control
– Requires tight CAD coupling (surface pts)

• Mechanics of mesh adaptation
• Refinement criteria and error estimation



11th International Meshing Roundtable 
September 15-18,2002 Ithaca New York, USA

Mechanics of Adaptive Meshing

• Various well know isotropic mesh methods
– Mesh movement

• Spring analogy
• Linear elasticity

– Local Remeshing
– Delaunay point insertion/Retriangulation
– Edge-face swapping
– Element subdivision

• Mixed elements (non-simplicial)
• Anisotropic subdivision required in transition regions
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Subdivision Types for Tetrahedra
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Subdivision Types for Prisms
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Subdivision Types for Pyramids
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Subdivision Types for Hexahedra
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Adaptive Tetrahedral Mesh by Subdivision
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Adaptive Hexahedral Mesh by Subdivision
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Adaptive Hybrid Mesh by Subdivision
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Anisotropic Adaptation Methods

• Large potential savings for 1 or 2D features
– Directional subdivision

• Assumes element faces to line up with flow features
• Combine with mesh motion

– Mapping techniques
• Hessian based
• Grid quality 
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Refinement Criteria
• Weakest link of adaptive meshing methods

– Obvious for strong features
– Difficult for non-local (ie. Convective) features

• eg. Wakes

– Analysis assumes in asymptotic error convergence region
• Gradient based criteria
• Empirical criteria

• Effect of variable discretization error in design 
studies, parameter sweeps
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Adjoint-based Error Prediction

• Compute sensitivity of global cost function to local 
spatial grid resolution

• Key on important output, ignore other features
– Error in engineering output, not discretization error

• e.g. Lift, drag,  or sonic boom …

• Captures non-local behavior of error
– Global effect of local resolution

• Requires solution of adjoint equations
– Adjoint techniques used for design optimization



Adjoint-based Mesh Adaptation Criteria
Reproduced from Venditti and Darmofal (MIT, 2002)



Adjoint-based Mesh Adaptation Criteria
Reproduced from Venditti and Darmofal (MIT, 2002)



Adjoint-based Mesh Adaptation Criteria
Reproduced from Venditti and Darmofal (MIT, 2002)
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Overlapping Unstructured Meshes

• Alternative to moving mesh for large scale relative 
geometry motion

• Multiple overlapping meshes treated as single 
data-structure
– Dynamic determination of active/inactive/ghost cells

• Advantages for parallel computing
– Obviates dynamic load rebalancing required with mesh 

motion techniques
– Intergrid communication must be dynamically 

recomputed and rebalanced
• Concept of Rendez-vous grid (Plimpton and Hendrickson)
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Overlapping Unstructured Meshes

• Simple 2D transient example
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Gradient-based Design Optimization

• Minimize Cost Function F with respect to design 
variables v, subject to constraint R(w) = 0
– F = drag, weight, cost
– v = shape parameters
– w = Flow variables
– R(w) = 0 Governing Flow Equations

• Gradient Based Methods approach minimum 
along direction :

v
F
∂
∂

−
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Grid Related Issues for Gradient-based 
Design

• Parametrization of CAD surfaces
• Consistency across disciplines

– eg. CFD, structures,…
• Surface grid motion
• Interior grid motion
• Grid sensitivities
• Automation / Parallelization



Preliminary Design Geometry
X34 CAD Model

23,555 curves and surfaces

c/o J. Samareh, NASA Langley



Launch Vehicle Shape Parameterization

c/o J. Samareh, NASA Langley



Sensitivity Analysis

analysis code
field grid generator

geometry modeler (CAD)

surface grid generator

Grid
v

Grid
Ge

Geometry
vGrid Gr m yid o etr

f

f s

sF x x xF ∂ ∂
∂

∂
=

∂∂
∂ ∂∂ ∂

v design variables

(e.g., span, camber)

objective function

(e.g., Stress, CD)

• Manual differentiation

• Automatic differentiation tools (e.g., ADIFOR and ADIC)

• Complex variables

• Finite-difference approximations 

c/o J. Samareh, NASA Langley



Finite-Difference Approximation Error 
for Sensitivity Derivatives 

Parameterized
HSCT Model

c/o J. Samareh, NASA Langley
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Grid Sensitivities

v
Geometry

Geometry
 Grid

 Grid
 Grid

v
 Grid

∂
∂

∂
∂

∂
∂

=
∂

∂ xx s

s

ff

• Ideally should be available from grid/cad software
– Analytical formulation most desirable
– Burden on grid / CAD software
– Discontinous operations present extra challenges

• Face-edge swapping
• Point addition / removal
• Mesh regeneration



High-Order Accurate Discretizations

• Uniform X2 refinement of 3D mesh:
– Work increase = factor of 8
– 2nd order accurate method: accuracy increase = 4
– 4th order accurate method: accuracy increase = 16

• For smooth solutions

• Potential for large efficiency gains
– Spectral element methods
– Discontinuous Galerkin (DG)
– Streamwise Upwind Petrov Galerkin (SUPG)
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Higher-Order Accurate Discretizations

• Transfers burden from grid generation to Discretization



Spectral Element Solution of Maxwell’s Equations
J. Hesthaven and T. Warburton (Brown University)



High-Order Discretizations
• Require more complete surface definition
• Curved surface elements

– Additional element points
– Surface definition (for high p)
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Combined H-P Refinement
• Adaptive meshing (h-ref) yields constant factor 

improvement
– After error equidistribution, no further benefit

• Order refinement (p-ref) yields asymptotic improvement
– Only for smooth functions
– Ineffective for inadequate h-resolution of feature
– Cannot treat shocks

• H-P refinement optimal (exponential convergence)
– Requires accurate CAD surface representation
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Conclusions
• Unstructured mesh CFD has come of age

– Combined advances in grid and solver technology
– Inviscid flow analysis (isotropic grids) mature
– Viscous flow analysis competitive

• Complex geometry handling facilitated
• Adaptive meshing potential not fully exploited
• Additional considerations in future

– Design methodologies
– New discretizations 
– New solution techniques
– H-P Refinement
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